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Abstract—The Sequential Sentence Classification task within
the domain of medical abstracts, termed as SSC, involves the
categorization of sentences into pre-defined headings based on
their roles in conveying critical information in the abstract. In
the SSC task, sentences are sequentially related to each other.
For this reason, the role of sentence embeddings is crucial for
capturing both the semantic information between words in the
sentence and the contextual relationship of sentences within the
abstract, which then enhances the SSC system performance. In
this paper, we propose a LSTM-based deep learning network with
a focus on creating comprehensive sentence representation at the
sentence level. To demonstrate the efficacy of the created sentence
representation, a system utilizing these sentence embeddings
is also developed, which consists of a Convolutional-Recurrent
neural network (C-RNN) at the abstract level and a multi-layer
perception network (MLP) at the segment level. Our proposed
system yields highly competitive results compared to state-of-
the-art systems and further enhances the F1 scores of the
baseline by 1.0%, 2.8%, and 2.6% on the benchmark datasets
PudMed 200K RCT, PudMed 20K RCT and NICTA-PIBOSO,
respectively. This indicates the significant impact of improving
sentence representation on boosting model performance.

Keywords— sentence representation, sequential sentence classi-
fication, bidirectional long short-term memory network, multiple
feature branches.

I. INTRODUCTION

W
HEN researching a large-scale source of scientific

papers, it is necessary to skim through abstracts to

identify whether papers align with the research interest. This

process becomes more straightforward when abstracts are

organized with semantic headings such as "background", "ob-

jective", "methods", "results", and "conclusion". Therefore,

automatically categorizing each sentence in a scientific ab-

stract into a relevant heading, known as the task of Se-

quential Sentence Classification (SSC), significantly facilitates

the information retrieval process within large-scale data. In

medical domain, research abstracts present a large volume

and have grown exponentially. Manually sorting through these

documents to find relevant insights presents a time-consuming

and labor-intensive task, highlighting the need for efficient

information retrieval and summarization methods without en-

tirely reading full-text content in medical scientific articles

[1], [2]. Therefore, the result of the SSC tasks significantly

enables researchers and learners to catch up and categorize

research abstracts effectively. In other words, the SSC task

significantly facilitates learners and researchers by accelerating

their educational processes of literature review, information

extraction, evidence-based decision-making, etc. Recently, the

SSC task in medical scientific abstracts has drawn atten-

tion from NLP research community. Indeed, some large and

benchmark datasets such as PubMed RCT [3] and NICTA-

PIBOSO [4] were published. Additionally, a wide range

of machine learning-based and deep learning-based models

have been proposed for this task [5]. Traditional machine

learning methods utilized hand-crafted feature extraction for

individual sentences. These extracted features are related to

lexical, semantic, and structural information of an individual

sentence such as synonyms, bag-of-words, part of speech,

etc. Then, sentences are classified by Hidden Markov Model

(HMM) [6], Naive Bayes [7] or CRF [8]. While the tra-

ditional machine learning-based models present a limitation

of exploring the relation among the sentences as using the

hand-crafted features, leveraging deep neural networks in

deep learning-based models allows to capture the patterns of

contextual relationship among sentences in the same abstract

that leads to a breakthrough on model performance. For

example, Dernoncourt et al. [9] introduced a deep learning

model that uses a CRF layer to optimize the predicted label

sequence, where adjacent sentences have an impact on the

prediction of each other. Jin and Szolovits [10] proposed a

hierarchical sequential labeling network to further improve

the semantic information within surrounding sentences for

classification. Recently, Yamada et al. [11] and Shang et

al. [5] introduced some methodologies to assign labels to span

sequences at the span level, which achieved state-of-the-art
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Fig. 1. The overall architecture of the proposed system

results. However, these two systems consider all possible span

sequences with various lengths, which is very computationally

expensive on large datasets [11]. Importantly, these systems

attempted to analyze the sequence of sentences at the span

level without initially considering the improvement of the

sentence representation, which is the fundamental component

of this specific SSC task. At the sentence level, these systems

leveraged sentence embeddings extracted from pre-trained

BERT model [12], which is trained on biomedical text for

various NLP tasks such as Name entity recognition, Sentence

similarity, etc. Commonly, BERT models primarily focus on

capturing syntactic meaning and contextual dependencies of

words within individual sentences or pairs of sentences [13].

