
Strategy Registry: an optimized implementation of

the Strategy design pattern in solidity for the

Ethereum Blockchain

Hamza Tamenaoul∗, Mahmoud El Hamlaoui† and Mahmoud Nassar‡

RABAT IT CENTER

ENSIAS, Mohammed V University in Rabat

Rabat, Morocco

Email: ∗hamza tamenaoul@um5.ac.ma, †mahmoud.elhamlaoui@um5.ac.ma, ‡mahmoud.nassar@um5.ac.ma

Abstract—The strategy design pattern is an essential behav-
ioral design pattern. When developing software it is relied
upon for the development of modular components. Given the
constraints inherent to the inner workings of the Blockchain and
features offered by Smart Contract languages, some of the design
patterns commonly used in software systems development cannot
be naively implemented. This paper explores a new pattern
implementation of the mentioned pattern in a contract oriented
language aimed at Smart-Contracts development, specifically the
solidity language. The pattern’s implementations discussed in this
paper are intended to be deployed and run on the Ethereum
Blockchain.

Index Terms—Blockchain, Ethereum, Solidity, Smart Contract,
Design Pattern, Strategy pattern, Gas, Optimization

I. INTRODUCTION

THE STRATEGY design pattern [1] tries to solve a very

specific behavioral problem. Component are developed to

run a fixed set of algorithms. Given the static nature of com-

piled code, those algorithms could not be defined at a different

moment than during compile time. However, in multiple cases,

the algorithms to be executed are not necessarily known at

that moment, the information would be rather uncovered only

during runtime. Therefore a design pattern had to be defined to

tackle this specific issue, which is the Strategy Design Pattern.

The strategy design pattern defines two elements: the con-

text and the strategy [2]. The context is the component, con-

taining and controlling the algorithms to be executed as well

as handling and managing the set of attributes or parameters

that impacts the execution flow of said algorithms. From a

client perspective, the context is the entity that is called at

compile time to run the algorithm.

Decoupling the context from the logic gives us the op-

portunity to have a modular logic, while enabling us to

implement multiple algorithms with a simpler implementation

and easier maintainability. This design is essential in a lot

of contexts when developing software libraries or software

systems. This loosely coupled structure makes it possible to

create a context object instance without worrying whether

or not the algorithm to be used when executing the logic

is known at that exact moment. Moreover, it gives us the

opportunity to switch strategies during runtime easily and in

a transparent manner. The link between the strategy and the

context is created when the algorithm to be used is known,

sealing the relationship between the two objects and binding

the strategy object lifecycle to the context object. While the

strategy object can be discarded while the context is still used,

for the context, discarding a strategy would not have any

impact on its lifecycle. In fact, this pattern makes the lifecycle

of the strategy object completely dependent on the one of the

context. This relationship is illustrated in the Fig. 1

Fig. 1. UML class diagram of the implementation of the strategy design
pattern

A. Pattern client implementation

Following the blueprint given by this implementation, the

client code logic is required to create a new instance of a

strategy every time a new context is instantiated. The following

algorithm illustrate this logic.

Context context = new Context()

The context object is creating without any reference to the

strategy object and therefore the algorithm to be used when

running the logic.

Strategy strategy =

new StrategyImplementation()

context.addStrategy(strategy)

When the strategy is known during runtime, the following

algorithm would create the strategy object instance and bind it

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 249–252

DOI: 10.15439/2024F6780

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 249 Topical area: Software, System and Service Engineering



to the context. From this moment the context instance has the

information on what algorithm should be run forward. This

part of the algorithm can be easily executed multiple time

during the lifetime of the program with different strategies to

accommodate any change of the logic during runtime.

context.doLogic()

Finally the logic can be called directly from the context,

regardless of what logic resides underneath. This transparency

when executing the logic, that makes the strategy design pat-

tern an essential design pattern when developing any system.

In the context of non distributed application - referred

to as App -, this client implementation would lead to the

creation of new strategy instance whenever the second part

of the algorithm is executed. The footprint of this approach

lays mainly on the memory, requiring it to handle the whole

lifecycle of the strategy object for every new instance, which

is not generally an issue in modern languages.

In such standard applications the memory trade off is worth

it, limited and minimal. More generally the memory footprint

is negligible in front of the maintainability and the modularity

gains, in distributed applications - commonly referred to as

dApps -, we cannot neglect the memory footprint of this client

implementation for cost efficiency.

