
Searching Stable Solutions For Stock Predictions:

A Stacking Approach

Ty Gross, Arthur Allebrandt Werlang, Apeksha Poudel, Julian Roß

Technische Universität Dortmund

Department of Computer Science

Dortmund, Germany

{ty.gross, arthur.werlang, apeksha.poudel, julian.ross}@tu-dortmund.de

Abstract—The goal of the competition is to predict stock
positions for holding, selling or buying stocks of companies from
the S&P 500. Firstly the data is read in and the missing values are
imputed with the median. Categorical data is one-hot encoded.
A classification approach with mainly tree based methods is
used. The models used are HistGradientBoosting, XGBoost, MLP
and SVC whose parameters are chosen and modified through a
grid search. For the stacking the models’ prediction results are
summed up and the result is mapped to the three positions. It
is found that the result is a bit overfitted to the competition’s
test data which makes sense in regard to it being a competition.
The stacking improves the score drastically. Concluding it can be
said that machine learning models can hint in the right direction
when it comes to handling stocks but fail at giving good financial
advice.

I. INTRODUCTION

T
HIS paper concludes the results of team "TUmany Data"

in this year’s Knowledge Pit data mining challenge titled

"FedCSIS 2024 Data Science Challenge: Predicting Stock

Trends".1 A given dataset of the S&P 500 index consisting

of financial indicators of 300 companies for the last 10 years

has to be analysed. The results are predictions of buy, sell

and hold positions. Firstly the preprocessing of the data has

to be done. This includes the reading in, imputation of missing

values and the encoding of the dataset. A median imputation

method is used and the values are one-hot encoded.

In the second step, the data is analysed and the predictions

are evaluated. Different classification and regression models

are tested but it is noticed that the performance of classification

boosting and classification tree models are better than the

regression models. So based on their performance, only 4 of

the models i.e HistgradientBoostingclassifier, XGBoost, MLP

Regressor and SVC are finalized for data imputation and

evaluation. The parameters for those models are tuned using

Grid Search algorithm to find the optimal parameters. The

models are then evaluated by first using the cross validation

and then the error function provided by the competition.

In the third step, the results are stacked to refine the

predictions and to better the score. For the stacking the sum

1The challenge was held on the knowledgepit.ai platform. It was organised
by the Conference on Computer Science and Intelligence Systems (FedCSIS)
and sponsored by Yettel.Bank as well as the Conference on Computer Science
and Intelligence Systems series. The authors did not benefit financially or in
form of other endorsements from this challenge. For more information about
the challenge, see [1]

of the different models is taken and the result is mapped to

the three decisions of buying, selling and holding the stock.

Because of the given penalty for wrongly predicting a stock,

the mapping is skewed towards the holding position because

it has the overall lowest cost.

II. METHODS

In this paper, Python is primarily used as the programming

language of choice due to its wide range of library support.

The Pandas and Numpy libraries [2] are used to store and

process the data and are commonly used in data science.

Additionally, the Scikit-learn library [3] provided many of

the model implementations used in this work. During initial

experimentation, the MissForest imputation library is also

utilized with minor changes to fix function names that have

changed in its dependencies. However, this method proved to

not be effective and is not included in the final prediction

models (see III-B) [4].

III. PREPROCESSING

Before the dataset can be evaluated, it must first undergo

a preprocessing step to transform the data into a format that

can be evaluated easily. This section highlights the properties

of the given dataset, as well as encoding and imputation

techniques performed on the dataset during the preprocessing

stage.

A. Dataset

The dataset for the competition consists of an 8000-line

training CSV file, a 2000-line unlabeled testing data CSV file,

and dictionary datasets that have names for the column names.

In its initial state, the given dataset has two types of missing

values: “empty” and “NA”. Each row of the data represents

one financial statement. The columns contain 58 key financial

indicators and a perform and class column that can only be

found in the training data and not the test data. The class

column contains three classes, "sell"/"hold"/"buy", labelled as

"-1"/"0"/"1" accordingly.