To some extent, the extracted sentence embeddings may lack

the ability to grasp dependencies between sentences in a wider

context (e.g. abstracts, documents), which is one of the most

crucial task-specific properties of the SSC task. To the best

of our knowledge, there has been very little to no research

dedicated to independently improving sentence embeddings

specifically for the SSC task.

In this paper, we therefore aim to improve the sentence

representation and explore its impact on the performance of

SSC task in medical scientific abstracts. We propose a deep

neural network with a focus on extracting well-presented sen-

tence embeddings. In particular, we explore the independent

features of sentence, word sequence, character sequence, and

statistic information of sentences in one abstract. Then, we

develop a LSTM-based deep neural network with multiple-

feature branches for classifying individual sentences. The

network is then used to extract the comprehensive sentence

embeddings. Given these sentence embeddings, a system in-

cluding a Convolutional-RNN based network (C-RNN) at the

abstract level and a Multi-layer Perception network (MLP)

at the segment level (i.e. a segment includes a fixed-length

group of consecutive sentences) is introduced to extensively

learn the contextual patterns of sentences in the same abstract.

Finally, the results of C-RNN and MLP models are fused

to achieve the final predicted sentences in an abstract. We

evaluate our proposed models on two benchmark datasets,
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Fig. 2. The Sen-Model architecture for classification at the sentence level

PubMed RCT [3] and NICTA-PIBOSO [4]. The experimental

results indicate that exploiting multiple features extracted from

sentences such as word sequence, character sequence, and

statistical information of sentences in the abstract potentially

helps to generate well-presented sentence embeddings at the

sentence level. Both C-RNN network at the abstract level and

MLP network at the segment level respectively further im-

prove the performance when leveraging these well-presented

sentence embeddings.

II. THE OVERALL PROPOSED SYSTEM

The proposed system in this paper for the task of sequential

sentence classification in medical scientific abstracts is gener-

ally presented in Fig. 1.

As Fig. 1 shows, the proposed network comprises of three

main sub-networks, referred to as the classification model

(Sen-Model) at the sentence level, the regression model at the

abstract level (Abs-Model) and the classification model at the

segment level (Seg-Model). At the sentence level, we establish

the task sentence classification for individual sentences. The

proposed LSTM-based classification model at the sentence

level (Sen-Model) presents 4 branches, each of which explores

the distinct feature from the full sentence, the words in the

sentence, the character in the sentence, and the statistical

information of the sentence in one abstract, aiming to achieve

the comprehensive and contextually adaptive sentence repre-

sentation. Given the classification model at the sentence level,

we extract the sentence embeddings S = [s1, s2, ..., sS ], where

each si, i = 1, 2, ..., S, represents an individual sentence.

The sentence embeddings are then utilized in the regression

model at the abstract level (Abs-Model) and the classification

model at the segment level (Seg-Model) to further improve the

tasks of sentence classification by exploiting the properties of

the well-presented sentence representation at higher contextual

levels. Both the classification model at the sentence level and

the regression model at the abstract level leverage RNN-based

architecture, attention mechanism, and multi-layer perception

(MLP) architecture which are comprehensively presented in

next sections.
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A. The classification model at the sentence level (Sen-Model)

The proposed LSTM-based network focuses on improving

sentence representation at the sentence level (Sen-Model) is

comprehensively presented in Fig. 2. Given a sentence includ-

ing W words [w1, w2, ...wW ] and C characters [c1, c2, ...cC ].
We make use of the Glove [14] model to extract a sequence of

word embeddings W = [w1,w2, ...wW ], where ww ∈ R
dw

presents a word embedding and dw is the dimension of a

word embedding. Regarding the sequence of characters in one

sentence, the character embedding is randomly initialized in

the uniform distribution to extract the character embeddings

C = [c1, c2, ...cC ], where cc ∈ R
dc presents a character

embedding and dc is the dimension of a character embedding.