II. COST ANALYSIS OF THE STRATEGY PATTERN

IMPLEMENTATION IN A DISTRIBUTED APPLICATION

A. The optimization requirements of Blockchain specific code

Distributed applications rely on the Blockchain technology

to be deployed and run [4]. They use Smart-contracts to

define their business logic, a distributed logic. By design,

the Blockchain is a technology that distributes the execution

of the logic on all of its users, referred to as nodes. This

structure makes also the cost of executing some code on the

infrastructure cost on all nodes, leading to a higher resource

cost usage cost for the user of some dApp.

This cost is very high and cannot be negligible and therefore

kept to a minimum. When running Apps on a non Blockchain

environment, the resource cost is the cost of the computing

time of the machine that executed the code. On a Blockchain

setting, that cost is multiplied by the number of nodes on the

Blockchain, since they all need to execute the code for a dApp

to work. Those nodes maintain and run the infrastructure of

the Blockchain, therefore the Blockchain put a price on every

action on the Blockchain to compensate the nodes for their

work.

To calculate this compensation, the concept of Gas [4] was

introduced to evaluate the price equivalent of every action on

its infrastructure, the inherent cost of handling a transaction

or running an algorithm on the Blockchain network. Gas is a

notion that is specific to the Ethereum Virtual Machine (EVM)

and similar Blockchains, it represents the computational effort

needed to execute a transaction on the Blockchain. When

multiplied by the price of a unit of gas we can calculate

the price of said transaction. Therefore gas can be used as

a measure of the cost of a transaction. To be able to run code

on the Blockchain, the caller is required to provide sufficient

Gas for its request, or it will not be processed by the network.

This requirement forces dApps designers to build and design

specifically optimized code for Blockchain applications, code

that would require the least amount of memory and processing

resources possible to make the cost of using the dApp minimal

and acceptable for users.

B. The limitations of the standard strategy pattern implemen-

tation

The standard approach to implement the strategy design

pattern falls short in memory optimization aspects. In non

Blockchain based languages, instantiating new objects is

equivalent to allocating a new memory space on the machine

running the program. In the context of the Blockchain, cre-

ating a new instance of an object, means the creation and

deployment of a new Smart-contract, which means allocating

resources on all nodes of the infrastructure which is one of

the heaviest operations in terms of memory allocation and

instructions to execute on the Virtual Machine. This makes

the operation require a lot of gas which in turn translates to

an extremely high cost on the burden of users. Therefore this

approach is not optimal.

III. NAME REGISTRY DESIGN PATTERN BASED

OPTIMIZATION

A. Name Registry pattern

On the Ethereum Blockchain, a Smart-contract needs to be

deployed first before being used. Once a Smart-contract is

deployed, the only way interact with the Smart-contract is by

calling through its address on the Blockchain. However loosing

the address of a Smart-contract means more or less loosing the

ability interact with it. To solve this issue and others related

to it the Name Registry pattern [5] was introduced.

The Name Registry pattern as its name suggest centers on

a registry as the main piece, an address registry. It stores the

different addresses of the Smart-Contracts created. It solves

the issue of dealing with storing the physical address of

Smart-contracts by taking care of this part, and providing

keys to retrieve easily the addresses that would be required.

The registry pattern can be simplified as a mapping from

and already defined key - that can be mutable - to a Smart-

contract address. While adding addresses inside of the registry

has a cost, it is much more cheaper than creating a new

Smart-Contract every time on is needed, specially when those

Contracts are stateless, but depending on the implementation,

the owner of the dApp can implement it a way that the burden

of the cost would not fall on the user but on the owner of the

Smart-Contract.

A basic key implemented as a string identifier, as shown in

Fig. 2 could be used for by mapping in the Name Registry

pattern. The key could be much sophisticated depending on

the requirements of the project. The most common addition of

to the key is the Smart-contract version, to handle versioning

which is not native to the Ethereum Blockchain. This part of

250 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Fig. 2. UML diagram of the Name Regitry pattern

the pattern will not be discussed in this paper and falls out of

the scope of the paper.

B. Contract independent strategy pattern implementation

To solve the overhead issue of having to deploy a new

Smart-contract every time a new one defining a strategy is

deployed, both the Strategy pattern could be merged with the

Name Registry pattern to provide the optimization needed for

the constraints of the Blockchain.

This paper will refer to the resulting pattern as the Strategy

Registry. The Strategy Registry optimizes the Strategy pattern

by removing the direct link between the context and the

strategy. Instead, the context is linked to a Name Registry

that contains the different strategies deployed. Strategies are

registered into the registry making them context independent

and unbinding their lifecycles from the context’s. While the

registry would contain the strategies that have been deployed

by the system’s development team, the nature of Blockchain

development can make the addition of new strategies more

independent.

