
Multi-Level Language Architectures as a

Foundation for Advanced Enterprise Systems

Ulrich Frank

Department of Computer Science

University of Duisburg-Essen

Germany

0000-0002-8057-1836

Abstract—Enterprise systems are the backbone of many com-
panies. Most operational activities are usually not feasible with-
out them. In addition, enterprise systems may also constitute
remarkable competitive advantage – or turn out to be a threat to
competitiveness, depending on their quality. Enterprise systems
in general, ERP systems in particular, have been around for
some decades. During this time, they have undoubtedly un-
dergone a maturing process. However, hardly any significant
progress has been made regarding foundational architectures
and corresponding functions. Based on an analysis of widely
undisputed objectives and corresponding shortcomings of current
enterprise systems, this paper presents an advanced architecture
that enables the construction of self-referential enterprise systems
(SRES). SRES promise substantial progress with respect to
various essential objectives of enterprise systems. The proposed
architecture is based on a multi-level language architecture.
Among other things, it allows for the integration of enterprise
models and corresponding software at run-time. Thus, it does
not only boost reuse and adaptability, but substantially fosters
user empowerment, too.

Index Terms—integration, reuse, adaptability, conceptual
model, enterprise model, self-referential enterprise system,
DSML

I. INTRODUCTION

TODAY’S enterprises depend on software systems.

Among others, software systems are of pivotal relevance

for resource management, for running business processes and

for decision making. Among a plethora of specific systems,

there are a few software systems that are of general relevance

for a wide range of companies, e.g., systems for human

resource management, for customer management, for stock

management, to name a few only. The most prominent, not to

say prototypical example of enterprise software are enterprise

resource planning (ERP) systems. In the following, I will

subsume these enterprise software systems under the umbrella

term of enterprise systems, with specific emphasis on ERP

systems.

Over the past decade, there have been various technological

trends that have had an impact on the development and

use of business software. Driven by the availability of non-

volatile RAMs at affordable prices, the old idea of In-Memory

databases [1] found its way into commercial ERP systems. It is

suited to substantially increase the performance of extensive

data analysis processes. Thus, it allows to integrate OLAP

and OLTP functionality in one database management system.

This not only means that more up-to-date data can be used in

analyses, but also makes the data warehouse system partially

obsolete. Microservices represent another trend in enterprise

computing. Whilst their name is misleading, they can make an

important contribution to scalability and, related to the previ-

ous, to deployment of enterprise systems. Microservices may

have an impact on the architecture of software systems, espe-

cially in cases where the load different parts of a system have

to handle, varies. Related, but not confined to microservices

is a further trend that concerns the management of enterprise

systems. “Software as a Service” does not only relieve the

burden on internal IT management, but is often accompanied

by special billing models that may reduce overall costs – and

promise better scalability. These innovations can be of great

benefit and may even be a prerequisite for the realisation of

certain business models. Nevertheless, they have no significant

impact on the basic architecture and functionality of ERP

systems.

Other trends concern development and maintenance of

enterprise systems. The idea of model-driven development

(MDD) has been around for some time [2]. It is based on

the convincing assumption that focusing on conceptual models

without the need to bother with peculiarities of implementation

languages is suited to contribute to productivity of software

development projects and to software quality alike. As we

shall see, MDD suffers from certain pitfalls, which may have

contributed to the disappointing fact that it seems not to have a

substantial impact on the development and maintenance of en-

terprise systems. Recently, a considerable hype was generated

by so called “low-code” platforms. They offer the prospect of

enabling employees without specific programming knowledge

to develop software. The idea is not to develop large systems,

but rather to quickly create smaller systems tailored to specific

needs, which are suitable for partially replacing the use of

spreadsheet programs, for example. Irrespective of the fact that

low-code represents a clearly exaggerated marketing trend, it

can hardly be assumed that the design and functionality of

business software will be influenced by it. For critical accounts

of low-code platforms see [3], [4].

Our brief overview of developments that had or might have

an impact on the realization and use of enterprise systems

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 9–20

DOI: 10.15439/2024F686

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 9 Invited contribution

shows that progress that concerns the principal architecture

was rather limited. Even though it is interesting to ask about

the reasons for this, I will refrain from analysing them here. In-

stead, in the following we want to explore the question of how

future enterprise systems could be designed in order to offer

significant advantages. To that end, I will at first look at widely

undisputed objectives that enterprise systems should satisfy

and identify the pivotal measure to achive them. Against that

background I present a vision of future enterprise systems,

which we refer to as self-referential enterprise system (SRES),

that goes clearly beyond the possibilities of current systems.

Regarding its implementation, the vision is confronted with

considerable challenges that can hardly be overcome with

conventional language architectures. However, as I will show,

a multi-level language architecture is suited to build and run

SRES.

II. ENTERPRISE SYSTEMS: UNDISPUTED OBJECTIVES AND

CHALLENGES

Various approaches to develop an idea of how to improve

enterprise systems are conceivable. One could ask experienced

users to report on aspects of current systems they are not

satisfied with – and to express requirements future enterprise

systems should fullfil. Alternatively, it would be an option to

study architectures of existing systems in order to identify seri-

ous weaknesses that call for better solutions. Both approaches

require considerable effort. In addition, they are accompanied

by specific methodical challenges that make the success of

such studies questionable. We therefore choose a different

approach. Apart from specific objectives and corresponding

requirements, there are various goals and related issues that

should be widely agreed upon. An analysis of these objectives

is not only suited to identify shorcomings of existing systems,

but also to provide insights into how future systems could be

designed to represent significant progress.

A. Reuse

Reuse is of pivotal relevance for the economics of enterprise

systems. That does not only concern development costs, but

also the effort to adapt a system to changing requirements.

Especially in cases where reuse enables significant economies

of scale, cost reductions can be tremendous. Reuse of software

artefacts among a range of companies implies the identification

of common requirements. In other words: reuse depends on

abstraction – from specific peculiarities of certain systems

onto invariant commonalities shared by a range of systems.

A closer look at reuse recommends differentiating between

range and productivity of reuse, also known as the power-

generality trade-off [5]. The more specific a reusable artefact

is, the higher is its contribution to development productivity in

cases where it fits – the lower are, however, chances that it fits.