The sequence of word embeddings W and the sequence

of character embeddings C are fed into stacked Bi-LSTM-

Attention encoder blocks, referred as SBA blocks, to generate

the encoded word embeddings Ŵ = [ŵ1, ŵ2, ...ŵW ] and

the encoded character embeddings Ĉ = [ĉ1, ĉ2, ...ĉC ], where

ŵw, ĉc ∈ R
dh and dh is the hidden state dimension. The

SBA block includes a Bi-LSTM network which comprises of

two stacked Bidirectional LSTM layers, followed by a Scaled

Dot-Product Attention layer [15]. Each Bidirectional LSTM

layer takes the output sequence of the previous layer as input,

which allows the capture of more complex lexical, syntactic,

and semantic information between words and characters in an

individual sentence. Given the sequential word representation

and the sequential character representation extracted from the

Bidirectional LSTM layers, we apply linear transform to create

query, key and value matrix Q ∈ RNq×dl , K ∈ RNk×dl ,

V ∈ RNv×dv , where Nq , Nk, Nv are the number of queries,

keys and values, dl and dv are the dimension of query and

key, the dimension of value, respectively. The output matrix

of the Scaled Dot-Product attention layer is computed as:

Attention(Q,K,V) = Softmax

(
QKT

√
dl

)
V (1)

Two encoded embeddings Ŵ and Ĉ extracted from SBA

blocks of words and characters are concatenated to gener-

ated the word-char embedding U = [u1,u2, ...uU ] where

U = W + C and uu ∈ R
dh . The word-char embedding

U is then fed into the word-char encoder block to generate

the encoded word-char embeddings Û = [û1, û2, ...ûU ]. The

word-char encoder block reuses the two stacked Bidirectional

LSTM layers from the SBA block without using the attention

layer.

Besides the lexical, syntactic and semantic information for

each sentence extracted from the word and character branches,

we consider the statistical information of individual sentence:

the number of sentences in the same abstract, the index of

sentence in the abstract, and the number of words in the

sentence, which are represented by one-hot vectors t1, t2, t3.

The statistical information equips each sentence with the

ability to capture sequential and contextual properties related

to other sentences within abstract. The statistical vectors are

fed into a Multi-layer perception (MLP) to generate encoded

statistic embeddings T̂ = [̂t1, t̂2, ...̂tT ]. The encoded statistic

embeddings T̂ are then concatenated with the encoded word-

char embedding Û to generate the word-char-stat embedding

Z = [z1, z2, ...zZ ] where Z = U + T and zz ∈ R
dh . Again,

one Bi-LSTM layer and one Dense layer are used to learn

the sequence of word-char-stat embeddings, which combine

both semantic, syntactic information of word-char encoded

embedding and statistical information of statistic embedding,

to generate the encoded word-char-stat embeddings Ẑ.

To further enhance the representation of sentences in term of

language comprehension specifically in biomedical domains,

we utilize BiomedBERT [16], which was pretrained on the

PubMed corpus. The PubMed-based sentence embedding P =
[P1,P2, ...PP ] is concatenated with the encoded word-char-

stat embedding Ẑ before feeding into a Dense layer followed

by a Softmax layer for classification. After training the Sen-

Model at the sentence level, for each sentence, we extract the

output of the Dense layer before the final Softmax layer and

consider it as the final sentence-level embedding si ∈ RdL ,

where dL is the dimension of a sentence-level embedding (i.e.

the Softmax layer presents L outputs which match L labels of

sentences in an abstract). The final sentence representation of

the entire dataset is S = [s1, s2, ...sS ], where S is the number

of sentences in the dataset and si ∈ RdL . The Sen-Model is

optimized using Categorical Cross-Entropy:

LSen = − 1

N

N∑

i=1

L∑

j=1

yij log ŷij (2)

where yi, ŷi and N are the true label, the predicted probability

vector of sentence si and the batch number, respectively. To

examine the efficacy of the extracted sentence embeddings, we

constructed two networks aimed at enhancing performance at

higher levels by leveraging these embeddings. The networks

are presented in the next subsections.