Figure 1 gives a visual representation of the information

stated above. From the graph, it is clear that some columns

have a significantly higher number of NA/missing values com-

pared to empty values. Columns such as I21, I48, I50, dI21,

dI48, and dI50 exhibit particularly high counts of NA/missing

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 745–749

DOI: 10.15439/2024F6695

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 745 Thematic Session: Data Mining Competition



values. This visualization helped to identify which columns in

the dataset required more attention for data imputation due to

their high number of missing entries.

The financial indicators that comprise a majority of the

columns are numerical values that are read in as floating point

data types. The only column that is not numerical is the group

column which has categorical datatypes, representing which

financial sector the statement is from.

B. Data Imputation

There are multiple imputation methods for imputing missing

values. In this section, a brief analysis is done to determine

the best imputation method for this particular dataset. For

that, a handful of imputation methods are tested against a few

machine learning algorithms. The results are measured with

the testing error described in the challenge (see [5] and [1]).

The following imputation methods are analysed:

Imputation with mean, median, mode, random values, using a

missing forest regression as well as disregarding all missing

values.

The following machine learning algorithms are used to

compute the testing error:

Decision Tree Regressor, Random Forest Regressor, SVR,

Decision Tree MLP, Decision Tree Gradient Boosting, Bayes

Ridge Regressor, Gradient Boosting, Hist Gradient Boosting,

Decision Tree Methods, Ada Boost Regressor, Bagging, Gaus-

sian Naive Bayes Negressor, SVC and an MLP.

The results of this testing matrix can be found in graphic 2.

It can be seen that the tree-based methods generally perform

better than the non-tree-based methods. This finding is inde-

pendent of the choice of the imputation and is further built

on in the evaluating process (see section IV). The decision

tree gradient boosting had the best results with the imputation

method mean and missing forest. When comparing the impu-

tation methods, it can be seen that the random imputation and

the mode imputation perform the worst. This is unsurprising

for the random imputation. The bad result for the mode can be

explained by the random-like imputation of the values. This is

because most of the values occur once and are not correlated

in any way with the missing values, thus being random-

like. Disregarding data on a large scale generally makes the

evaluation of the final model worse, and thus, this approach

is not further pursued. The last three remaining imputation

methods do not differ much. All three methods of regression,

median, and mean, calculate similar values based on the

existing values. Because of the simplicity, in the following

evaluation, the median is used as an imputation method.

In addition to imputing the missing values, indicator

columns are added to the dataset to indicate whether a value

are imputed or not. This ensures that the model does not

lose information about whether a value is missing when it

is making its prediction.

C. Encoding non-numerical data

Since many models require numerical data to function,

as the first step, the categorical values have to be encoded

numerically. A one-hot encoding method is used for the

"Group" column, which converted the previous string values

into an indicator column for each possible group. In the

indicator column, if a financial statement belongs to a group,

it is marked with a one in the group’s column; otherwise, it is

set to zero. This ensures that ML models requiring numerical

data function properly on this dataset while the information

about the "Group" column is maintained.

IV. EVALUATING MODELS

Once that dataset is put through the preprocessing stage, it is

ready to be fed into various models. In this section, the various

models and tuning methods are introduced. Then, the cross-

validation method used is discussed. Finally, the evaluation

metric is used to determine how well a model performs is

outlined.

A. Classification vs Regression / models

Different Classification and regression models, such as Gra-

dientboosting, Decision Tree, ADABoosting, MLP, XGBoost,

Missforest, Linear Regression, etc., are applied to impute and

evaluate the data. It is observed that classification tree-based

models and boosting models delivered superior performance

than the regression models and thus are selected to be further

tuned.

Based on the performance, following models are used for

further analysis:

• HistGradientBoosting Classifier [6]

• XGBoost [7]

• MLP Regressor [8]

• SVC (Support Vector Classifier) [9]

The hyperparameters of these models are tuned using the

Grid-Search. Grid search is a traditional method of hyperpa-

rameters optimization, which simply makes a complete search

over a given subset of the hyperparameters space of the

training algorithm. In other words, the grid search algorithm

is a complete brute-force and takes a too long time to execute

[10].

Table I presents the parameter grid that are used and

the best parameters are obtained from grid search for the

above given evaluated models. This comparison highlights the

specific hyperparameters and their optimal values that resulted

in the best performance for each model, facilitating our further

analysis and evaluation of error rates.