On the other hand, the more generic a reusable artefact is, the

higher is its potential range of reuse, hence, the achievable

economies of scale. Hence, there is need to find a proper

trade-off between power and generality or, certainly better,

to relax this conflict of goals. Even though the idea of reuse

is especially related to software artefacts, enterprise systems

should also promote the reuse of knowledge among its users.

This requires to account for diverse needs and abilities of users

(see Subsection II-B).

B. Accounting for Context and Perspectives

An enterprise system is not an end in itself. It is supposed

to support the business. That requires accounting for relevant

aspects of a company’s action system, such as corporate

goals, business processes, organizational structure, or decision

scenarios. If the relevant context is not represented in the en-

terprise system, it will usually be documented separately, more

or less accurate and reliable. This does not only create issues

with accessibility of relevant documents, but also with their

consistency. As a consequence, it is demanding to assess how

well IT and business are aligned. If a changing environment

demands for adapting the business or even the business model,

it is required to account for both, the enterprise system and a

company’s action system. Again, without a representation of

relevant aspects of its context, it requires additional effort to

provide for conjoint change of business and IT.

Large organizations depend on separation of concerns,

which translates to a variety of different professional per-

spectives that comprise specific goals, interests and technical

languages. To provide effective support, an enterprise system

should offer appropriate representations for all perspectives

relevant for its users. Appropriately designed user interfaces

that allow for individual adaptions are very useful in this

respect. However, they are hardly sufficient to help users with

gaining a deeper understanding of the system they use, the

company they work for, and how their work relates to the

work of others.

C. Reduction of Complexity and Need for Transparency

Enterprise systems are supposed to reduce an organization’s

complexity. At the same time, they contribute to a subtle

increase of complexity. Often, software systems penetrate

companies to a degree that many employees perceive their

work through the applications they use. In other words:

corporate reality is more and more constructed through en-

terprise systems. At the same time, to most employees the

software they use remains a black box. That is not only in

obvious contrast to the idea of enlightenment, which demands

for a demystification of the world that surrounds us, it is

also a threat to a company’s competitiveness, which requires

employees that are able to assess limitations and possible

modifications of the systems they use. In addition, enterprise

systems are part of ever growing IT infrastructures with a huge

amount of different elements and dependencies between these.

The resulting complexity is a clear threat to IT management

and, hence, to the efficient use of IT infrastructures.

D. Integration

Integration is a prerequisite of the efficient use of enterprise

systems. It requires accounting for various aspects. First, one

needs to distinguish static, functional and dynamic integration.

10 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

In all cases, integration requires the affected software systems

to communicate, which in turn requires common concepts, ma-

terialized, e.g., through datatypes, classes, database schemas,

interface types, event types, etc. Second, similar to reuse, there

is a conflict between generality and power to be accounted

for. The more specific common concepts are, in other words:

the more semantics they carry, the more efficient and safe

communication can be, hence, the higher is the level of

integration. However, the more specific concepts that enable

integration are, the more systems will be excluded. This

corresponds to the use of technical languages by humans. In

addition to common concepts, integration of software systems

also recommends the common representation of corresponding

instances in order to avoid redundancy, which in turn requires

common namespaces.

A further aspect of integration concerns organizational in-

tegration, which corresponds to IT-business alignment. Inte-

gration of this kind, too, requires common concepts shared

by the two worlds. If an enterprise system requires users

to know technical concepts such as file, record or module,

organizational integration will be weaker than it would be with

using domain-specific concepts users are familiar with. Like

reuse, integration requires abstraction – on common concepts

and from specific details that are peculiar to certain systems

or users.

E. Adaptability

The requirements an enterprise system should satisfy may

change over time. In this case, it is of crucial importance

that it can be adapted with little effort and risk. At best,

possible changes had been accounted for already, when a

system was first designed. Ideally, this would be reflected by

a software architecture that separates a presumably invariant

core from possibly variable parts. If the variable parts represent

monotonic extensions of the core, which is the desirable case

but not trivial to achieve, changes to variable parts would

not have side-effects on the core. The prerequisite of such an

architecture is abstraction. Only if one succeeds in abstracting

onto invariant properties of a system, these could be bundled in

an invariant core. In an ideal case, changes could be performed

by competent users without the need to dive into source code.

The quest for adaptability is confronted with a conflict

of goals, too. It is reflected by the notions of loose and

tight coupling. Loose coupling, which is favored by many

as an effective measure to achieve adaptability, aims at re-

ducing dependencies between components – in other words:

it builds on generic rather than on specific interfaces – to

facilitate their replacement. Abstracting onto commonalities

of a range of components creates dependencies: more specific

components chiefly depend on more generic ones. As long

as these dependencies are invariant, they are of no harm,

but of great benefit. All dependent components can be easily

changed by changing the common abstraction. Fig. 1 illustrates

the advantage of tight coupling in this case – and indicates

the problems that arise from abstractions that turn out to

be inappropriate. Related to that, there is another conflict to

account for. Adaptations of an enterprise system require some

kind of language. If this language is generic, as in the case

of a general-purpose programming language, a wide range of

changes is possible. However, changes of this kind are very

time-consuming and risky. On the other hand, a language

that clearly restricts changes is likely to reduce effort and

risk. Examples include approaches to configuration or domain-

specific languages (DSMLs).

Tight Coupling Loose Coupling

Generalisation invariant

Generalisation not invariant

additional

Element

Fig. 1. Comparison of tight and loose coupling

F. Preliminary Conclusions

Our brief overview of objectives that should be widely

undisputed reveals the following insights.

• Abstraction is of pivotal relevance. It is the prerequisite

of reuse, integration and adaptability.

• Conceptual models are a useful instrument for developing

abstractions of high quality. At best, they allow users

to participate in their development and evaluation. Con-

ceptual models could also serve as a representation that

competent users could change without the need to bother

with code.

• Semantics is likely to produce serious goal conflicts

that require painful trade-offs. Therefore, approaches that

allow mitigating these conflicts promise great benefits.

Generalization/specialization is an example of how such

a mitigations could work. At a higher level of gener-

alization, a wider range of (re-) use can be expected,

whereas more specific levels contribute to higher produc-

tivity, while they, at the same time, benefit from greater

economies of scale through reusing higher level concepts.