B. The regression model at the abstract level (Abs-Model)

Given the original dataset comprising of S sentences

[s1, s2, ...sS ], each sentence is now represented by a sentence-

level embedding si, i = 1, 2, ..., S, extracted from the Sen-

Model at the sentence level. To explore the sequential and

contextual properties of sentences in one abstract, we group

sentence embeddings in the same abstract to create the abstract

representation A = [s1, s2, ...sI ] where si ∈ R
dL and I is the

number of sentences in one abstract. The abstract representa-

tion A is a sequence of sentence-level embeddings which is

fed into the regression model at the abstract level (Abs-Model).

The regression model at the abstract level (Abs-Model) is

comprehensively presented at the left corner of the upper part

of Fig. 1. The network includes two parts: Convolutional-

Recurrent Neural Network (C-RNN) and Logistic Regression

classifier.

Each abstract representation A is now considered as a two-

dimensional tensor which is fed into the convolution layers to

extract essential features represented for neighbour sentences

in one abstract. The two 2D-convolution layers in the C-RNN
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TABLE I
MLP BASED NETWORK FOR CLASSIFICATION AT THE SEGMENT LEVEL

Blocks Layers Output Shape

F1 Dense (512) - Elu - BN -Dr(0.5) 512

F2 Dense (256) - Elu - BN - Dr(0.5) 256

F3 Dense (128) - Elu - BN - Dr(0.5) 128

F4 Dense (64) - Elu - BN - Dr(0.5) 64

F5 Dense (L) - Softmax L

present similar settings in terms of kernel size, padding and the

number of filters in each layer. Next, the Bi-RNN decoder is

used for learning sequential relationship feature maps extracted

from the convolutional layers. Finally, the Logistic Regression

classifier receives the feature maps from the Bi-RNN decoder

as input and generate predicted values Ŷabs = [ŷ1, ŷ2, ...ŷI]
corresponding to the ground truth Yabs = [y1,y2, ...yI] where

ŷi,yi ∈ RdL . Regarding the predicted value and the ground

truth of one abstract, we form a predicted sequence ŷabs ∈
R

dL×I and yabs ∈ R
dL×I by concatenating all the vectors

of Ŷabs and Yabs, respectively. Then, the abstract-level Abs-

Model is optimized using Binary Cross Entropy (BCE) loss

on these predicted sequences, which can be written as:

LAbs = − 1

N

N∑

i=1

dL×I∑

j=1

(yij log(ŷij) + (1− yij) log(1− ŷij))

(3)

where N is the batch number and the innermost sum presents

the BCE loss for one abstract.

C. The classification model at the segment level (Seg-Model)

Given the extracted sentence embeddings, instead of gener-

ating all the segments with various lengths, we create fixed-

length segments with the size of Q by grouping every Q con-

secutive sentences in one abstract. Each abstract of I sentences

has I − Q + 1 segments. The ith segment representation is

described as m(i) = [sQi sQi+1 ... sQi+Q−1], which is formed

by concatenating Q continuous sentence embeddings. The

corresponding label vector y
(i)
seq of the ith segment is defined

as:

y(i)
seq =

Qi+Q−1∑

q=Qi

yq

Qi+Q−1∑

q=Qi

L∑

l=1

yql

(4)

where

L∑

l=1

yql is the sum of elements in the label vector yq

of the sentence sq . The fixed-length Q is set to 3 based on

empirical experiments. The Seg-model at the segment level

uses the same labels as which of the sentence level, meaning

that all the sentences in a segment receive the label of that

segment.

