
Automatic Generation of OpenCL Code through

Polyhedral Compilation with LLM

Marek Palkowski, Mateusz Gruzewski

West Pomeranian University of Technology in Szczecin

ul. Zolnierska 49, 71-210 Szczecin, Poland

Email: mpalkowski@zut.edu.pl

Abstract—In recent years, a multitude of AI solutions has
emerged to facilitate code generation, commonly known as Lan-
guage Model-based Programming (LLM). These tools empower
programmers to automate their work. Automatic programming
also falls within the domain of optimizing compilers, primarily
based on the polyhedral model, which processes loop nests con-
centrating most computations. This article focuses on harnessing
LLM tools to generate OpenCL code for non-serial polyadic
dynamic programming kernels.[1] We have chosen the Nussinov
RNA folding computational task, previously employed to test
polyhedral compilers in optimizing kernels with non-uniform
dependences. The code generated in OpenMP by polyhedral
optimizers is limited to CPU computations. We automatically
convert it into the OpenCL standard using ChatGPT-3.5 through
its source-to-source queries to extend the number of possible
platforms. The validity and efficiency of the generated code were
verified on various CPUs and GPUs from different manufactur-
ers.

I. INTRODUCTION

C
ODE generation using LLM (Language Model-bas ed

Programming) tools has garnered significant interest

among programmers and researchers in recent times. This

represents a novel form of automatic programming. Generating

code effortlessly is also within the domain of polyhedral com-

pilers. Source-to-source techniques enable the generation of

parallel and localized code through stages of syntax and loop

dependency analysis, transformations, and loop generation.

Thus, it is evident that leveraging LLM models for High-

Performance Computing (HPC) opens up new possibilities.

Using the capabilities of the ChatGPT tool, we aim to

automatically generate OpenCL code [2] based on existing

OpenMP code [3] optimized with polyhedral tools. This

allows us to execute the code on any graphics card that

supports OpenCL. The test code will be based on the Nussinov

algorithm [4] for RNA prediction with program loop nets

containing many non-uniform loops and posing a challenge

for polyhedral tools.

The Nussinov algorithm is a non-serial polyadic dynamic

programming (NPDP) kernel, used to assess the efficiency of

tiled code generated by advanced optimizing compilers [5],

[6], [7], [8]. NPDP dependence patterns, the most complex

category of Dynamic Programming (DP), exhibit non-uniform

dependences characterized by irregularities and expressed us-

ing affine expressions. Dynamic Programming involves finding

optimal solutions for simpler instances of a problem and

extending them to solve larger instances. Additional difficulty

arises from parallelism with synchronization. The goal for

GPT is to generate a sequential loop spawning a kernel for

the GPU in the OpenCL standard.

The remaining sections of the paper are organized as fol-

lows. The subsequent section provides a concise overview of

Language Model-based Programming (LLM) tools for High-

Performance Computing (HPC) approaches. Section three pro-

vides a brief explanation of the Nussinov algorithm, while

the fourth section delves into polyhedral optimization for

this kernel. The following section introduces the process of

generating OpenCL code using ChatGPT, utilizing OpenMP

codes from Traco [9], Dapt [10], and Pluto [11] for the

Nussinov loop nests. The experimental study assesses the

efficiency of the generated codes for CPUs and GPUs. Finally,

the last section concludes the paper and outlines potential

avenues for future work.

II. RELATED WORK

Polyhedral frameworks for loop transformation comprise

three essential stages: dependency tests, loop transformation

via affine operations on polytopes, and code generation from

modified loop polytopes. The central process of loop transfor-

mation varies across established compilers like Traco, Pluto,

and Dapt, yet it plays a pivotal role in optimizing loop

structures within program code.

Loop tiling, also referred to as loop blocking or loop parti-

tioning, stands as a compiler optimization technique aimed at

enhancing cache utilization and bolstering the performance of

loop-based computations [12]. This method involves break-

ing down a loop into smaller blocks, or tiles, which can

be efficiently accommodated within the cache memory. By

organizing data access in close proximity to memory, loop

tiling diminishes cache misses and optimizes memory access

patterns, thereby contributing to overall performance improve-

ments. Additionally, these tiles facilitate parallel processing,

further amplifying computational efficiency.

