
Experimenting with manual and automated data

mining pipelines on the FedCSIS 2024 Data

Science Challenge

Luisa Buck, Marc Furier, Okan Mert Göktepe, Jusztina Judák, Max Lautenbach, Gregor Münker

University of Mannheim

Mannheim, Germany

Email: {luisa.buck, marc.furier, okan.mert.goektepe, judak.jusztina, max.lautenbach, gregor.muenker}

@students.uni-mannheim.de

Abstract—This paper reviews the 5th-best solution and results
of the FedCSIS 2024 Data Science Challenge, which aimed to
predict stock trends using financial indicators. It details the
preprocessing, modelling, and tuning approaches and demon-
strates, as well as the methods and techniques used to address
the prediction problem effectively. Subsequently, the results of
different experiments, including hyperparameter optimization on
preprocessing steps and switching between different prediction
targets, could be compared to manual experiments. Overall,
a manually experienced model could be found to outperform
hyperparameter-tuned pipelines.

I. INTRODUCTION

P
UBLIC data science competitions and benchmarks sup-

port companies in deciding on today’s data science

methodology. They show the best-of-breed data science meth-

ods in specific fields and compare the most recent methodolo-

gies [2]. This year’s FedCSIS 2024 data science challenge1

targeted the financial markets. The challenge aimed to predict

stock trends based on given financial indicators and one-

year data per stock. The stock trends were predicted as three

classes, which makes up a classification task. The given

financial indicators are also represented in a tabular way, which

opens up a variety of data mining methods.

The following paper will review our team’s proceedings

and results, "Pattern Pioneers", scoring 5th in the overall

competition. As the team consisted of six members, various

data mining methods were used to get the best scores. This

paper aims to review the applied methods and share the

overall experience of the application. The applied methods

range from simple statistical methods like Naive Bayes to

challenge-winning methods like XGBoost. It also includes

the methodology of stacking as well as various preprocessing

steps. Hyperparameter optimization was also utilized in the

challenge but with the addition of including the whole data

mining pipeline within the search space. TPOT and FLAML

were included during the competition to utilize and compare

automated machine-learning approaches.

The paper will be structured as follows. The first part will

include a challenge review, data inspection, preprocessing,

1https://knowledgepit.ai/fedcsis-2024-challenge/

and modelling. Afterwards, the results section will discuss

how different methods were used in the given challenge. The

work on the results was part of the class "Data Mining II".

Therefore, the number of methods tested and the time for work

were limited, limiting the time for exploitation of different

approaches.

II. DATA MINING PROCESS

A. Challenge Review

The FedCSIS 2024 Data Science Challenge’s topic was

predicting stock trends buy, sell, and hold, making the data

mining problem a classification problem. The dataset consisted

of 300 S&P 500 companies, their stock trends and financial

indicators collected over multiple years from the companies’

financial statements. The only information given about the

companies was their industry, but there was no information

about the particular company. Therefore, the only data source

that was legally usable was the FedCSIS 2024 dataset. The

submissions to the challenge were scored on the stock trend

with a type of mean absolute error, which could only be

implied as the three stock trends were encoded numerically.

Further information can be found within table I.

B. Data Inspection

The given data consisted of 10000 data points with the in-

dustry, 58 financial indicators, 58 1-year deltas of the financial

indicators and two target columns. On the one side, the target

column "Class" contained the stock trend, which was also the

one in charge of the challenge leaderboard. On the other side,

another column named perform was included in the dataset.

This column was a risk-return performance measure. In the

early part of the project, it was visible that the following rule

set could discretize this risk-return measure:

This strict rule has already opened up a regression problem

that could be used instead of classification. In addition, as

the column "Class" was already encoded in -1, 0 and 1, the

initial classification problem could also be transformed into a

regression problem. On Figure 1. we can see the distribution

of the instances based on the Performance attribute, colored

by the actual class from the training data.

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 751–754

DOI: 10.15439/2024F6884

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 751 Thematic Session: Data Mining Competition



TABLE I
PERFORM DISCRETIZATION RULES

Perform Class

x < −0.015 Sell
−0.015 < x < 0.04 Hold

x > 0.04 Buy

Fig. 1. Performance colored by Class

All in all, this resulted in a total of 117 influencing columns.

The dataset consisted of 116 numeric and one categorical

influencers. The categorical influencer industry consisted of

eleven distinct values like energy or health care and therefore

had no ordering, which makes it a nominal variable. FedCSIS

has already provided a train-test data splitting. The split was

an 80-20 split with no indication of shuffling or the timestamp

of the collected data point. The test split was not consisting

any of the performance-based columns "Class" or "Perform".

Instead, this dataset was meant to define a live leaderboard.

In addition, an unknown subset of the test set was used to

evaluate the submission’s overall performance.

Within the dataset description of FedCSIS, missing values are

already outlined. There were two types of missing values in the

dataset: one is non-available, and the other is non-applicable.

Further information on which values remarks on which type of

missing value was not conducted. When concentrating on the

training dataset, only 5194 rows do not contain any missing

value. When changing the axis, 75 columns contain at least one

missing value. In addition, the most missing values are 1564,

with a mean of 243 per column. This implies that the missing

values are conducted by more than one column. Instead, they

are spread across the whole dataset.