To classify segments, we use the MLP network which

is shown in detail at table I. The network consists of five

fully-connected blocks. The first four blocks present the same

layers which perform Dense layer, ELU activation, Batch

Normalization and Dropout, respectively. The output of the last

block is used for segment-based classification task. Since the

TABLE II
DATASET STATISTICAL INFORMATION

Dataset |C| |V | Train Validation Test

PubMed 20k 5 68k 15k/180k 2.5k/30k 2.5k/30k
PubMed 200k 5 331k 190k/2.2M 2.5k/29k 200/29k
NICTA-BIBOSO 6 17k 720/7.7k 80/0.9k 200/2.2k

labels of segment embeddings are no longer one-hot encoded,

we use the Kullback-Leibler (KL) divergence loss for the

segment-based classification task, which is defined as:

LSeg(θ) =
N∑

n=1

y(n)
seq log

y
(n)
seq

ŷ
(n)
seq

+
λ

2
||θ||22 (5)

where θ is the trainable parameters of the network, λ denotes

the l2 regularization coefficient experimentally set to 0.0001,

N is the batch number, y
(n)
seq and ŷ

(n)
seq denote the ground-truth

and the network output in a batch, respectively.

D. Inference with the entire system

Given the predicted labels of Abs-Model at the abstract

level and Seg-Model at the segment level, referred to as Ŷabs

and Ŷseg, the final predicted labels of our proposed system is

defined as:

Ŷ = λabsŶabs + λsegŶseg (6)

where λabs and λseg are the hyperparameters to control the

predicted labels at the abstract level and the segment level.

III. EXPERIMENT AND RESULTS

A. Datasets

In this paper, we evaluate our proposed deep neural net-

works on two benchmark datasets: PubMed RCT [3] and

NICTA-PIBOSO [4].

PubMed RCT: This dataset presents the largest and pub-

lished dataset of text-based medical scientific abstracts. In

particular, the PubMed dataset presents approximately 200,000

abstracts of randomized controlled trials. The total sentences

in the PubMed dataset is around 2.3 million. Each sentence

of each abstract is labeled with ‘BACKGROUND’, ‘OBJEC-

TIVE’, ‘METHOD’, ‘RESULT’, or ‘CONCLUSION’ which

matches its role in the abstract. The PubMed dataset proposed

two sets of PubMed 20K and PubMed 200K, each of which

presents three subsets of Training, Validation, and Test for

training, validation and test processes, respectively.

NICTA-PIBOSO: This dataset is the official dataset of the

ALTA 2012 Shared Task. The task was to build classifiers

which automatically divide sentences to a pre-defined set of

categories in the domain of Evidence Based Medicine (EBM),

which are ’BACKGROUND’, ’INTERVENTION’, ’OUT-

COME’, ’POPULATION’, ’STUDY DESIGN’, ’OTHER’. Ta-

ble II presents statistics information of these above datasets,

where |C| denotes the number of classes, |V | denotes the

vocabulary size. In the train, validation and test sets, we

indicate the number of abstracts and the number of sentences

separated by the slash (e.g. 15k/180k).
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TABLE III
COMPARE OUR PROPOSED SYSTEMS WITH THE BASELINE ON THE TEST

SET (F1 SCORE/PRESISION/RECALL)

Systems PubMed 20K NICTA-PIBOSO

bi-ANN [9] (baseline) 90.0/-/- 82.7/-/-

Sen-Model w/ word only 84.0/84.2/83.9 69.9/70.3/69.8
Sen-Model w/ word & char 84.2/84.2/84.2 70.0/70.3/69.8
Sen-Model w/ word & char & stat 89.5/89.7/89.3 77.9/77.9/77.9
Sen-Model w/ pre-trained sentence only 87.0/87.1/87.0 78.5/78.8/78.5
Sen-Model w/ sentence & word & char & stat 91.1/91.9/90.9 81.8/81.8/81.8

