
DSML4JaCaMo: A Modelling tool for Multi-agent
Programming with JaCaMo

Burak Karaduman∗, Baris Tekin Tezel∗†, Geylani Kardas‡ and Moharram Challenger∗
∗Department of Computer Science, University of Antwerp and Flanders Make, Antwerp, Belgium

{burak.karaduman, baristekin.tezel, moharram.challenger}@uantwerpen.be
†Department of Computer Science, Dokuz Eylul University, Izmir, Türkiye

baris.tezel@deu.edu.tr
‡International Computer Institute, Ege University, Izmir, Türkiye

geylani.kardas@ege.edu.tr

Abstract—This paper introduces a domain-specific modelling
language (DSML) called DSML4JaCaMo to develop belief-desire-
intention (BDI) agents. The DSML’s design covers aspects of
Jason, Cartago, and Moise from viewpoints that follow the meta-
modelling approach. In this way, the DSML4JaCaMo enables
graphical modelling of JaCaMo’s multi-agent systems (MASs),
providing comprehensive support for defining agents’ beliefs,
desires, and intentions (BDI) using Jason, specifying artifacts
and their operations with Cartago, and outlining organizational
structures and norms via Moise. The DSML’s operational seman-
tics ensure seamless integration of these components, facilitating
automatic code generation and artifact construction for creating
a JaCaMo-based system. The graphical syntax contributes to
ease of use, making it accessible for novice and experienced
developers. This work aims to enhance the JaCaMo ecosystem by
offering a model-driven approach to provide abstraction on MAS
development as well as facilitating design and implementation.

I. INTRODUCTION

I
N AGENT-ORIENTED software engineering (AOSE),
higher-level abstractions, such as belief-desire-intention

(BDI), are used more than object-oriented programming. In
addition to agent programming, different dimensions are uti-
lized along with agent development, namely artefacts and
organisations [1]. As these concepts provide well-fit advan-
tages on complex scenarios like cyber-physical systems (CPS),
Internet-of-Things (IoT), and Industry 4.0 [2], they aid soft-
ware complexity where it can be addressed using model-
driven engineering (MDE) techniques [3], [4] which provides
model-level abstraction for representing the system via model
entities and relations to generate code and model-to-model
transformation [5].

Despite numerous metamodels that exist to describe multi-
agent systems (MASs) [6], [7], they are limited in covering
agent, artefact, and organisational perspectives at once. Hence,
this paper presents our ongoing work on platform-specific
modelling of belief-desire-intention (BDI) Jason agents, in-
cluding Cartago (Artefact) and Moise (Organisation) perspec-
tives [1], [8]. We investigate the creation of a metamodel con-
sidering JaCaMo [1] and develop a graphical modelling tool
that allows agent developers to model these views according
to our proposed metamodel.

The rest of the paper is organized as follows. In section
II, related studies are mentioned. Section III introduces the
proposed metamodel JaCaMo. Section IV focuses on trans-
lational semantics for code generation. Section V includes
case studies, model excerpts from the concrete syntax and
evaluation. Lastly, section VI concludes the paper.

II. RELATED WORKS

This study enhances the existing literature by introducing
a model-driven engineering (MDE) approach for developing
BDI agents and an environment and organization based on
JaCaMo. To our knowledge, no previous research has specifi-
cally addressed the model-driven development of the JaCaMo-
based MASs.

As the complexity of MASs increases, researchers in AOSE
[9] strive to develop processes, methods, and techniques that
enable system developers to address safety, interoperability,
and performance effectively. Among these techniques, soft-
ware modelling and MDE [10], [11], [12], [13], [14] are
prominently utilized. MDE approaches allow developers to
work at a higher level of abstraction and use component mod-
elling early in the development process, which helps mitigate
the complexities associated with MAS implementation [15],
[16], [17], [18], [19], [20].