However, achieving parallelization of NPDP kernels of-

ten involves employing established strategies such as loop-

skewing. The form of multi-threaded code within polyhedral

compilers hinges on the tiling algorithm adopted.

The PLUTO compiler [11] leverages the affine transforma-

tion framework (ATF) to produce parallel tiled code, utilizing

loop transformations to bolster multi-threading capabilities

and enhance data locality. It optimizes tiling hyperplanes by

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 671–676

DOI: 10.15439/2024F6469

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 671 Thematic Session: Computer Aspects of

Numerical Algorithms



employing an embedded Integer Linear Programming (ILP)

cost function, thereby achieving efficient parallelism while

minimizing communication overhead in the processor space.

TRACO [9], on the other hand, utilizes the transitive closure

of dependence relation graphs to generate valid target tiles,

rectifying them by eliminating invalid dependence destina-

tions. DAPT [10] addresses non-uniform dependencies by

approximating them to uniform counterparts, thereby sim-

plifying complexities associated with nonlinear time-tiling

constraints. Unlike PLUTO, DAPT and TRACO support three-

dimensional tiling and benchmarks like nussinov, nw, and sw.

It’s worth noting that Pluto faces limitations in parallelizing

mcc code [13].

A drawback of these solutions is the inability to generate

code for graphics cards, significantly limiting their applicabil-

ity on platforms other than CPUs. There have been compilers

and converters designed for heterogeneous computing, adher-

ing to standards such as OpenMP and CUDA, for many years,

such as Par4All [14] or Cetus [15], but they lack an optimizing

engine at the level of the polyhedral model or rely on basic

transformations.

The PPCG compiler [16], developed a decade ago, excels in

producing optimized GPU code through polyhedral optimiza-

tion and is actively maintained. Leveraging the ATF framework

(specifically, the Pluto algorithm) and the ISL library, this

tool generates CUDA [17] and OpenCL codes, showcasing

successful performance in stencils and Polybench kernels.

However, when applied to NPDP codes, several challenges

emerged. PPCG 0.9.1 lacks the capability to generate param-

eterized code, necessitating constant parameter values during

compilation. Consequently, the resulting code contains numer-

ous constants tied to specific parameter values, demanding

code regeneration for each parameter set. Hence, we opted

to exclude the PPCG compiler from our experimental study.

The evaluation in papers [18], [19], [20] indicates that

OpenMP and OpenACC compilers demonstrate proficiency in

generating efficient parallel code for simpler cases with GPUs.

However, as the complexity of the code increases, a notable

performance gap emerges between CUDA or OpenCL and

OpenACC, OpenMP. Specifically, when examining memory

access patterns such as sum reduction, OpenMP exhibits sig-

nificantly slower performance compared to the same optimized

reduction pattern implemented in CUDA or OpenCL.

Alternatively, developers have the option to utilize solu-

tions like LLM for creating a prototype of the target code,

evaluating its performance, and subsequently integrating it

into tool implementations. Nichols et al. [1] have further

refined the application of LLMs to improve the generation of

OpenMP pragmas, with extensions to MPI cases. In a related

context, Chen et al. [21] introduced LM4HPC, a framework

specifically tailored for HPC tasks using LLMs. They tackled

the challenge of limited training and evaluation datasets in

HPC by proposing an approach to identify parallelism in code

through machine learning techniques.

In the two recent studies, the topic of generating efficient

code for classical benchmarks using artificial intelligence (AI)

has garnered attention in the scientific literature. Godoy et

al. [22] delved into AI-driven generative capabilities, focus-

ing on fundamental numerical kernels in high-performance

computing (HPC). Their evaluation encompassed various pro-

gramming models like OpenMP and CUDA, across languages

such as C++ or Python, utilizing both CPU and GPU pro-

cessing. GitHub Copilot [23], powered by OpenAI Codex

[24], was employed to generate multiple implementations

based on prompt variations. Subsequently, Pedro et al. [25]

revisited the experimental investigation using the Llama-2

engine [26], aiming to generate high-quality HPC codes for the

same benchmarks and programming language models. Despite

Llama-2’s focus on providing optimized code solutions, the

study noted a trade-off in terms of reliability when compared

to Copilot.