• To take advantage of powerful abstractions, languages are

required that provide concepts which allow for expressing

these abstractions. The examples in Fig. 5 illustrate

the problem. As we shall see, mainstream programming

languages – and modeling languages alike – are seriously

limited in this respect.

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 11

III. MULTI-LEVEL SELF-REFERENTIAL ENTERPRISE

SYSTEM

Our first vision of future enterprise systems emerged some

time ago. It was mainly inspired by our work on enter-

prise modeling. It was mainly focused on leveraging the

utility of enterprise modelin tools by integrating them with

enterprise software. Unfortunately, the vision suffered from

serious feasibility problems. Only later, as an outcome of our

research on multi-level language architectures, we were able

to further refine the vision and to substantiate the design with

an architecture that makes it feasible.

A. The Early Vision

The idea of enterprise modeling has been around for some

time [6], [7]. It is based on the assumption that an organisa-

tion’s information system and its action system call for con-

joint analysis and design in order to fully exploit the potential

of IT. Therefore our work on enterprise modeling was at first

focused on supporting early phases of enterprise systems’ life-

cycle. It resulted in a method for multi-perspective enterprise

modeling (MEMO, for an overview see [8]), which includes

various domain-specific modeling languages (DSMLs), e.g.

for modeling corporate goals [9], [10], IT infrastructures

[11], organisation structures [12], business processes [13],

and decision processes [14]. These languages are integrated

through a common meta-metamodel and common concepts.

Since the proper use of DSMLs as well as the analysis and

management of enterprise models demand for supporting tools,

we put considerable effort into the development of modeling

tools [7], [15], [16]. An enterprise modeling environment such

as MEMO4ADO [16] does not only allow to create the various

particular models, e.g., business process models, goal models

or models of the IT infrastructure. It also integrates them,

thus, ensuring referential integrity of modeling elements and

allowing for cross-model analysis, e.g., by allowing to navigate

from a business process model to all resources that are required

for its execution. Fig. 2 shows an overview of diagram types

produced with MEMO4ADO and illustrates their integration

through common concepts.

These benefits of a traditional environment for enterprise

modeling are contrasted with serious limitations. First, models

focus on the type level only. This is for a good reason. Usually,

we want to intentionally fade out particular instances, since

they are changing all the time. However, there are analysis

scenarios where instances are important. For example, one

may want to know how many instances of a certain business

process types were exectuted within a certain month, or when a

particular instance started. Other examples include the number

of invoices or the invoice with the highest amount etc. To

answer questions related to the instance level, one would have

to use a corresponding enterprise system. If this system is not

integrated with a corresponding enterprise model, it would not

be possible to nagivate from one system to the other – an

obvious obstacle to decision making.

There is a further reason for integrating an enterprise mod-

eling environment with an enterprise system. The development

Fig. 2. Elements of MEMO4ADO

of an enterprise model requires considerable effort. Also, parts

of an organizational information system are always in the

state of change. Even a smoothly working IT infrastructure

and well-designed business processes create the need for

corresponding models in order to cope with complexity – no

matter whether they are in an early or late state of their life-

cycle Hence, in order to not waste valuable resources and to

enable additional benefits, we came to the conviction that it

should be possible to use enterprise models during the entire

life-cycle of a company and its information system, both as an

instrument to support management and as a means to empower

all employees by improving transparency.

This idea led quickly to the vision of integrating enterprise

models – more precisely: tools for enterprise modeling –

with enterprise software. We referred to this vision as “self-

referential enterprise system” (SRES) [17]. An SRES results

from the integration of an enterprise modeling environment

and a corresponding enterprise software system. In an ideal

case, developers and competent users could apply changes

to parts of an enterprise model which then would become

effective in the enterprise system.

To develop a demonstration of an SRES, we aimed at

extending an existing enterprise modeling environment accord-

ingly. Unfortunately, we soon had to realize that there were

serious problems standing in the way of integrating the two

systems. These problems were caused by principal limitations

of implementation languages.

B. Challenges

These limitations create serious challenges to the design

of SRES. They mainly comprise two interrelated aspects.

First, mainstream programming languages do not allow for

the straightforward implementation of modeling environments

that represent instance level data. Second, related to that,

modeling languages that are based on a MOF-like architecture

12 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

do not allow for expressing knowledge about instances. The

first aspect is illustrated in Fig. 3. It shows a UML class that

is conceptually located at M1. However, within a modeling

tool, it is implemented as an object at M0. This is for a

serious reason. A modeling tool needs to allow defining and

changing the properties of a class. However, only objects have

state, which can be manipulated. As a consequence, it is not

possible to create instances of classes within a model editor.

The only option is to generate code – resulting in two separate

representations.

Program instance

name: String

isAbstract: Boolean

Class

name: String

type: String

Attribute

yearsOfAge() : Integer

firstName: String

lastName: String

custID: String

dateOfBirth: Date

Customer

includes

specializedFrom

0,*

0,1

0,* 1,1

class Customer

{

 String firstName;

 String lastName;

 Date dateOfBirth;

 public int yearsOfAge()

....

}

generate

Modeling Environment Programming Environment

M1

M0
M1

M0

represented as object on M0

represents class on M1

M2

M1

conceptual level

actual implementation levelM

M

Fig. 3. The need for generating code

As a consequence of these limitations, the architecture we

developed with our first conception of SRES was based on

a pragmatic notion of integration. At first, concepts defined

within an SRES had to be replicated in the corresponding en-

terprise system. That could, at best, be achieved by generating

code from models. Then, both systems had to be integrated

through interfaces that allow requests made in one system to be

forwarded to the other system. If, e.g., a user who studies the

model of an IT infrastructure within the enterprise modeling

tool wants know what instances of a certain platform type

exist and where they are located, the corresponding interface

should allow to send this request transparently to the enterprise

system. At the same time, a process manager who is not

happy with the performance of a certain business process

could navigate to the corresponding process model in the

enterprise modeling environment, where he might decide to

change the model, which should then lead to the adaptation

of the corresponding process schema in the enterprise system.

Fig. 4 shows an outline of the corresponding architecture.