B. Cross-validation

For the evaluation of the models, a five-fold cross-validation

is used. This means that the training data is split into five

equally large test train splits. Using cross-validation helps

reduce inconsistencies that can happen when data is split in an

inconsistent way. For example, fitting a model and evaluating

it against the outliers will have a much different outcome than

fitting the model to the outliers and testing against the normal

data. Thus, the variance for the testing error is reduced.

746 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Fig. 1. Total missing values by column

TABLE I
PARAMETER METRICES AND BEST PARAMETERS FOR ALL EVALUATED MODELS.

Model Parameter Values Tested Best Value

HistGradientBoostingClassifier
Learning rate 0.001, 0.01, 0.05, 0.1 0.001
Max Depth 5, 7, 10, 20, 50 20
Min samples leaf 5, 10, 20, 30 10

XGBoost
Learning rate 0.01, 0.1, 1 0.01
Max Depth 2, 5, 10 5
Number of Estimators 100, 500, 1000 100

MLP
Hidden layer sizes (116,232,116), (116,116), (116, 232), (116) (116,232,116)
Activation logistic, ReLU, tanh logistic
Solver adam adam
Alpha 0.0001, 0.005 0.005
Learning rate constant, adaptive constant
Learning rate init 0.001, 0.005, 0.01 0.001

SVC
C 0.5, 1, 2, 5 1
Kernel linear, poly, rbf, sigmoid rbf

Fig. 2. Results of the imputation analysis. Lower is better.

C. Evaluation (Calculating Error)

The same error function provided by the competition is used

to evaluate the models. The error function is calculated based

on the matrix in Figure 3. When the predicted class matches

the expected class, zero is added to the error, predicting one

off from the expected class results in one added to the error,

and predicting two off from the expected class adds two to

the error. Finally, the error function divides the confusion

matrix output by the number of predictions to get the average

error. The decision to use the same error calculation as the

competition is made to ensure that the same function is being

optimized by the models as the competition’s scoring.

Fig. 3. Confusion Matrix showing error for predicted vs. actual class value.

TY GROSS ET AL.: SEARCHING STABLE SOLUTIONS FOR STOCK PREDICTIONS: A STACKING APPROACH 747



V. STACKING

A method of model stacking is used to optimize our

further predictions. Model stacking allows for merging the

predictions of multiple types of models into one final output

by feeding the output of previous models into another model

[11]. By stacking multiple models with different parameters

and imputation methods, an incorrect prediction by one model

can be mitigated by the other models being stacked. This can,

however, also lead to worse predictions in the case in which

one model is poorly chosen, skewing the overall results to

being incorrect.

A. Choosing Models for Stacking

After evaluating multiple models, both using the training

data and cross-validation, and the provided evaluation from

the submissions to the competition website, different models

are picked based on their performance.

Based on those factors, the best-performing models are cho-

sen to be stacked, going from the assumption that the better-

performing models would result in the best possible stack. The

models that performed the best on the competition leaderboard

and against the training data are the HistGradientBoosting

Classifier, XGBoost, and an MLP Regressor.

B. Stacking the Models

Different stacking methods are tested - firstly the mode from

the results of different models was taken, and where more than

one mode is found, the prediction is set to zero. The intention

behind this is to minimize the error function, as wrong hold

predictions are less costly than wrong buy or sell predictions.

Based on that, a new method, using the sum of many different

results was devised.

It is noted, during a trial and error phase stacking the

models, that a more robust method for the stacking is needed.

As a result, based on the fact that the sum of n model

predictions would go from −n to n and could then be mapped,

using the Pandas map function, so that results close to zero

- meaning the models either agreed on the zero prediction or

disagreed heavily - were set to zero, while results close to

−n or n, to −1 or 1 respectively. Since the competition score

is calculated based on how far away the prediction is from

the actual value (see 3), choosing zero when models disagree

results in a lower penalty for an incorrect prediction. This

method also considers all models equally as important, so no

models are favoured, not even the better-performing ones.