Hence, however, while OpenCL demands significantly more

programming effort, applying LLM techniques may render the

code generation process easier and improve performance.

III. NUSSINOV RNA FOLDING

Nussinov pioneered one of the earliest attempts at com-

putationally efficient RNA folding using the base pair maxi-

mization approach in 1978 [4]. An RNA sequence comprises

a chain of nucleotides from the alphabet G (guanine), A

(adenine), U (uracil), C (cytosine). The Nussinov algorithm

addresses the challenge of predicting RNA non-crossing sec-

ondary structures by calculating the maximum number of

base pairs for sub-sequences. It initiates the process with

sub-sequences of length 1 and incrementally builds upwards,

storing the result of each sub-sequence in a DP array.

Let N be a n×n Nussinov matrix and σ(i, j) be a function

which returns 1 if RNA[i], RNA[j] are a pair in the set (AU,

UG, GC) and i < j − 1, or 0 otherwise. Then the following

recursion N(i, j) is defined over the region 1 ≤ i ≤ j ≤ n as

Ni,j =max(Ni+1,j−1 + σ(i, j), max
1≤j≤n

(Ni,k +Nk+1,j)) (1)

and zero elsewhere [27].

The equation leads directly to the C/C++ code with triple-

nested loops presented in Listing 1 [5].

Listing 1. Nussinov loop nest.

for (i = N-1; i >= 0; i--) {

for (j = i+1; j < N; j++) {

for (k = 0; k < j-i; k++) {

S[i][j] = MAX(S[i][k+i] + S[k+i+1][j], S[i][j]);

}

S[i][j] = MAX(S[i][j], S[i+1][j-1] + signa(i,j));

}

}

IV. POLYHEDRAL OPTIMIZATION FOR NUSSINOV LOOP

NESTS

The polyhedral model represents loop nests as polyhedra

with affine loop bounds and schedules. This model provides a

foundation for advanced loop transformations and the anal-

ysis of data dependences. By harnessing the power of the

polyhedral model, compilers can automatically optimize loops,

672 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



enhance performance (especially in terms of locality with loop

tiling), and exploit parallelism (particularly with loop skewing

for NPDP codes) [28].

The polyhedral model is implemented in compilers such

as Pluto [29], Dapt [10], and Traco [30], each based on ATF,

space-time tiling, and tile correction, respectively. Pluto excels

in generating well-balanced affine schedules, but for NPDP

codes, the framework can address a set of affine equations

to tile all loop nests [30]. Traco compiler generates 3D tiles

using the transitive closure of the dependence graph of the

union of loop dependences. Further transformations for 3D-

tiling of NPDP codes were implemented in the Dapt compiler

by dividing the iteration space into timed parallel spaces. Dapt

addresses irregularities in code obtained in Traco, providing a

comprehensive solution to optimize and refine the generated

code [31].

Listing 2. The OpenMP Pluto code for Nussinov RNA folding code.

for (t2=1;t2<=N-1;t2++) {

lbp=t2; ubp=N-1;

#pragma omp parallel for private(lbv,ubv,t4,t6)

for (t4=lbp;t4<=ubp;t4++) {

for (t6=0;t6<=t2-1;t6++) {

S[-t2+t4][t4] = MAX(S[(-t2+t4)][t6+(-t2+t4)]

+ S[t6+(-t2+t4)+1][t4], S[(-t2+t4)][t4]);

}

S[(-t2+t4)][t4] = MAX(S[(-t2+t4)][t4],

S[(-t2+t4)+1][t4-1] + pair((-t2+t4), t4));

} }

To parallelize the Nussinov RNA folding code, compilers

apply the well-known loop skewing transformation [30]. This

transformation yields code in which the outermost loop be-

comes serial, enabling the parallelization of the remaining

loops. Listing 2 showcases the parallel code generated using

Pluto for the Nussinov code presented in Listing 1. This code,

along with the equivalents from Traco and Dapt, serves as

input for the OpenCL code generator in ChatGPT.