It is needless to say that we were not satisfied with this

solution. It reflects a poor concept of integration that requires

ongoing synchronization. Since new requirements often need

to be implemented under time pressure, it is likely that changes

are directly applied to code, which over time leads to a de-

preciation of the corresponding model. In addition, the second

problem, namely the lack of expressiveness of modeling lan-

guages, could not be overcome with the proposed architecture.

An enterprise modeling environment needs to offer DSMLs.

Otherwise users would have to model goals, business processes

etc. from scratch, which would not only cause inacceptable

effort, but would also be a threat to integrity. The concepts

provided by a DSML serve the specification of types or

classes. Fig. 5 shows fragments of two possible DSMLs and

corresponding models. The concept of a printer may be part of

a DSML to model IT infrastructures, whereas the concept of

an activity may be offered by a DSML for modeling business

processes.

Unfortunately, it is not possible to express that a particular

printer has a serial number or a certain number of printed pages

with the DSML, even though we know that these properties are

required. Accordingly, we cannot express the knowledge that a

particular business process has a start time and end time, since

corresponding attributes would apply to a certain business

process type, not to its instances. To express this knowledge, it

would have to be added redundantly to every instance of the

metaclasses Printer or Activity. However, even such

a dissatisfactory approach would not allow to subsequently

create particular instances within a model editor – for the

reasons illustrated in Fig. 3.

A closer look at the model fragments in Fig. 5 reveals

a further challenge. The specification of a metaclass like

Printer has to be done from scratch requiring the language

designer to know essential properties of a printer. Would it not

be more appropriate to use an existing, more generic DSML

that already includes a general concept of printer to define

printer models? As we shall see such an approach would

contribute to the more efficient development of DSMLs and

would, at the same time, be suited to improve their quality.

IV. MULTI-LEVEL LANGUAGE ARCHITECTURES TO THE

RESCUE

To cope with the limitations of the MOF architecture,

we extended our previous meta modeling language with so

called “intrinsic features” that allow to define features such as

attributes in a meta class at M2, hence as part of a DSML,

which are to be instantiated only with an instance at M0. This

extension allowed, e.g., to express the fact that a particular

printer has a serial number (see Fig. 5) with a DSML by

characterizing the corresponding attribute as intrinsic. Unfor-

tunately, this was little more than a Pyrrhic victory, since

intrinsic features could not be expressed by common object-

oriented programming languages. Furthermore, the extension

was limited to M2 and there were indications already that

higher levels of classification might be useful.

The back then young field of multi-level modeling, a term

introduced more than twenty years ago by Atkinson and Kühne

[18], with ancestors that go back even further, cf. [19]–[22],

promised to address our needs more convincingly. However,

multi-level modeling languages were not accompanied by

corresponding programming languages, which we needed for

our purpose. Then, about 15 year ago, a discussion at a con-

ference dinner lead to a solution. The XModeler, a language

engineering environment developed by Clark et al. [23], [24]

proved to feature a language architecture that was suitable for

a convincing implementation of SRES. Encouraged by these

prospects, we started the project “Language Engineering for

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 13

M0

M1

Schema Layer

create, modify, delete

integrated class schema

(representation of

modelling languages)

Modelling Layer

create, edit, associate,

navigate models, perform

analysis & transformation

object models, business

process models, workflow

models ...

Persist ency Layer

store & retrieve objects, workflows, ...

Runt ime Layer

create, modify, delete,

workflow manager, GUI

manager

objects, workflows, ...

Schema Layer

create, modify, delete

class schema(ta),

workflow schemata, ...

Persist ency Layer

store & retrieve objects, workflows, ...

M2

workflow schema

�Order

Management�

instances of

�Order

Management�

workflow

model �Order

Management�

Meta Schema Layer

establish, delete

association ...

�Activity�

(BPMN)

�Process�

(Workflow

Model Editor)Enterprise Information System

Enterprise Modelling Environment

instance of

corresponds to

Fig. 4. Outline of early architecture of SRES

PrinterPrinter

pagesPerMin: Integer

resolution: Integer

serialNo: String

HP200HP200

pagesPerMin = 100

resolution = 600

weight = 14.5

ActivityActivity

automated: Boolean

outsourced: Boolean

startTime: Time

CheckOrderCheckOrder

automated = true

outsourced = false

maxDur = 12.5

DSML

Model

weight: Float

pagesPrinted: Integer

?

?

maxDur: Time

endTime: Time

?

?

Fig. 5. Limited expressiveness of traditional languages

Multi-Level Modeling” (LE4MM, www.le4mm.org), which

is still running today. For a brief history of the project

see [25].

A. XModelerMLand FMMLX

While the XModeler does not feature a multi-level lan-

guage, its metamodel, XCore, could be easily extended to

enable essential features of a multi-level language: an arbi-

trary number of classes with an explicit level and deferred

instantiation of properties such as attributes or operations.

This extension led to the specification and implementation of

FMMLX, a multi-level modeling language [26]. Different from

other multi-level modeling languages such as LML [27] or M-

Objects [28], FMMLXis executable, that is, it features a com-

mon representation of models and corresponding programs.

The implementation of FMMLXin the XModeler led to the

XModelerML. It is, together with various additional resources

such as screencasts and publications, available on the project’s

webpages at www.le4mm.org.

The language architecture enabled with the FMMLX allows

to overcome the lack of expressiveness traditional language

architectures suffer from. The small FMMLX model in Fig. 6

corresponds in part to the example in Fig. 5. It illustrates how

knowledge that cannot be expressed with traditional languages

can be represented without redundancy.

The class Product at level 3 serves the definition of prop-

erties that apply to all kinds of devices. The class Printer

in part inherits these properties, in part instantiates them.

Therefore, a specialization hierarchy would not be sufficient.

14 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Level

Delegation

Instantiation Level

Slot Value

Constraint Report

Constraint

Operation Value

Palette

link

Fig. 6. Example FMMLX model created with the XModelerML

The number printed in white in a black rectangle next to

an attribute or operation is to indicate the level where it is

supposed to be instantiated or executed. The fact that every

class is an object is, on the one hand, illustrated by slot

values, such as 100 for pagesPerMin in the object HP200,

which represents a printer model at level 1. On the other

hand, it is shown by the values returned from the operation

invoiceTotal() executed by instances of the classes

Invoice, HX500 or Person. In other words: an FMMLX

model is executable. The objects it consists of can be displayed

in a diagram editor, either with a standard or a customized

notation, or by using an object browser or a customized GUI.