In MDE-based development processes, models are treated as
first-class entities [21]. Engineers create models using various
modelling languages that represent distinct parts of the system,
providing a high level of abstraction. This abstraction enables
engineers to concentrate on defining the system’s functionality
rather than its implementation details. AOSE researchers have
defined several agent metamodels [6], [7] to support modelling
various aspects of MAS at appropriate abstraction levels.
These metamodels are designed to capture agent characteris-
tics such as plans, beliefs, goals, and interactions within MAS
organizations.

To effectively implement MDE for MASs, a practical ap-
proach involves customizing Domain-Specific Modeling Lan-
guages (DSMLs) using integrated development environments
(IDEs) that support modelling and code generation for the tar-
get system. Proposed MAS DSMLs (e.g., [22], [23], [24], [25],

Proceedings of the 19th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 637–642

DOI: 10.15439/2024F6157
ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 637 Thematic Session: Model Driven Approaches in
System Development

[26], [27]) are based on the aforementioned agent metamodels
and offer various abstract syntaxes. These DSMLs facilitate
modelling both static and dynamic aspects of agent software
from different perspectives within the MAS domain, including
internal agent behaviour, interactions with other agents, and
environmental entities.

Our research has focused on developing a platform-
dependent modelling language that supports MASs, environ-
ment, and organization. We have developed a meta-model for
JaCaMo that also leads to creating a syntax of a DSML for
MAS development. To demonstrate its effectiveness, we have
carried out qualitative evaluations.

III. THE SYNTAX OF THE LANGUAGE

This section introduces the metamodel of DSML4JaCaMo,
representing the domain-specific language’s abstract syntax.
Generally, a metamodel outlines the system elements, their
relationships, and cardinality constraints. It may also include
attributes and operations for these elements. The metamodel
is implemented using the EMF Ecore framework. Figure
1 illustrates the DSML4JaCaMo metamodel, describing the
key meta-elements briefly. Detailed information regarding the
JaCaMo components represented by the meta-elements can be
reached by [1].

Beginning with Agent perspective, Agent defines the Jason
BDI agent, which has Plan, Belief, Rule, Goal. A Plan element
consists of BodyTerm and Action. As a Plan consists of a set
of actions, a self-reference, namely nextAction, is created to
model the action chain. An action can be an InternalAction

and ExternalAction. Message element refers to agent commu-
nication. Lastly, TriggeringEvent meta-element is included as
events are realized as consequences of beliefs or goals change
in any Jason agent’s mind.

In the Artifact dimension, a Workspace defines all contained
artefacts and AbstractOperation E-Class, namely AbsOpera-

tion that the agents can utilize. Port element is used to link two
artifacts within artifacts dimension. Since an Artifact element
can have multiple ObsProperty elements that can be used
in the operations such LinkedOperation, InternalOperation,
GuardOperation and Operation.

On the Organisational perspective side, the Moise plat-
form uses XML configuration comprising normative, structural
and functional specifications. NormativeSpecification contains
Norm elements which normalise the Mission elements. The
StructuralSpecification has Group and Role EClasses in which
subgroups and role extensions can be created. Moreover,
FormationConstaints defines the features such as formation
between roles and group scope. Link determines the link and
their types among the roles. Lastly, FunctionalSpecification

composes Scheme and Scheme creates Mission elements where
each mission contains goals that agents achieve. In addition to
Scheme, we also defined OPlan and OGoal EClasses, which
allows us to model the layered goal and plan composition
structure of Moise, which uses XML configuration. This
composable layered structure via OGoal and OPlan elements
are visualized in detail in section V.