Abs-Model w/ word only 90.6/91.2/90.4 81.5/83.4/80.3
Abs-Model w/ word & char 90.7/91.3/90.5 81.4/83.1/80.5
Abs-Model w/ word & char & stat 91.5/91.8/91.2 81.2/82.6/80.1
Abs-Model w/ pre-trained sentence only 91.9/92.1/91.7 82.5/84.0/81.5
Abs-Model w/ sentence & word & char & stat 92.7/93.2/92.6 84.6/85.5/84.1

TABLE IV
COMPARE OUR PROPOSED SYSTEMS ON DIFFERENT LEVELS WITH THE

BASELINE ON THE TEST SET OF TWO BENCHMARK DATASETS(F1
SCORE/PRECISION/RECALL)

Systems PubMed 20K NICTA-PIBOSO

bi-ANN [9] (baseline) 90.0/-/- 82.7/-/-

Sen-Model (Sentence) 91.1/91.9/90.9 81.8/81.8/81.8
Abs-Model (Abstract) 92.7/93.2/92.6 84.6/85.5/84.1
Seg-Model (Segment) 91.0/92.5/89.6 79.5/80.7/78.5
Combine-Model 92.8/93.4/92.7 85.3/86.5/84.5

B. Evaluation metric

In this paper, we follow the original paper [3], [4] which

proposed the PubMed RCT and NICTA-PIBOSO datasets. We

then use Precision, Recall, and F1 scores as evaluation metrics.

C. Experimental settings

We construct our proposed deep neural networks with the

TensorFlow framework. While the deep neural network used

for Sen-Model is trained for 30 epochs, we train Abs-Model

and Seg-Model with 60 epochs. All deep neural networks

in this paper are trained with the Titan RTX 24GB GPU.

We use the Adam [17] method for the optimization. The

learning rate for Sen-Model, Abs-Model and Seg-Model are

0.001, 0.003 and 0.001, respectively. A reduce learning rate

scheme by a factor of 0.1 is set during training. The Bi-RNN

decoder at Abs-Model uses Bi-LSTM for PudMed dataset

and Bi-GRU for NICTA-PIBOSO dataset, respectively. The

hyperparameters λabs and λseg are empirically set to 1 and 0.2,

respectively. The two 2D-convolution layers in the C-RNN has

the same padding with kernel size and number of filters set to

(8, 3) and 16, respectively. The hidden states dimension dh of

all LSTM layers in Sen-Model is set to 128.

D. Experimental results

We first evaluate our proposed models at the sentence

level with different input features: using only word sequence

(Sen-Model w/ word only); using both word and character

sequences (Sen-Model w/ word & char); using word, character,

and statistics (Sen-Model w/ word & char & stat); using only

sentence embeddings extracted from the pre-trained PudMed

model (Sen-Model w/ sentence only); using all input features

of word, character, statistics, sentence embeddings (Sen-Model

w/ sentence & word & char & stat). The experimental results

shown in Table III highlight that each input feature helps

to further improve the performance of the Sen-Model at the

TABLE V
COMPARE OUR BEST MODEL WITH THE STATE-OF-THE-ART SYSTEMS ON

TEST SET OF PUBMED 20K DATASET

Authors Systems F1-score

Yamada et al. [11] Semi-Markov CRFs 93.1
Athur Brack et al. [18] Transfer /Multi-task learning 93.0
Cohan et al. [19] Pretrained BERT 92.9
Xichen Shang et al. [5] SDLA 92.8
Jin and Szolovits [10] HSLN 92.6
Gaihong Yu et al. [20] MSM 91.2
Gonçalves et al. [21] CNN-GRU 91.0
Dernoncourt et al. [9] bi-ANN 90.0
Agibetov et al. [22] fastText 89.6