To strengthen the integrity of the model – and of the executable

program simultaneously – the FMMLX allows for adding

constraints to classes, which are then immediately evaluated

as soon as corresponding instances are created or changed. For

exampole, the constraint limit in Invoice defines that the

total of an invoice must not exceed 5.000, which is violated

by the object invoice1.

The model also shows that multi-level models overcome

the traditional distinction of modeling language and model.

As soon as a class is created, it extends the palette and can

be used to create further instances. Furthermore, there can

be links between objects at any level. A language, which is a

model at a higher level, can be changed at runtime, which leads

to an immediate update of the affected models. Note, however,

that changes at higher levels can be challenging. Therefore, it

is of crucial importance that concepts represented in a multi-

level model are the more invariant the higher they are located

in the hierarchy [29].

An arbitrary number of classification levels is enabled

by a reflexive and recursive metamodel that specifies and

implements the FMMLX. Fig. 7 shows the simplified meta

model with a few selected constraints. Since Class inherits

from Object, every class in the system is an object, has

state and can be executed. FMMLX objects are instantiated

from MetaClass. With their instantiation they are assigned

an object of the Level. It allows to either define a specific

level through an integer or to define a range of possible values

in case the level of a class should be contingent [30]. Deferred

instantiation of properties such as attributes, operations or

associations is enabled through the attribute instLevel that

serves the definition of the intended instantiation level. For a

more comprehensive description of the metamodel, the related

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 15

instantiation mechanism as well as the overall architecture of

the XModelerML see [31], [32].

The XModelerML, which is provided as open source, and

multiple resources including screencasts, publications and

example models are available on the LE4MM webpages at

www.le4mm.org.

B. A Foundation for Self-Referential Enterprise Systems

A multi-level language such as the FMMLX and a corre-

sponding language engineering and execution environment as

the XModelerML provide a powerful foundation for SRES.

First, they allow a common representation of models and

programs. Hence, there is no need for the synchronization of

two different representations. Users of an SRES can navigate

from the software they use to corresponding models and meta

models. If they are qualified and authorized, they may also

change a model with the effect that the software they use is

instantly changed, too. A multi-level model of an enterprise

may be comprised of multiple DSMLs, which are defined at

different levels. Since these DSMLs are all executable, they

are domain-specific programming languages at the same time.

Such a language architecture supports reuse and adaptabil-

ity. The knowledge represented in DSMLs can be reused. If a

DSML does not fit specific needs, the language it was specified

with can be used to define a new customized DSML. This

alllows to benefit from economies of scale supported by high

level DSMLs and to benifit from the productivity provided by

more specific DSMLs, thus relaxing a crucial design conflict.

An SRES would then be based on a multi-level model and a

corresponding runtime environment. In addition, there would

be a component that serves making object models persis-

tent and supports object retrieval. Further components would

enable presentation and interaction. Since the XModelerML

supports the MVC pattern, multiple views could be added to

predefined diagram and browser views. Fig. 8 shows a highly

simplified representation of the architecture.

C. Illustration

At an operational level, an SRES would provide GUIs

similar to those known of today’s ERP systems. These allow

to access objects at level 0, that is, objects that represent data

about particular entities or aggregations of these. In addition,

an SRES would allow users to navigate to elements of the

integrated enterprise model, which are typically located at

level 1. These models can be presented in diagram editors

featuring a standard or a customized graphical notation. In

addition users could also be offered textual representations of

these models. In case, users are overwhelmed by distinguishing

different levels of abstraction, they could also be provided with

a more traditional GUI that allows for accessing objects at

different levels without the need to understand the notion of a

classification level. For those users and administrators who

want to understand or eventually change the DSMLs used

to specify the models, an SRES would allow for accessing

the full multi-level model representing an SRES. It could be

represented by diagrams, within an object browser or in text

editors. The dotted edges between selected elements of the

different layers are to indicate that all these representations

are integrated, since they are only different views of the same

multi-level system. Fig. 9 illustrates how the various levels of

abstraction covered by a multi-level SRES can be presented

to users.

D. Brief Evaluation

Instead of a comprehensive evaluation of multi-level ar-

chitectures which can, e.g., be found in [31], I will focus

on a few essential aspects only, referring to the objectives

described in Section II. The integration of enterprise software

with a corresponding enterprise model is obviously suited

to empower users, since they have a much better chance

to understand and eventually change the software they deal

with. Since an SRES provides an integrated representation of

company’s action system and its information system, users are

also supported with aligning business and IT. The complexity

inherent especially to larger organizations is reduced by mod-

els that were created with DSMLs. The common representation

of models and programs allows for doing without two separate

representations. This does not only foster referential integrity,

but also supports protection of investments into models, which

otherwise are likely to be devaluated over time. Adapting

an SRES to changing requirements is, at best, facilitated by

applying changes at a higher level in the hierarchy only once

instead of repeatedly at lower levels. In addition, a multi-

level architecture also fosters reuse and, hence, economics

of acquiring and managing enterprise systems. Furthermore,

it also promotes cross-organizational integration of enterprise

systems. Integration depends on common concepts. If, e.g.,

company A sends a message to company B referring to

the particular printer model ”HP200”, communication would

fail, if the software company B is using does not know a

corresponding class. Within a traditional scenario, there would

be no way to a apply a usefull interpretation of an unknown

class. It would just be some class. In case of a multi-level

architecture, there would be the chance to identify it as some

kind of printer, if the corresonding class was known by B.

In light of these attractive prospects, it does not seem too

daring to claim that multi-level architectures are suited to make

enterprise software clearly more powerful. This claim leads to

the obvious question why multi-level architectures have not

taken off yet. There are various reasons for this unpleasant

situation. First, the benefits of multi-level architectures are

not easy to understand. Second, for legitimation reasons de-

cision maker tend to opt for mature mainstream solutions.