The concrete syntax of a language encompasses the set
of notations responsible for its presentation and construction.
In the context of DSML specifications, the concrete syntax
primarily facilitates mapping between meta-elements and their
representations within instance models of the meta-model.
Consequently, we developed a graphical concrete syntax that
aligns the abstract syntax elements of DSML4BDI with their
corresponding graphical notations. To achieve this, we lever-
aged the features of the Sirius 1 modelling environment.
Sirius provides tools for creating a graphical editor from an
Ecore metamodel and allows for the definition of specialized
editors—including diagrams, tables, and trees—based on a
viewpoint approach. This functionality enabled us to build the
DSML4JaCaMo graphical modelling toolset within the Sirius
environment for this study. Due to page limitations, we cannot
provide the concrete system syntax as a table separately.
However, you will see some examples in the case study graphs.

IV. CODE GENERATION: TRANSLATIONAL SEMANTICS

A comprehensive definition of a DSML cannot be achieved
solely by specifying the notations and their representations.
It also necessitates providing the semantics of language con-
cepts, typically regarding the meanings of already established
concepts. In this study, therefore, the metamodel elements
are mapped to the concepts within the JaCaMo framework.
This mapping between the metamodel and JaCaMo entities
facilitates a series of model-to-text (M2T) transformations,
constructing the DSML4JaCaMo’s semantics within the Ja-
CaMo framework. To this end, model-to-code transformation
is used. Some excerpts of the generation rules are given and
discussed below.

Listing 1: Excerpt from Acceleo rules for creating JaCaMo
files
1 [template public generateElement(aMAS : MAS)]
2 [comment @main/]
3 [for (ag : Agent | aMAS.agent)]
4 [file (ag.Name.concat(' . asl ') , false , ' UTF−8')]
5
6 [for (p : Plan | ag.plan)]
7 [if (p. asBeliefAddition =' true ')]+[else]+![/ if][p.Name/]

<− [p.hasContext.Expression /]
8 [if (p.hasBody. firstAction −>size ()>0)]
9 [p.hasAction. thePlanSeq(p.hasAction, p.hasBody.

firstAction)−>asOrderedSet() . Expression /]
10 [/ if]
11 [/ for]
12 [/ file]
13 [/ for]
14 [for (wp : Workspace | aMAS.workspace)]
15 [for (art : Artifact | wp. artifact)]
16 [file (art .className.concat(' . java ') , false , ' UTF−8')]
17 import cartago .*;
18 public class [art .className/] extends Artifact {
19
20 [for (Op: AbsOperation | art . operation)]
21 [if (Op.eClass() . instanceTypeName.equalsIgnoreCase('

dSML4JaCaMo.Operation'))]

1‘Sirius modeling tool’. Available at https://eclipse.org/sirius/, accessed
May 2024

638 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Fig. 1: DSML4JaCaMO Meta-model.

BURAK KARADUMAN ET AL.: DSML4JACAMO: A MODELLING TOOL FOR MULTI-AGENT PROGRAMMING WITH JACAMO 639

22 @OPERATION void [Op.className/]
23 {
24 ObsProperty prop = getObsProperty(" ") ;
25 prop.updateValue() ;
26 signal (" tick ") ;
27 }
28 [/ if]
29
30 [/ if]
31 [/ for]
32 }
33 [/ file]
34 [/ for]
35 [/ for]
36 [for (org : Organisation | aMAS.organisation)]
37 [file (org . id . concat(' .xml') , false , ' UTF−8')]
38 <?xml version="1.0" encoding="UTF−8"?>
39 <?xml−stylesheet href="http :// moise. sourceforge . net /xml/

os. xsl" type=" text / xsl " ?>
40 < organisational − specification id="[org . id /] "
41 os−version="0.8" xmlns='http :// moise. sourceforge . net /os '
42 xmlns:xsi=' http :// www.w3.org/2001/XMLSchema−

instance'
43 xsi :schemaLocation='http :// moise. sourceforge . net /

os
44 http :// moise. sourceforge . net /xml/os.xsd '>
45 [for (ss : StructuralSpecification | org .

structuralspecification)]
46 < structural − specification >
47
48 </ structural − specification >
49 [/ for]
50 < functional − specification >
51 [for (fs : FunctionalSpecification | org .