Fig. 3. UML class diagram of the Strategy Registry pattern

This optimization operates on multiple levels:

1) Gas optimization: With the implementation of the strat-

egy design pattern, the number of the strategies that exists in

the execution context can reach the total number of strategies

defined in the system. Therefore the total number of Strategies

that would coexist on the Blockchain is theoretically unlimited,

which is an important optimization issue. This would entail

that for every execution an enormous amount of gas would be

spent every time to repeat the same operation, with transations

containing duplicated amount of information that needs to be

stored.

Using the Registry strategy pattern caps the number of

strategies that could be deployed to the number of strategy im-

plementations that were developed. Having a fixed number of

contract to deploy simplifies the cost calculation and reduces

enormously the overhead required during every execution. In

fine, this would lead to a reduces and acceptable gas price for

the pattern.

2) Space optimization: One of the main constraints of

the Blockchain is the limited size of the available space.

Distributed application designer seek to build space efficient

Smart-contract, like during the first days of computing. Using

the strategy design pattern breaks this rule. As mentioned pre-

viously, deploying strategies with the context only contributes

to enlarging the memory size required by the context. If we

take into account that the number of strategies is non capped,

this means that dApp relying on such architecture could take

an unlimited amount of space on the Blockchain, which is far

from being ideal, nor acceptable in terms of design or cost.

The Strategy Registry solves perfectly this issues. Capping

the number of Smart-contracts that could be possibly deployed

means a finite amount of space would be needed for the

strategies regardless of the number of executions. Moreover

decoupling the Strategy from the context, leads to having

lighter Smart-contracts defining the context to deploy, opti-

mizing even further the usage of space.

3) Versioning of strategies: One of the main benefits of

using Strategies is the ability to update the logic of some

program without impacting the code of the context. This ability

can be seen as lost when talking about deploying the strategies

beforehand. While at fist glance this might seem true, in

reality using the registry enables this feature in a more straight

forward manner.

One of the main benefits of the Name Registry pattern in

the Ethereum Blockchain is its ability to introduce Smart-

contract versioning in a simple and easy way. This capability

could be also used to version strategies or even decommission

or disable them. In the naive implementation, changing or

improving a strategy would have required a double cost. The

first and most expensive one, is the redeployment cost of new

Smart-contracts representing the strategies as many times as

the old versions were deployed. The second cost is related to

updating the strategies in the different Smart-contract already

in production.

Using the Strategy Registry, the cost would be reduced

to one of deploying the new Strategy Smart-contract and

registering it in the registry alone. No other data would be

changed in any other Smart-contract; the context would still

use the same key - that do not have to be changed - to call

the strategy, the registry makes sure that the correct Smart-

contract will be called, since it holds the information about

the statuses of the different Strategies.

HAMZA TAMENAOUL ET AL.: STRATEGY REGISTRY: AN OPTIMIZED IMPLEMENTATION OF THE STRATEGY DESIGN PATTERN 251



IV. CONCLUSION

The current Blockchain technology comes with new set

of constraints, constraints that makes following many of the

software principles already used and theorized hard to follow.

One of important principles are design patterns such the

Strategy Design Pattern. The Strategy Registry Design Pattern

makes such transition. It solves the problem Strategy Design

Pattern intents solving, while providing a solution that fits the

challenges faced during Ethereum Blockchain development.

While using the Strategy Registry design pattern has obvi-

ous advantages in terms of production costs for both the owner

of the dApp and its user, the performance of such pattern on

the Blockchain should be assessed depending on the usage.

One fits all solutions rarely exist in the software world, and

even more so when working with Ethereum Smart-Contracts.

REFERENCES

[1] E. Freeman and E. Robson, Head first design patterns: a brain-
friendly guide, Second release. in A brain-friendly guide. Beijing Boston
Famham Sebastopol Tokyo: O’Reilly, 2014.

[2] Refactoring Guru, “Strategy,” Refactoring.guru, 2014.
https://refactoring.guru/design-patterns/strategy

[3] “Solidity — Solidity 0.8.26 documentation,” docs.soliditylang.org.
https://docs.soliditylang.org/en/v0.8.26/ (accessed May 28, 2024).

[4] B. Vitalik, “Ethereum white paper: A next-generation smart
contract and decentralized application platform.” 2014. [Online].
Available: https://ethereum.org/content/whitepaper/whitepaper-
pdf/Ethereum Whitepaper - Buterin 2014.pdf

[5] “Contract Registry,” Blockchain Patterns.
https://research.csiro.au/blockchainpatterns/general-patterns/contract-
structural-patterns/contract-registry/ (accessed May 28, 2024).

252 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