Multi-level systems are definitely not mainstream. Existing

implementations of development and execution environments

are restricted to academic prototypes. Third, there may be

principal objections against multi-level modeling, since it may

seem strange to those who are used to languages that are

rectricted to one classification level only. Multi-level models

provide indeed features unknown of in traditional modeling

and programming languages. Not only that they allow for

an arbitrary number of classification levels and regard all

16 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

hasBody

1..1

hasReason

1..1

hasParents
0..*

^Class^

XCore::Classifier

default: Element[0..1]
hasType1..1

0..*1..1 hasAttributes

isRestrictedTo

^XCore::Class^

FMMLx::MetaAdaptor

new(level: Level): Element

^XCore::Class^

FMMLx::Level

maxLevel: Integer[0..1]

minLevel: Integer[0..1]

^Class^

XCore::Object

checkConstraints(): ConstraintReport

^XCore::Class^

FMMLx::FmmlxObject

level: [FMMLx::Level]

^Class^

XCore::NamedElement

name: String[0..1]

^Class^

XCore::Class

constructors: Seq(Constructor)[$0..*]

delegatesTo: Class[0..1]

isAbstract: Boolean[0..1]

XCore::Package

^Class^

hasClasses 0..*

0..1

includes 0..*

1..1

FMMLx::FmmlxPackage

^XCore::Class^

sourceLevel: Integer[4..4]

sourceMult: Element[0..1]

targetLevel: Integer[4..4]

targetMult: Element[0..1]

^XCore::Class^

Associations::AssociationType

^MetaAdaptor^

FMMLx::MetaClass

isSingleton: Boolean[0..1]

2..2

^Class^

XCore::Operation

codeBox: Element0..1]

isComposite: Boolean[0..1]

arity: Integer[0..1]

isIntrinsic: Boolean[0..1]

instLevel: [FMMLx::Level]

^Class^

XCore::Constraint

instLevel: [FMMLx::Level]

^Class^

XCore::Attribute

instLevel: [FMMLx::Level]

init: Operation[0..1]

isIntrinsic: Boolean[0..1]

mult: Multiplicity[1..1]

XCore::TypedElement

^Class^

has operations 0..*

0..1

has constraints

0..*

1..1

0..*1..1 hasAssociationTypes

visible: Boolean[0..1]

^XCore::Class^

Associations::End

2..2

1..1

hasEnds

^AssociationType^

Associations::Aggregation

^AssociationType^

Associations::DefaultAssociation

^AssociationType^

Associations::Composition

assocName: String[1..1]

^XCore::Class^

Associations::AbstractAssociation

isDescendantOf(Element):Boolean

allAncestors(): Set(Class)

get(attName:String): Element

Fig. 7. Meta model of FMMLX

Runtime

P
e

rs
is

te
n

cy

Multi-Level Model

SRES

Presentation

▪ interactive diagrams

with customized

notations

▪ standard GUIs

▪ text editors

Fig. 8. Sketch of multi-level architecture of SRES

classes as objects, they also blur the boundary between a

language and its application. Therefore, it seems appropriate

to speak of a paradigm shift. However, as the example in

Fig. 10 shows, natural languages and especially technical

languages in advanced societies evolve in a hierarchical order.

The introduction of a new technical language is usually based

on a refinement of existing technical languages.

A further objection against multi-level architectures relates

to their complexity. It is indeed clearly more demanding to

develop a multi-level model than a traditional model. However,

that is the case, too, for developing a compiler-compiler

compared to a developing a compiler, or for developing a

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 17

Traditional GUI of

Enterprise System

L0

Graphical Models,

specific GUIs or

text editors to

access models of

the enterprise and

of the enterprise

software

L1

Multi-level model

of the SRES

presented as

diagram or in a

browser

L2+

Fig. 9. SRES from user perspectives

GUI builder compared to designing a particular GUI. Reduc-

ing complexity implies increasing it first. Those who design

multi-level models are confronted with remarkable complexity,

especially in cases where requirements vary to a large extent.

Those, however, who use an existing multi-level model and fit

it to more specific needs benefit from a level of complexity that

is certainly lower than that of creating a UML class diagram

from scratch or dealing with representations that are used for

the configuration of ERP systems.

Apart from these obstacles there are a few specific pecu-

liarities and restrictions that prevent the outlined multi-level

architecture of SRES from being a silver bullet. First, the key

features of a language engineering, modeling and execution

environment like the XModelerML, such as an arbitrary number

of classifiation levels and executable objects at any level are

possible only through dynamic typing. Despite these obvious

advantages, dynamic typing is sometimes met with reserva-

tions. Type checking happens at runtime only and, compared

to languages that feature static typing, the code carries less

information. It is, for example, not possible to determine the

18 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

<Class>

Organisational Unit

<Class>

Position

<OrganisationalUnit>

Department

<OrganisationalUnit>

Team

<Position>

Market Analyst

<Department>

Marketing Department

<Quality Circle>

 QC Databases

Market Analyst

MA Asia

<Team>

Market Research Team

<Class>

Committee

<Committee>

Quality Circle

<Department>

Department of Physics

<Dean>

Dean of Physics

<Faculty Council>

Physics Faculty Council

<OrganisationalUnit>

Department

<OrganisationalUnit>

Institute

<Position>

Dean

<Committee>

Faculty Council

<Department>

Foreign Office

d
o

m
a

in
 s

p
e

ci
fi

c
la

n
g

u
a

g
e

„t
e

x
t

b
o

o
k
“

„lo
ca

l
d

ia
le

ct
“

specified

concept

language

concept

Fig. 10. Multiple levels of concepts in natural language

class of an object a message is sent to in a straightforward

way. We believe that this potential advantage of statically

typed languages is more than offset by the specific benefits of

languages that feature strong dynamic typing. Languages like

Smalltalk have demonstrated these benefits long ago. Looking

back, it is regrettable that Smalltalk was sidelined primarily

because the hardware available at the time was unable to

compensate for the disadvantages. For a revealing discussion

of the specific advantages of dynamic typing and its historical

obstacles see this interview with Alan Kay [33]. It is needless

to say that performance is not an issue anymore with today’s

hardware. Second, the design of a multi-level model requires

to carefully decide for a trade-off between flexibility and

integrity, which is not trivial [34] (see also Subsection II-E).