functionalspecification)]
52 [for (sch: Scheme| fs .scheme)]
53 <scheme id="[sch. id /] ">
54 [for (Og: OGoal | sch.SchemeOgoal)]
55 [if (Og.isRootGoal)]
56 <goal id="[Og.Name/]" ttf="5 seconds">
57 [for (Op: OPlan | Og.OGoalToOPlan)]
58 <plan operator ="[if (Op. Parallel)] parallel [else]sequence

[/ if]">
59 [for (FOg: OGoal | Op.FirstOgoal)]
60 <goal id="[FOg.Name/]" ds="">
61
62 </goal>
63 [/ if]
64
65 [/ for]
66 [/ for]
67 </ functional − specification >
68 [for (ns: NormativeSpecification | org .

normativespecification)]
69 [for (norm: Norm | ns.norm)]
70 <normative− specification >
71
72 </normative− specification >
73 [/ for]
74 [/ for]
75 [/ file]
76 [/ for]
77 [/ template]

Within the JaCaMo framework, each agent is represented by
an ASL file, which includes code written in the AgentSpeak

language, designed to outline the internal structure of the
agent according to the BDI architecture. Fundamentally, an
AgentSpeak agent is characterized by a set of beliefs, rules,
and plans. Beliefs denote the initial knowledge possessed
by the agent. Rules are logical expressions or mathematical
equations that guide the agent’s reasoning. Plans consist of
the actions and/or subgoals the agent employs to achieve its
current objectives. Each plan within an AgentSpeak agent
comprises a triggering event, a context, and a body element.
The triggering event indicates the circumstances under which
the plan is appropriate. The context determines the plan’s
applicability based on the agent’s beliefs. The body is a
sequence of basic actions and/or subgoals the agent will
execute.

Listing 1 includes an excerpt from the Acceleo rules to
generate all Agent ASL, Artifact Java and Organisation XML
files. Initially, in lines 3 to 16, an ASL file is created for each
agent. Lines 6 to 11 are responsible for generating each agent’s
plans, plans’ contexts and the actions in these plans, including
their triggering events and goals.

Lines 14 to 35 are responsible for writing the necessary Java
code for the artefacts of each workspace in the environment.
Each Artefact Java file includes Cartago library and Artefact
naming, which extends the Artifact class. The generator then
synthesis operations that can be Operation, Linked Opera-

tion, Guard Operation and Internal Operation. The generator
checks the EClass of these elements to generate the necessary
type. Lastly, observable properties are also generated within
the corresponding operation types.

The remaining lines, defined between 36 and 76, are respon-
sible for creating the organization file, including the agents’
roles in the system, their responsibilities, and the organiza-
tional goals and plans, aforementioned as OGoal and OPlan

elements. The code generation for organisational dimension
also considers specifications which are Functional, Structural

and Normative. Specifically, an excerpt from StructuralSpeci-

fication is defined lines between 45-49, and FunctionalSpeci-

fication is defined between 50 and 67, and lines 68-77 scopes
the NormativeSpecification. As StructuralSpecification creates
goal composition and mapping relations such as OGoalToO-

Plan and FirstOGoal is designed to preserve this structure at
the modelling level as well. This structure is exemplified in
Figure 2. Due to size and space limitations, a brief description
of the transformation rules is mentioned.

V. CASE STUDIES & EVALUATION

Two case studies are planned and implemented with
DSML4JaCaMo to validate the system and assess its code-
generating capability. The case study models are displayed.

Figure 4 shows how the DSML builds the code artifacts
based on the intended models and how the delta codes are
incorporated to create the final code.

Our modelling language is evaluated by examining its code-
generation capabilities. This involves comparing the lines
of generated code with the final code, which includes the
additional delta code.