V. OPENCL CODE GENERATION WITH GPT-3.5

To generate codes, we utilize Traco’s output code adhering

to OpenMP standards. GPT serializes the code; however, if

we do not specify which program loop nest is parallel by

placing atomic functions, we provide hints about parallel loop

nests, and then GPT correctly prepares kernel spawning. The

remainder of the code is generated automatically, including

context and kernel source loading, as well as memory transfer.

The main skeleton of code is presented on Listing 3. Finally,

we instruct GPT to generate separate kernels for Pluto and

Dapt in a similar manner as for TRACO. The kernel of

TRACO code is presented on Listing 4.

GPT adeptly prepares source kernels and seamlessly inte-

grates them into the main code. It facilitates memory alloca-

tion, platform management, context selection, and command

queue building. This tool streamlines program and kernel ar-

gument construction. It effectively generates a serial outermost

loop that spawns parallel kernels on the GPU. GPT also auto-

generates code for time measurements and compares host and

device output arrays. The inclusion of OpenCL object releases

is automated at the end of the program.

In kernels, only 1-dimensional arrays are accepted.

ChatGPT-3.5 linearizes 2-dimensional arrays and appropriately

sets loop bounds in the target OpenCL kernels for each

polyhedral optimizer—Traco, Pluto, and Dapt — within the

generated OpenMP codes.

The full documentation of the GPT session is avail-

able on the GitHub repository page: https://markpal.github.io/

fedcsis24/, accessed on 1 March 2024. We employed straight-

forward, communicative English, which proved sufficient for

GPT.

VI. EXPERIMENTAL STUDY

In the experimental study, our primary objective was to

validate the correctness of the codes generated by the lan-

guage model. Unlike polyhedral compilers, which often rely

on mathematical proofs, our approach necessitated empirical

testing due to the absence of such proofs. We began by

scrutinizing the structure of the generated codes, focusing on

aspects like loop spawning in GPU kernels, kernel arguments,

and linearized array addresses. Furthermore, we compared the

values of output arrays with those obtained from computations

performed on the host CPU using OpenMP, generated with

Pluto, Traco and Dapt. Remarkably, the results exhibited

consistency between the outputs. While GPT occasionally

produced trivial errors, these were easily rectified, yielding

code that met the required standards.

To evaluate the performance of the generated OpenCL codes

for the studied Nussinov kernel, we conducted experiments

on two modern Intel processors and three graphic cards from

NVIDIA, AMD and Intel. Our assessment utilized an Intel

Xeon Gold 6326 machine, featuring 36 hardware threads

running at 3.5 GHz in turbo mode, alongside a substantial

48 MB L3 cache and 128 GB of RAM. Complementing the

CPU, the system incorporated an NVIDIA A100 Tensor Core

GPU equipped with 6912 CUDA cores and 80 GB of memory.

We tested also the second card, AMD Radeon RX 6700S. It

uses the Navi 22 chip based on the new RDNA 2 architecture.

The 128 Bit memory system connects 8 GB GDDR6 with 2

GHz memory clock. Furthermore, the RX6800S includes 32

MB Infinity Cache. We analyse also the Intel Core i5 12th

1235-U CPU with 12MB Cache L3 Cache and 16MB RAM

with Intel Iris Xe GPU 1.4GHz with 80 execution units.

The experimental setup operated on the Ubuntu 22.04

operating system, and we compiled the programs using the

Intel C Compiler (icc 2021), gcc 11.4.0, and clang 14.0 for

OpenCL with the -O3 optimization flag. The codes utilized

in our study are accessible via the repository link: https:

//github.com/markpal/fedcsis24/, accessed on 8 April 2024.