Nevertheless, the realization and maintenance of multi-level

language architectures is challenging. A multi-level hierarchy

is extremely useful for maintaining a system as long as the

dependencies reflected by the hierarchy – lower level objects

depend existentially on higher level classes – are invariant over

time. Therefore, the design of multi-level models requires a

high level of expertise and great care. Otherwise, the advantage

turns into a serious problem. A further aspect is of utmost

relevance with respect to the power of multi-level language

architectures. So far, multi-level models are widely restricted

to static and, to a lesser degree, functional abstractions. It

is much harder to define multi-level semantics for dynamic

abstractions, e.g. process models. There are important reasons

for this, such as the fact that specialization of process types

cannot be defined as monotonic extension of a super process

type. As a consequence, the substitutability constraint cannot

be satisfied – with serious implications for the maintenance

of larger process landscapes. There are a few contributions

to multi-level process modeling, e.g., [35], [36], [37], [38],

but their main focus is on abstracting on static or functional

aspects of processes. While the missing support for dynamic

abstractions does not invalidate the benefits gained from multi-

level static abstractions, it clearly emphasized the need for

corresponding research.

V. CONCLUSIONS AND FUTURE RESEARCH

While ERP systems are of pivotal relevance for many com-

panys’ competitiveness, only little research on future enterprise

software systems happens in academia. At the same time,

progress of commercial systems remains modest, at least with

respect to principal functionality. Enterprise modeling, on the

other hand, has seen more than two decades of research in

academia, but only little adoption in business. Nevertheless,

the potential benefits of enterprise models are widely undis-

puted. The presented architecture of SRES is suited to promote

the utilility of enterprise models and, at the same time, improve

the power of enterprise software. While the implementation of

SRES is widely impossible with prevalent language technolo-

gies, multi-level languages and corresponding development

and execution environments provide a solid foundation for that

purpose. In addition to enabling SRES, multi-level language

architectures also allow for enriching other types of software

with additional abstraction.

Our future research is primarily characterized by two di-

rections. On the one hand, we will continue to work on

concepts that allow for multi-level dynamic abstractions. In

doing so, we are thinking about developing a relaxed con-

cept of specialization. On the other hand, our work aims to

simplify the transition to multi-level modeling by supporting

the step-by-step enrichment of a UML editor with further

concepts up to the XModelerML. A first prototype of this

UML editor, called “UML-MX” is available on the project’s

webpage at https://www.wi-inf.uni-due.de/LE4MM/uml-pp/.

Among other things, it allows the instantiation and execution

of objects from a UML class diagram within the model editor.

REFERENCES

[1] M. H. Eich, “Mars: The Design of a Main Memory Database Ma-
chine,” in Database Machines and Knowledge Base Machines, ser.
The Kluwer International Series in Engineering and Computer Science,
Parallel Processing and Fifth Generation Computing, M. Kitsuregawa
and H. Tanaka, Eds. Boston, MA: Springer, 1988, vol. 43, pp. 325–
338.

[2] R. B. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” in Workshop on the Future of Software

Engineering (FOSE ’07), L. C. Briand and A. L. Wolf, Eds. IEEE CS
Press, 2007, pp. 37–54.

[3] A. C. Bock and U. Frank, “Low-Code Platform,” Business & Information

Systems Engineering, vol. 63, no. 6, pp. 733–740, 2021.

[4] J. Cabot, “Positioning of the Low-Code Movement within the Field
of Model-Driven Engineering,” in Proceedings of the 23rd ACM/IEEE

International Conference on Modell Driven Engineering Languages and

Systems. IEEE, 2020, pp. 535–538.

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 19

[5] A. C. Bock, “The Power/Generality Trade-Off in Decision and Problem
Modeling: Theoretical Background and Multi-level Modeling as a Res-
olution,” in Enterprise, Business-Process and Information Systems Mod-

eling, ser. Lecture Notes in Business Information Processing, J. Gulden,
I. Reinhartz-Berger, R. Schmidt, S. Guerreiro, W. Guédria, and P. Bera,
Eds. Cham: Springer International Publishing, 2018, vol. 318, pp. 213–
228.

[6] J. A. Zachman, “A Framework for Information Systems Architecture,”
IBM Systems Journal, vol. 26, no. 3, pp. 276–292, 1987.

[7] U. Frank, Multiperspektivische Unternehmensmodellierung: Theoretis-

cher Hintergrund und Entwurf einer objektorientierten Entwicklung-

sumgebung. München: Oldenbourg, 1994.
[8] ——, “Multi-Perspective Enterprise Modeling: Foundational Concepts,

Prospects and Future Research Challenges,” Software and Systems

Modeling, vol. 13, no. 3, pp. 941–962, 2014.
[9] S. Overbeek, U. Frank, and C. A. Köhling, “A Language for Multi-

Perspective Goal Modelling: Challenges, Requirements and Solutions,”
Computer Standards & Interfaces, vol. 38, pp. 1–16, 2015.

[10] A. Bock and U. Frank, “MEMO GoalML: A Context-Enriched Modeling
Language to Support Reflective Organizational Goal Planning and De-
cision Processes,” in Conceptual Modeling: 35th International Confer-

ence, ER 2016, I. Comyn-Wattiau, K. Tanaka, I.-Y. Song, S. Yamamoto,
and M. Saeki, Eds. Cham: Springer, 2016, pp. 515–529.

[11] U. Frank, M. Kaczmarek-Heß, and S. D. Kinderen, “IT Infrastructure
Modeling Language (ITML): A DSML for Supporting IT Management.
ICB Report No. 71, University of Duisburg-Essen.”

[12] U. Frank, “MEMO Organisation Modelling Language (1): Focus on
Organisational Structure.”

[13] ——, “MEMO Organisation Modelling Language (2): Focus on Busi-
ness Processes. ICB Research Report No. 49., University of Duisburg-
Essen,” 2011.

[14] Alexander Bock, “Beyond Narrow Decision Models: Toward Integrative
Models of Organizational Decision Processes,” in Proceedings of the

17th IEEE Conference on Business Informatics (CBI 2015), D. Aveiro,
U. Frank, K. J. Lin, and J. Tribolet, Eds., Lisbon, 2015.