640 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

A. Case 1: Writing Paper

In this case study, a set of agents coordinate to mimic the
process of writing a paper. This is achieved with the help
of assistant agents following a structured plan and having
different roles and missions. There are roles such as writer,
editor and manager. The writing goal is divided into multiple
goals achieved via agents’ plans. In addition, an agent uses
a checkList artifact to mark the finalisation of paper writing.
Figure 2 depicts the organisational structure, i.e., the scheme
of the case study.

Fig. 2: Scheme design based on OGoals and OPlans compo-
sition.

B. Case 2: Harvest Process for Pizza

In this case study, agents coordinate to mimic the pizza
process, from wheat harvesting to dough preparation to having
a pizza. The pizza-making goal is broken down into multiple
goals. In addition, an agent uses an oven artifact to mimic
the cooking process based on/off control. Table I shows the
code generation performance for Jason, Cartago and Moise
platforms based on lines of code. In each scenario, 3 agents
for Jason, 1 Scheme for Moise and 1 Artifact for Cartago
were used. Figure 3 illustrates these three agents connected
to a Cartago Workspace and joined the organisation, namely
Org 1. It uses a scheme called harvestForPizza, where three
norms and three roles are defined. In addition, Figure 4
shows the Agent viewpoint that contains the Plans and their
corresponding contexts.

Fig. 3: The MAS viewpoint of the harvest case study.

Fig. 4: Agent viewpoint of the harvest case study.

Eventually, based on model-to-text transformation, we as-
sessed the code generation performance using two case studies.
Although this facilitates the system’s development, another
MDE approach, the model-to-model transformation, is also
required to verify the JaCaMo. Specifically, the designed Jason
agents and Moise organisation need static analyses before
the system’s deployment. In this regard, Coloured Petri-nets
(CPN) are a suitable paradigm to transform the JaCaMo model
to CPN representations to achieve analyses [5], [28] using a
non-deterministic domain. Another approach is that Moise’s

TABLE I: Evaluation results for two case studies based on
lines of code.

Agent 1 Agent 2 Agent 3 Agent Total 1 Scheme 1 Artifact
Case1 Normal 6 35 3 42 77 11
Case 1 Generated 6 28 3 37 60 9
Case 2 Normal 12 38 3 53 74 23
Case 2 Generated 12 24 3 39 44 21

BURAK KARADUMAN ET AL.: DSML4JACAMO: A MODELLING TOOL FOR MULTI-AGENT PROGRAMMING WITH JACAMO 641

Scheme design needs a proper formalism for representation.
For this purpose, Statecharts can be used as there is quite a
similarity between deterministic OGoal and OPlan structures.
In the next section the paper is concluded.

VI. CONCLUSION

This study presents a DSML called DSML4JaCaMo, de-
tailing its abstract and concrete syntaxes with translational
semantics. The DSML is evaluated through two case studies,
showing that 76% of the total system code is generated
automatically. Our study offers an abstraction to simplify
complexity and alleviate difficulties. We use a set of graphical
notations and domain constraints to create a graphical editor
for the DSML. The effectiveness of the DSML’s generation
capability is assessed through two case studies. In future work,
we aim to provide a more comprehensive evaluation of the
language and its tool by following the approach for the multi-
case systematic evaluation of MAS DSMLS introduced in
[19]. That evaluation will provide the quantitative measure-
ment of the language’s usability as well as the assessment
of the language features according to a series of well-defined
quality characteristics for MAS development.

REFERENCES

[1] O. Boissier, R. H. Bordini, J. Hubner, and A. Ricci, Multi-agent oriented

programming: programming multi-agent systems using JaCaMo. Mit
Press, 2020. ISBN 9780262044578

[2] P. Leitao, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W.
Colombo, “Smart agents in industrial cyber–physical systems,” Pro-

ceedings of the IEEE, vol. 104, no. 5, pp. 1086–1101, 2016. doi:
10.1109/JPROC.2016.2521931

[3] B. Karaduman, I. David, and M. Challenger, “Modeling the engineering
process of an agent-based production system: An exemplar study,” in
2021 ACM/IEEE International Conference on Model Driven Engineer-

ing Languages and Systems Companion (MODELS-C). IEEE, 2021.
doi: 10.1109/MODELS-C53483.2021.00051 pp. 296–305.