The Table 1 contains measurements of the execution time

for the Xeon Gold processor and the A100 and Radeon

graphics cards for the original code and OpenMP tiled code for

Traco, Dapt, Pluto compiled with the Intel C++ compiler, and

OpenCL compiled with Clang. OpenCL enables the utilization

of polyhedral codes for graphics cards. The execution times

for the Tesla A100 are significantly faster than the tiled code

on the CPU, and while AMD codes are slower, they still show

MAREK PALKOWSKI, MATEUSZ GRUŻEWSKI: AUTOMATIC GENERATION OF OPENCL CODE THROUGH POLYHEDRAL COMPILATION WITH LLM 673



Listing 3. A wide listing float, single column
#include <CL/cl.h>

...

int main() {

... // declarations, source of kernel load

int n = 30000; int* h_S, *cpu_S; char* kernelSource = (char*)malloc(fileSize + 1);

FILE* file = fopen("computeS.cl", "r"); fread(kernelSource, 1, fileSize, file);

... // memory allocation

h_S = (int*)malloc(n * n * sizeof(int));

cpu_S = (int*)malloc(n * n * sizeof(int));

... // OpenCL classes for target platform

cl_int err; cl_platform_id cpPlatform[2]; cl_uint platf_num;

cl_device_id device; err = clGetPlatformIDs(1, cpPlatform, &platf_num);

...// Context, Queue and Program Build

cl_context context = clCreateContext(0, 1, &device, NULL, NULL, &err);

cl_command_queue queue = clCreateCommandQueue(context, device, 0, &err);

cl_program program = clCreateProgramWithSource(context, 1, sources, NULL, &err);

clBuildProgram(program, 1, &device, NULL, NULL, NULL);

cl_int build_status;

clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_STATUS, sizeof(cl_int), &build_status, NULL);

if (build_status != CL_SUCCESS) {

// Print compilation errors

... return 1; // or some other error code

}

// Kernel & buffer init, S array passing

cl_kernel kernel = clCreateKernel(program, "computeS_pluto", &err);

cl_mem d_S = clCreateBuffer(context, CL_MEM_READ_WRITE, n * n * sizeof(int), NULL, &err);

clEnqueueWriteBuffer(queue, d_S, CL_TRUE, 0, n * n * sizeof(int), h_S, 0, NULL, NULL);

... // Arguments to kernel

clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_S);

clSetKernelArg(kernel, 1, sizeof(int), &n);

clSetKernelArg(kernel, 2, sizeof(int), &chunk);

... // Nussionov calculation on device

auto gpu_start = std::chrono::high_resolution_clock::now();

for (int c1 = 1; c1 < 2 * n - 2; c1 += 1) {

clSetKernelArg(kernel, 3, sizeof(int), &c1);

clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &globalSize, NULL, 0, NULL, NULL);

clFinish(queue);

}

auto gpu_end = std::chrono::high_resolution_clock::now();

// Array S receive

clEnqueueReadBuffer(queue, d_S, CL_TRUE, 0, n * n * sizeof(int), h_S, 0, NULL, NULL);

// Host computation for OpenCL code validation

auto cpu_start = std::chrono::high_resolution_clock::now();

// host computation ...

auto cpu_end = std::chrono::high_resolution_clock::now();

for (int i = 0; i < n * n; i++) // host validation

assert(h_S[i] == cpu_S[i]);

... // OpenCL object releases

clReleaseMemObject(d_S); clReleaseKernel(kernel); clReleaseProgram(program);

clReleaseCommandQueue(queue); clReleaseContext(context);

...

}

acceleration compared to the original code using the same code

as the NVIDIA card. The measurements were conducted for

RNA sequences with nucleotide counts ranging from 1000 to

30000.

In the subsequent Table 2, the timing results for Intel

hardware; i5 processor with dedicated Iris Xe graphics are

compared. Tiled code was compiled with the gcc compiler, and

GPU code was compiled with Clang. Although for Dapt codes,

which feature an aggressive tiling algorithm for NPDP codes,

the Iris Xe sometimes lags behind, for TRACO tile-corrected

codes, the graphics card exhibits comparable performance, and

even faster for Pluto codes. However, Pluto codes do not tile

the innermost loop [30].