[15] J. Gulden and U. Frank, “MEMOCenterNG – A Full-Featured Modeling
Environment for Organisation Modeling and Model-Driven Software
Development,” in Proceedings of the 2nd International Workshop on

Future Trends of Model-Driven Development (FTMDD 2010), 2010.
[16] A. Bock, U. Frank, and M. Kaczmarek-Heß, “MEMO4ADO: A Com-

prehensive Environment for Multi-Perspective Enterprise Modeling,” in
Proceedings of the Modellierung 2022 Satellite Events, J. Michael,
J. Pfeiffer, and A. Wortmann, Eds. Bonn: GI, 2022, pp. 245–255.

[17] U. Frank and S. Strecker, “Beyond ERP Systems: An Outline of Self-
Referential Enterprise Systems: Requirements, Conceptual Foundation
and Design Options. ICB Research Report No. 31. University of
Duisburg-Essen,” Essen.

[18] C. Atkinson and T. Kühne, “The Essence of Multilevel Metamodeling,”
in UML 2001 - The Unified Modeling Language. Modeling Languages,

Concepts, and Tools, ser. Lecture Notes in Computer Science, M. Gor-
golla and C. Kobryn, Eds. Berlin and London, New York: Springer,
2001, pp. 19–33.

[19] J. J. Odell, “Power Types,” Journal of Object-Oriented Programming,
vol. 7, no. 2, pp. 8–12, 1994.

[20] R. C. Goldstein and V. C. Storey, “Materialization,” IEEE Transactions

on Knowledge and Data Engineering, vol. 6, no. 5, pp. 835–842, 1994.
[21] A. Pirotte, E. Zimányi, D. Massart, and T. Yakusheva, “Materialization:

A Powerful and Ubiquitous Abstraction Pattern,” in Proceedings of the

20th International Conference on Very Large Data Bases, ser. VLDB
’94, J. B. Bocca, M. Jarke, and C. Zaniolo, Eds. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc, 1994, pp. 630–641.

[22] M. Jarke, S. Eherer, R. Gallersdörfer, M. Jeusfeld, and M. Staudt,
“ConceptBase – A Deductive Object Base for Meta Data Management,”
Journal of Intelligent Information Systems, vol. 4, no. 2, pp. 167–192,
1995.

[23] T. Clark, P. Sammut, and J. S. Willans, “Super-Languages: Developing
Languages and Applications with XMF (2nd ed.),” CoRR, 2015.
[Online]. Available: http://arxiv.org/abs/1506.03363

[24] T. Clark, P. Sammut, and J. Willans, Applied Metamodelling: A Foun-

dation for Language Driven Development, 2nd ed. Ceteva, 2008.
[25] U. Frank and T. Clark, “Language Engineering for Multi-Level Modeling

(LE4MM): A Long-Term Project to Promote the Integrated Development
of Languages, Models and Code,” in Proceedings of the Research

Projects Exhibition at the 35th International Conference on Advanced
Information Systems Engineering (CAiSE 2023), ser. CEUR, J. Font,
L. Arcega, J.-F. Reyes-Román, and G. Giachetti, Eds., 2023, pp. 97–
104.

[26] U. Frank, “The Flexible Multi-Level Modelling and Execution Language
FMMLX. ICB Research Report No. 66. University of Duisburg-Essen,”
Essen.

[27] C. Atkinson and R. Gerbig, “Flexible deep modeling with melanee,”
in Modellierung 2016, 2.-4. März 2016, Karlsruhe - Workshopband,
ser. Modellierung 2016, S. B. U. Reimer, Ed., vol. 255. Bonn:
Gesellschaft für Informatik, 2016, pp. 117–122. [Online]. Available:
http://subs.emis.de/LNI/Proceedings/Proceedings255/117.pdf

[28] B. Neumayr, K. Grün, and M. Schrefl, “Multi-level domain modeling
with m-objects and m-relationships,” in Proceedings of the 6th Asia-

Pacific Conference on Conceptual Modeling (APCCM), S. Link and
M. Kirchberg, Eds. Wellington: Australian Computer Society, 2009,
pp. 107–116.

[29] U. Frank, “Prolegomena of a Multi-Level Modeling Method Illustrated
with the FMMLX,” in Proceedings of the 24th ACM/IEEE International

Conference on Modell Driven Engineering Languages and Systems:

Companion Proceedings. IEEE, 2021.
[30] U. Frank and D. Töpel, “Contingent Level Classes: Motivation, Concep-

tualization, Modeling Guidelines, and Implications for Model Manage-
ment,” in Proceedings of the 23rd ACM/IEEE International Conference

on Model Driven Engineering Languages and Systems: Companion

Proceedings, E. Guerra and L. Iovino, Eds. New York, NY, USA:
ACM, 2020, pp. 622–631.

[31] U. Frank, “Multi-level Modeling: Cornerstones of a Rationale,” Software

and Systems Modeling, vol. 21, no. 1, pp. 451—-480, 2022.
[32] T. Clark and J. Willans, “Software Language Engineering with XMF and

XModeler,” in Computational linguistics, I. R. Management Association,
Ed. Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pa.,
17033, USA): IGI Global, 2014, pp. 866–896.

[33] S. Feldman, “A Conversation with Alan Kay,” Queue, vol. 2, no. 9, pp.
20–30, 2004.

[34] U. Frank and T. Clark, “Peculiarities of Language Engineering in Multi-
Level Environments or: Design by Elimination,” in Kühne (Ed.) 2022 –

Proceedings of the 25th International, pp. 424–433.
[35] B. Neumayr, C. G. Schuetz, and M. Schrefl, “Dual deep modeling of

business processes: 7:1-31 pages / enterprise modelling and information
systems architectures (emisaj), vol. 17 (2022),” 2022.

[36] A. Lange and C. Atkinson, “Multi-level Modeling with LML. A Con-
tribution to the MULTI Process Challenge,” Enterprise Modelling and

Information Systems Architectures (EMISAJ), vol. 17, pp. 1–36, 2022.
[37] M. A. Jeusfeld, “Evaluating DeepTelos for ConceptBase: A Contribution

to the MULTI Process Challenge,” Enterprise Modelling and Informa-

tion Systems Architectures (EMISAJ), vol. 17, 2022.
[38] U. Frank and T. Clark, “Multi-Level Design of Process-Oriented En-

terprise Information Systems,” Enterprise Modeling and Information

Systems Engineering (EMISAJ), vol. 10, pp. 1–50, 2022.

20 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