[4] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis lectures on software engineering,
vol. 3, no. 1, 2017. doi: https://doi.org/10.1007/978-3-031-02549-5

[5] B. Karaduman, B. T. Tezel, and M. Challenger, “Towards static analysis
of bdi agents on cps using petri nets and model-driven engineering,”
in International Conference on Practical Applications of Agents and

Multi-Agent Systems. Springer (in press), 2024.
[6] C. Hahn, C. Madrigal-Mora, and K. Fischer, “A platform-independent

metamodel for multiagent systems,” Autonomous Agents and Multi-

Agent Systems, vol. 18, no. 2, pp. 239–266, 2009.
[7] B. T. Tezel, M. Challenger, and G. Kardas, “A metamodel for Jason BDI

agents,” in 5th Symposium on Languages, Applications and Technologies

(SLATE’16), vol. 51, 2016. doi: 10.4230/OASIcs.SLATE.2016.8 pp.
8:1—-8:9.

[8] O. Boissier, R. H. Bordini, J. F. Hübner, and A. Ricci, “Dimensions
in programming multi-agent systems,” The Knowledge Engineering

Review, vol. 34, p. e2, 2019. doi: 10.1017/S026988891800005X
[9] O. Shehory and A. Sturm, Agent-Oriented Software Engineering: Re-

flections on Architectures, Methodologies, Languages, and Frameworks.
Springer-Verlag Berlin Heidelberg, 2014.

[10] B. Lelandais, M.-P. Oudot, and B. Combemale, “Applying model-driven
engineering to high-performance computing: Experience report, lessons
learned, and remaining challenges,” Journal of Computer Languages,
vol. 55, p. 100919, 2019. doi: https://doi.org/10.1016/j.cola.2019.100919

[11] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand
challenges in model-driven engineering: an analysis of the state of the
research,” Software and Systems Modeling, vol. 19, no. 1, pp. 5–13,
2020. doi: https://doi.org/10.1007/s10270-019-00773-6

[12] C. Verbruggen and M. Snoeck, “Model-driven engineering: A state of
affairs and research agenda,” Enterprise, business-process and informa-

tion systems modeling, 2021. doi: 10.1007/978-3-030-79186-5_22

[13] E. de Araújo Silva, E. Valentin, J. R. H. Carvalho, and
R. da Silva Barreto, “A survey of model driven engineering in
robotics,” Journal of Computer Languages, vol. 62, 2021. doi:
https://doi.org/10.1016/j.cola.2020.101021

[14] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and
M. Wimmer, “Low-code development and model-driven engineering:
Two sides of the same coin?” Software and Systems Modeling, vol. 21,
no. 2, 2022. doi: https://doi.org/10.1007/s10270-021-00970-2

[15] Y. E. Cakmaz, O. F. Alaca, C. Durmaz, B. Akdal, B. Tezel, M. Chal-
lenger, and G. Kardas, “Engineering a bdi agent-based semantic e-barter
system,” in 2017 International Conference on Computer Science and

Engineering (UBMK). IEEE, 2017. doi: 10.1109/UBMK.2017.8093474
pp. 1072–1077.

[16] B. T. Tezel, M. Challenger, and G. Kardas, “Dsml4bdi: A modeling
tool for bdi agent development,” in 12th turkish national software

engineering symposium (uyms 2018), 2018, pp. 1–8.
[17] V. Mascardi, D. Weyns, A. Ricci, C. B. Earle, A. Casals, M. Challenger,

A. Chopra, A. Ciortea, L. A. Dennis, Á. F. Díaz et al., “Engineering
multi-agent systems: State of affairs and the road ahead,” ACM SIGSOFT

Software Engineering Notes, vol. 44, no. 1, pp. 18–28, 2019. doi:
https://doi.org/10.1145/3310013.3322175

[18] M. Challenger, B. T. Tezel, V. Amaral, M. Goulao, and G. Kardas,
“Agent-based cyber-physical system development with sea_ml++,” in
Multi-Paradigm Modelling Approaches for Cyber-Physical Systems.
Elsevier, 2021, pp. 195–219.