In summary, correct and efficient parallel code was gen-

erated on graphics cards. Although the code is the same

for graphics cards, three different kernels constructed using

LLM based on the output OpenMP codes from Pluto, Traco,

and Dapt were placed in the OpenCL kernel file. GPU of

each manufacturer showed acceleration compared to sequential

code executed on the host.

VII. CONCLUSION

In this study, we successfully generated efficient and correct

OpenCL code, which we verified using cards from three

674 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Listing 4. A wide listing float, single column
__kernel void computeS_pluto(__global int* d_S, int n, int CHUNK_SIZE, int t2) {

int globalThreadIdx = get_global_id(0);

int t4_base = globalThreadIdx * CHUNK_SIZE + t2;

for (int offset = 0; offset < CHUNK_SIZE && (t4_base + offset) <= n - 1; offset++) {

int t4 = t4_base + offset;

for (int t6 = 0; t6 <= t2 - 1; t6++) {

d_S[(-t2 + t4) * n + t4] = max(d_S[(-t2 + t4) * n + t6 + (-t2 + t4)]

+ d_S[(t6 + (-t2 + t4) + 1) * n + t4], d_S[(-t2 + t4) * n + t4]);

}

d_S[(-t2 + t4) * n + t4] = max(d_S[(-t2 + t4) * n + t4], d_S[(-t2 + t4 + 1) * n + t4 - 1]

+ pair(-t2+t4, t4));

}

}

TABLE I
TIME EXECUTION IN SECONDS FOR XEON GOLD, NVIDIA A100 AND AMD RADEON, AND OPENMP/OPENCL LIBRARIES.

size

XEON GOLD NVIDIA A100 AMD Radeon

original traco dapt pluto dapt traco pluto dapt traco pluto

icc icc + openmp clang + opencl clang + opencl

1000 0,35 0,23 0,18 0,05 0,24 0,23 0,13 0,28 0,18 0,28

2500 7,94 1,68 0,46 1,25 1,48 1,47 0,76 1,68 1,07 1,68

5000 165.32 7.84 6.71 4.33 8,18 8,15 4,24 7,23 5,14 7,23

7500 754.11 21.29 21.09 16.46 44,59 43,16 16,98 23,12 21,76 22,18

10000 1696.16 44.83 48.49 115.71 55,47 56,62 28,37 67,19 64,11 67,06

15000 5183.39 133.99 127.81 398.54 105,76 106,2 56,6 179,80 193,37 181,90

20000 13924.45 295.48 283.14 1100.78 243,53 239,98 119,8 582,49 602,83 580,06

30000 60565.98 972.52 917.96 4056,29 494,24 496,68 307,1 2 142,12 2 267,41 2 197,76

TABLE II
TIME EXECUTION IN SECONDS FOR CORE I5 AND IRIS XE, AND OPENMP/OPENCL LIBRARIES.

size

Intel Core i5 Intel Iris Xe

original dapt traco pluto dapt traco pluto
gcc gcc + openmp clang + opencl

1000 0.46 0,28 0,38 0,12 0,64 0,64 0,42

2500 14.15 2,35 3,22 2,08 3,57 3,84 2,67

5000 114.06 12,24 19,89 21,5 19,3 19,24 16,9

7500 404.86 40,2 61,86 101,9 65,76 66,06 57,27

10000 2261.75 114,27 181,33 717,31 190,89 191,59 161,85

15000 >3000 368,08 551,48 2438 437,53 442,03 435,28

20000 >3000 851,1 1478,94 >3000 1591,09 1589,77 1286,72

different manufacturers. This expanded the possibilities of

utilizing results from polyhedral compilers and the concept of

automated programming itself. The OpenCL code was created

without writing a single line of code.

In future studies, we intend to explore further possibilities of

LLM tools, including GPT-4, Github Copilot, or Llama-2, for

various NPDP benchmarks. We are interested in the potential

of utilizing once constructed code on other similar codes

with non-uniform dependencies. Additionally, we plan to

investigate optimization techniques, such as the use of shared

memory, to enhance the performance of the generated code.

LLM tools expand the capabilities of automated programming

and appear to be a promising solution in heterogeneous

programming.