Our proposed model BiLSTM-CRNN-MLP 92.8

TABLE VI
COMPARE OUR BEST MODEL WITH THE STATE-OF-THE-ART SYSTEMS ON

THE TEST SET OF NICTA-PIBOSO DATASET

Authors Systems F1-score

Xichen Shang et al. [5] SDLA 86.8
Athur Brack et al. [18] Transfer /Multi-task learning 86.0
Yamada et al. [11] Semi-Markov CRFs 84.4
Jin and Szolovits [10] HSLN 84.3
Sarker et al. [23] SVM 84.1
Cohan et al. [19] Pretrained BERT 83.0
Dernoncourt et al. [9] bi-ANN 82.7
M Lui [24], [25] Feature stacking + Metalearner 82.0

Our proposed model BiLSTM-CRNN-MLP 85.3

sentence level. The best performance at the sentence level is

from the combination of all input features of word, charac-

ter, statistics, sentence embeddings (Sen-Model w/ sentence

& word & char & stat), presenting the F1/Precision/Recall

scores of 91.1/91.9/90.9 and 81.8/81.8/81.8 on PubMed 20K

and NICTA-PIBOSO datasets, respectively. This combination

outperforms the model that uses only pre-trained sentence

embeddings from the BERT model (Sen-Model w/ pre-trained

sentence only), which scores 87.0, 87.1, and 87.0 on PubMed

20K, and 78.5, 78.8, and 78.5 on NICTA-PIBOSO. These

results demonstrate the effectiveness of the proposed LSTM-

based network in generating high-quality sentence represen-

tations. This is achieved by combining task-specific features

based on words, characters, and statistical information within

a specific context, along with pre-trained embeddings from

the BERT model, which has a comprehensive understanding

of medical domain language from large-scale medical corpora.

In other words, the proposed LSTM-based network effectively

integrates synergistic and diverse features, allowing model to

consider both the overarching medical knowledge and the

specific details of each sentence, resulting in superior sentence

representations.

Leveraging sentence embeddings from the proposed Sen-

model, the model at the abstract level (Abs-Model) fur-

ther enhances the system performance. We achieve the

F1/Precision/Recall scores of 92.7/93.2/92.6 on PubMed 20K

and 84.6/85.5/84.1 on NICTA-PIBOSO datasets as shown

in the lower part of Table III. The model at the segment

level (Seg-Model), when being integrated into the system,

shows efficiency in considering coherent dependencies of

sentences in local regions within segments and recorrect

sentences at the boundary of two label classes. The best system

(Combine-Model), which combines of Abs-Model and Seg-

Model, achieves the best result of 92.8/93.4/92.7 on PudMed
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20K and 85.3/86.5/84.5 on NICTA-PIBOSO as shown in

Table IV. This model also outperforms the baseline [9] by

1.0%, 2.8%, and 2.6% on PubMed 200K, PubMed 20K, and

NICTA-PIBOSO datasets in terms of F1 scores, respectively.

Compared with the state-of-the-art systems as shown in

Table V and Table VI, although our best system presents

fundamental network architectures at the abstract level and

the segment level when leveraging the well-presented sentence

embeddings at the sentence level, we achieve very competitive

results (top-4 on PubMed 20K and top-3 on NICTA-PIBOSO).

This indicates that the role of the LSTM-based network (Sen-

Model) at the sentence level is important to achieve compre-

hensive sentence representation, which can be effectively set as

an initial foundation and leveraged in higher levels of segment

level and abstract level to improve the model performance.

Therefore, our future work is to investigate novel methods for

further improving the model performance based on the well-

presented sentence representation.

IV. CONCLUSION

This paper has presented a deep learning system for the

Sequential Sentence Classification (SSC) task in medical

scientific abstracts based on the motivation of improving

sentence representation. By conducting extensive experiments,

we achieved the best system that outperforms the baseline by

1.0%, 2.8%, and 2.6% on the benchmark datasets of PubMed

200K RCT, PubMed 20K RCT, and NICTA-PIBOSO regard-

ing F1 scores, respectively. The results are highly competitive

to the state-of-the-art systems on these two datasets. Partic-

ularly, our proposed LSTM-based network at the sentence

level proves a vital role in generating comprehensive sentence

representation, which can be served as a strong foundation for

further exploring and improving the performance of the SSC

task on higher contextual levels.
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