[19] O. F. Alaca, B. T. Tezel, M. Challenger, M. Goulão, V. Ama-
ral, and G. Kardas, “Agentdsm-eval: A framework for the evalua-
tion of domain-specific modeling languages for multi-agent systems,”
Computer Standards & Interfaces, vol. 76, p. 103513, 2021. doi:
https://doi.org/10.1016/j.csi.2021.103513

[20] B. Karaduman, B. T. Tezel, and M. Challenger, “Rational software
agents with the bdi reasoning model for cyber–physical systems,”
Engineering Applications of Artificial Intelligence, vol. 123, p. 106478,
2023. doi: https://doi.org/10.1016/j.engappai.2023.106478

[21] G. Kardas, F. Ciccozzi, and L. Iovino, “Introduction to the special issue
on methods, tools and languages for model-driven engineering and low-
code development,” Journal of Computer Languages, vol. 74, 2023. doi:
https://doi.org/10.1016/j.cola.2022.101190

[22] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, and
T. Kosar, “On the use of a domain-specific modeling language
in the development of multiagent systems,” Engineering Applica-

tions of Artificial Intelligence, vol. 28, pp. 111–141, 2014. doi:
https://doi.org/10.1016/j.engappai.2013.11.012

[23] E. J. T. Gonçalves, M. I. Cortés, G. A. L. Campos, Y. S. Lopes, E. S.
Freire, V. T. da Silva, K. S. F. de Oliveira, and M. A. de Oliveira, “Mas-
ml 2.0: Supporting the modelling of multi-agent systems with different
agent architectures,” Journal of Systems and Software, vol. 108, pp. 77–
109, 2015. doi: https://doi.org/10.1016/j.jss.2015.06.008

[24] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Agent-oriented model-
driven development for JADE with the JADEL programming language,”
Computer Languages, Systems & Structures, vol. 50, pp. 142–158, 2017.
doi: 10.1016/j.cl.2017.06.001

[25] G. Kardas, B. T. Tezel, and M. Challenger, “Domain-specific modelling
language for belief–desire–intention software agents,” IET Software,
vol. 12, no. 4, pp. 356–364, 2018. doi: https://doi.org/10.1049/iet-
sen.2017.0094

[26] D. Sredojević, M. Vidaković, and M. Ivanović, “Alas: agent-
oriented domain-specific language for the development of intel-
ligent distributed non-axiomatic reasoning agents,” Enterprise In-

formation Systems, vol. 12, no. 8-9, pp. 1058–1082, 2018. doi:
https://doi.org/10.1080/17517575.2018.1482567

[27] A. Siabdelhadi, A. Chadli, H. Cherroun, A. Ouared, and H. Sahraoui,
“Motrans-bdi: Leveraging the beliefs-desires-intentions agent archi-
tecture for collaborative model transformation by example,” Jour-

nal of Computer Languages, vol. 74, p. 101174, 2023. doi:
https://doi.org/10.1016/j.cola.2022.101174

[28] B. Karaduman, M. Challenger, R. Eslampanah, J. Denil, and
H. Vangheluwe, “Analyzing WSN-based IoT Systems using MDE Tech-
niques and Petri-net Models,” in 4th International Workshop on Model-

Driven Engineering for the Internet-of-Things (MDE4IoT), Co-Located

With Software Technologies: Applications and Foundations (STAF 2020),

Virtual Event, Norway, 2020, pp. 35–46.

642 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