REFERENCES

[1] D. Nichols, A. Marathe, H. Menon, T. Gamblin, and A. Bhatele, “Mod-
eling parallel programs using large language models,” 2023, accessed
on: 2024-01-11.

[2] Khronos OpenCL Working Group, The OpenCL Specification, Version

1.1, 2011. [Online]. Available: https://www.khronos.org/registry/cl/
specs/opencl-1.1.pdf

[3] OpenMP Architecture Review Board, “OpenMP application program
interface version 5.2,” https://www.openmp.org/specifications, 2021, ac-
cessed on: 2023-10-22.

[4] R. Nussinov et al., “Algorithms for loop matchings,” SIAM Journal on

Applied mathematics, vol. 35, no. 1, pp. 68–82, 1978.

[5] R. T. Mullapudi and U. Bondhugula, “Tiling for dynamic scheduling,”
in Proceedings of the 4th International Workshop on Polyhedral Com-

pilation Techniques, S. Rajopadhye and S. Verdoolaege, Eds., Vienna,
Austria, Jan. 2014.

[6] D. Wonnacott, T. Jin, and A. Lake, “Automatic tiling of ”mostly-tileable”
loop nests,” in 5th International Workshop on Polyhedral Compilation

Techniques, Amsterdam, 2015.

[7] R. Chowdhury, , and et. al., “Autogen: Automatic discovery of efficient
recursive divide-8-conquer algorithms for solving dynamic programming
problems,” ACM Transactions on Parallel Computing, vol. 4, no. 1, pp.
1–30, oct 2017. doi: 10.1145/3125632

[8] W. Bielecki, P. Blaszynski, and M. Poliwoda, “3d parallel tiled code
implementing a modified Knuth's optimal binary search tree algorithm,”
Journal of Computational Science, vol. 48, p. 101246, jan 2021. doi:
10.1016/j.jocs.2020.101246

[9] W. Bielecki and M. Palkowski, “A parallelizing and optimizing compiler
- traco,” http://traco.sourceforge.net, 2013, accessed on: 2024-01-11.

MAREK PALKOWSKI, MATEUSZ GRUŻEWSKI: AUTOMATIC GENERATION OF OPENCL CODE THROUGH POLYHEDRAL COMPILATION WITH LLM 675



[10] W. Bielecki and M. Poliwoda, “Automatic parallel tiled code generation
based on dependence approximation,” in Parallel Computing Technolo-

gies, V. Malyshkin, Ed. Cham: Springer International Publishing, 2021,
pp. 260–275.

[11] U. Bondhugula et al., “A practical automatic polyhedral parallelizer
and locality optimizer,” SIGPLAN Not., vol. 43, no. 6, pp. 101–113,
Jun. 2008. [Online]. Available: http://pluto-compiler.sourceforge.net

[12] J. Xue, Loop Tiling for Parallelism. Norwell, MA, USA: Kluwer
Academic Publishers, 2000. ISBN 0-7923-7933-0

[13] M. Palkowski and W. Bielecki, “NPDP benchmark suite for
the evaluation of the effectiveness of automatic optimizing
compilers,” Parallel Computing, vol. 116, p. 103016, Jul.
2023. doi: 10.1016/j.parco.2023.103016. [Online]. Available:
https://doi.org/10.1016/j.parco.2023.103016

[14] A. Mehdi, Par4All User Guide, 2012. [Online]. Available: http:
//www.par4all.org

[15] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff,
“Cetus: A source-to-source compiler infrastructure for multicores,” Com-

puter, vol. 42, pp. 36–42, 2009.
[16] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,

C. Tenllado, and F. Catthoor, “Polyhedral parallel code generation
for cuda,” ACM Transactions on Architecture and Code Optimization,
vol. 9, no. 4, p. 1–23, Jan. 2013. doi: 10.1145/2400682.2400713.
[Online]. Available: http://dx.doi.org/10.1145/2400682.2400713

[17] “Nvidia corporation, cuda programming guide 12.3,”
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html,
2023, accessed on: 2023-10-22.