In a practical example, when stacking six models, one would

get results varying from -6 to 6. From these results, any values

between −2 and 2 are set to 0, while values equal or above 3

and below −3 are set to 1 and −1 respectively. This way, it is

ensured that for any buy or sell decision, at least 50% of the

models agreed on that decision, which increased the accuracy

of the predictions on the leaderboard substantially.

VI. CONCLUSION

While preprocessing the data, it is found that the imputation

method only plays a minor role when evaluating this dataset.

After a brief analysis, a median imputation is decided.

The final evaluation for the submitted predictions is a

preliminary score of 0.7030 and a final score of 0.8304.

The final stacking of the predictions relied on evaluating

our models based on their leaderboard performance since the

limited training data might not be an accurate representation

of the final testing data. In hindsight, however, picking the

models based on their leaderboard score might have led to

the end results of an overfitting of the specific part of the test

dataset that was used to calculate the error. This explains the

discrepancy between the initial results and the end scores.

Further analysis should experiment with different imputa-

tion methods for missing and NA values rather than treating

all of these values as the same. Additionally, the indicator

columns used to mark missing/NA values should be modified

to specify whether the imputed value was previously missing

or NA.

For a more extensive research a regression approach with

the "perform" column could be done. This would give the

model more degrees of freedom to predict the score and to

make a decision based on that score.

Generally, it can also be said that predicting stocks is a very

hard task and can not be reliably done. Events that influence

the stock market in politics and many other fields that are part

of the global economy can not be foreseen. Therefore, the

prediction on the basis of old data can not account for such

events and changes. For a given stock, a volatile score could

be assigned that captures the dependency on global events

and represents its stability in changing times. For this, the

dataset could be extended with additional data. For example, a

score that captures the change for each stock regarding similar

events to feed the machine learning algorithms the dependency

for specific fields. For this reason, outside data could also

be integrated into the dataset to help improve the predictions

since other events outside of the financial world might have

an influence on the stock’s value.

ACKNOWLEDGMENT

We would like to thank Prof. Emmanuel Müller, TU Dort-

mund University and the Research Center Trustworthy Data

Science and Security, as well as our tutors Simon Klütter-

mann, Michel Lang, Steffen Maletz, and Jonas Rieger, who

introduced us to the challenge and supported us throughout the

competition. We’d also like to thank FedCSIS for organizing

the challenge and for inviting us to write this paper.

REFERENCES

[1] A. M. Rakicevic, P. D. Milosevic, I. T. Dragovic, A. M. Poledica, M. M.
Zukanovic, A. Janusz, and D. Slezak, “Predicting stock trends using
common financial indicators: A summary of fedcsis 2024 data science
challenge held on knowledgepit.ai platform,” in Proceedings of FedCSIS

2024, 2024.

[2] T. pandas development team, “pandas-dev/pandas: Pandas (latest ver-
sion),” 10.5281/zenodo.3509134, Apr. 2024.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.

748 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



[4] Y. S. Y. Hindy, “Missforest (version 2.5.5).”
https://pypi.org/project/MissForest/, Mar. 2024.

[5] FedCSIS, “Data science challenge: Predicting stock trends,” 2024.

[6] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting decision
tree,” in Advances in Neural Information Processing Systems (I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.

[7] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’16, ACM, Aug. 2016.

[8] G. E. Hinton, “Connectionist learning procedures,” Artif. Intell., vol. 40,
pp. 185–234, 1989.

[9] J. Platt, “Probabilistic outputs for support vector machines and compar-
isons to regularized likelihood methods,” Adv. Large Margin Classif.,
vol. 10, 06 2000.

[10] P. Liashchynskyi and P. Liashchynskyi, “Grid search, random search,
genetic algorithm: a big comparison for nas,” arXiv preprint

arXiv:1912.06059, 2019.
[11] B. Pavlyshenko, “Using stacking approaches for machine learning

models,” in 2018 IEEE Second International Conference on Data Stream

Mining & Processing (DSMP), pp. 255–258, 2018.

TY GROSS ET AL.: SEARCHING STABLE SOLUTIONS FOR STOCK PREDICTIONS: A STACKING APPROACH 749