[18] K. Thouti and S. R. Sathe, “Comparison of openmp & opencl parallel
processing technologies,” 2012. doi: 10.48550/ARXIV.1211.2038.
[Online]. Available: https://arxiv.org/abs/1211.2038

[19] M. Khalilov and A. Timoveev, “Performance analysis of cuda,
openacc and openmp programming models on tesla v100 gpu,”
Journal of Physics: Conference Series, vol. 1740, no. 1, p. 012056,
Jan. 2021. doi: 10.1088/1742-6596/1740/1/012056. [Online]. Available:
http://dx.doi.org/10.1088/1742-6596/1740/1/012056

[20] G. Kan, X. He, L. Ding, J. Li, K. Liang, and Y. Hong, “A heterogeneous
computing accelerated sce-ua global optimization method using openmp,
opencl, cuda, and openacc,” Water Science and Technology, vol. 76,
no. 7, p. 1640–1651, Jun. 2017. doi: 10.2166/wst.2017.322. [Online].
Available: http://dx.doi.org/10.2166/wst.2017.322

[21] L. Chen, P.-H. Lin, T. Vanderbruggen, C. Liao, M. Emani, and
B. de Supinski, LM4HPC: Towards Effective Language Model

Application in High-Performance Computing. Springer Nature
Switzerland, 2023, p. 18–33. ISBN 9783031407444. [Online]. Available:
http://dx.doi.org/10.1007/978-3-031-40744-4 2

[22] W. Godoy, P. Valero-Lara, K. Teranishi, P. Balaprakash, and
J. Vetter, “Evaluation of openai codex for hpc parallel programming
models kernel generation,” in Proceedings of the 52nd International

Conference on Parallel Processing Workshops, ser. ICPP-W 2023.
ACM, Aug. 2023. doi: 10.1145/3605731.3605886. [Online]. Available:
http://dx.doi.org/10.1145/3605731.3605886

[23] G. C. Team, “Github copilot,” https://copilot.github.com/, 2022, an AI
pair programmer for GitHub, Accessed on: 2023-10-22.

[24] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger,
M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,
M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P.
Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-
Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin,
S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam,
V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Mu-
rati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,
I. Sutskever, and W. Zaremba, “Evaluating large language models trained
on code,” https://arxiv.org/abs/2107.03374, 2021, accessed on: 2023-10-
22.

[25] P. Valero-Lara, A. Huante, M. A. Lail, W. F. Godoy, K. Teranishi,
P. Balaprakash, and J. S. Vetter, “Comparing llama-2 and gpt-
3 llms for hpc kernels generation,” 2023. [Online]. Available:
https://arxiv.org/abs/2309.07103

[26] “Introducing llama 2, the next generation of our open source large
language model,” https://ai.meta.com/llama/, 2023, accessed on: 2023-
10-22.

[27] D. Wonnacott, T. Jin, and A. Lake, “Automatic tiling of ”mostly-tileable”
loop nests,” in IMPACT 2015: 5th International Workshop on Polyhedral

Compilation Techniques, At Amsterdam, The Netherlands, 2015.
[28] S. Verdoolaege, “Integer set library - manual,” www.kotnet.org/∼skimo/

/isl/manual.pdf, 2011, accessed on: 2024-01-11.
[29] U. Bondhugula et al., “A practical automatic polyhedral parallelizer and

locality optimizer,” SIGPLAN Not., vol. 43, no. 6, pp. 101–113, Jun.
2008. doi: 10.1145/1379022.1375595

[30] M. Palkowski and W. Bielecki, “Parallel tiled Nussinov RNA folding
loop nest generated using both dependence graph transitive closure and
loop skewing,” BMC Bioinformatics, vol. 18, no. 1, p. 290, 2017. doi:
10.1186/s12859-017-1707-8

[31] M. Palkowski and M. Gruzewski, “Time and energy benefits of
using automatic optimization compilers for NPDP tasks,” Electronics,
vol. 12, no. 17, p. 3579, Aug. 2023. doi: 10.3390/electronics12173579.
[Online]. Available: http://dx.doi.org/10.3390/electronics12173579

676 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