C. Preprocessing

The following various preprocessing steps will be outlined,

as those were used in different approaches, leading to the

result of our work. Except for the outlier removal, all

preprocessing steps were used within Python 3.9 and the

package scikit-learn2. The outlier removal was done by

using the package imblearn3. The data inspection already

2https://scikit-learn.org/stable/
3https://imbalanced-learn.org/stable/

leads to a couple of implications. First, as only one dataset

contains every needed influencer and target column, no data

transformation is needed. As mentioned, there was no legal

possibility of extending the database through other data

sources, such as stock price, because there was no inference

on the particular company.

To evaluate the dataset at scale and not exceed 500

submissions, a private 80-20 split was done before the

preprocessing. This relied on the 80-20 of FedCSIS. All

shown pipelines of the later results were trained again on

the full training dataset to use a maximum number of data.

The missing values are an issue of the dataset that must first

be resolved on the split dataset. Therefore, an imputation or

deletion could be considered. As already outlined, the missing

values are highly probable to be spread across the dataset;

a deletion leads to a row loss of approx. 35%. In addition,

this approach invokes the question of how to handle missing

values in the test sets. Therefore, the imputation approach

was chosen.

As already outlined, the goal of the work was to achieve

results within a small given time frame; this work only

contained simple imputation methods. On the one side,

missing values were imputed with the mean and median of

the remaining values of a column. On the other side, missing

values were replaced by 0 or 999. The number 999 was

intended to work as an outlier, marking a value as missing.

In manual experiments kNN imputing was also tested.

In the second step of the preprocessing, the data was scaled.

Therefore, a min-max scaler, the more robust standard scaler

[1], and the quantile range-based robust scaler [4] were

used in experiments. In this step, it is mentioned that the

imputation with 999 will change the underlying distribution.

Any effects of this will have to be considered during the

evaluation of the results. This data scaling was done to

all 116 numerical influencers. In addition, the industry

encoded strings. As many data mining algorithms, especially

numeric ones like linear regression or neural networks, do

not support categorical values, the industry had to be encoded

numerically. As this column contained nominal values, one

correct way is to use a one-hot encoding, especially because

there are only eleven distinct values [3].

In order to create a model later with good generalization

capabilities, the outlier removal and feature selection steps

were integrated after the necessary preprocessing steps. As

the dataset contained 117 influencers, manual outlier detection

based on outlier plots was not considered. Concerning the

efficiency of the work, an isolation forest was utilized.

A simple f-test based on linear regression, correlation or

wrapper methods were used for the feature selection. This

was wrapped into a k-best selector method. On classification

approaches, additionally, sampling techniques like SMOTE

were used.

752 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



D. Modelling

The core of the data mining pipeline remained the models

and their settings. As already outlined, two types of problems

could be solved within the challenge. On the one hand, there

is regression and, on the other hand, a classification problem.

Therefore, applicable models had to be chosen for each of the

problems. Nevertheless, the models used, namely XGBoost,

LightGBM, Random Forest and Support Vector Machine,

supported both problems. A logistic regression was used in

the first experiments, which is only capable of classification

problems.

To solve the problem, three evolution steps of the pipeline

modelling were done. First, manual experiments were used

to create a baseline and an initial experience for the models

and preprocessing on the dataset. Second, fully automated

experiments were utilized to get good results efficiently. In

this step, the results rely on TPOT4 and the package FLAML5.

TPOT can cover the preprocessing steps so that no manual

experiments with the preprocessing and TPOT are done. In

contrast, the package FLAML only provides hyperparameter

tooling that tests different models. The tweak in FLAML

against other automated machine-learning packages is that

FLAML prioritizes fast-processing hyperparameters. There-

fore, FLAML fits rather well to gather good results in a time-

efficient process. The third and last evolution step utilized

hyperparameter tuning. All of the tuning within the work was

done on a 5-fold cross-validation to maximize the generaliza-

tion capabilities of the model. This was important because the

dataset for the final ranking was unknown. The decision was

to use Bayesian tuning to follow the idea of efficiency. Within

experiments, GridSearchCV and RandomSearchCV were also

performed. The underlying search spaces were chosen itera-

tively.

In addition to the hyperparameter of the models, all pre-

processing steps were included in the tuning. Therefore, the

preprocessing could be split into necessary and optional steps.

The necessary steps are the scaling and encoding. For those

steps, the search space consists of the presented ones in

subsection II-C. The optional outlier removal and feature

selection steps could be deselected within the hyperparameter

tuning. When they were selected, the search space of the

contamination c of the isolation forest was defined as

0 < c < 0.5; c ∈ Q (1)

and the search space of the k in k-best feature selection as

5 < k < 120; k ∈ Z. (2)

With this step, a small automated machine-learning pipeline

could have been built. One minor addition was also introduced

within this third evolution step: stacking the best models. This

was related to good empirical performances in prior Kaggle

competitions.

4https://epistasislab.github.io/tpot/
5https://microsoft.github.io/FLAML/

III. RESULTS

Throughout the project, we experimented with various mod-

els. In this section, we will discuss the three evolution steps

of the pipeline modeling.

The first test was based on logistic regression, excluding NA

and NaN values, which achieved an accuracy of 0.49 and

an F1-Score of 0.45, with a score of 0.88 and no successful

predictions for class 0. Imputing NA values with the median

and deleting NaN values slightly reduced accuracy and F1-

Score to 0.48 and 0.44, respectively. When both NA and NaN

values were imputed with their group or column medians,

accuracy improved but the F1-Score remained unchanged.

Outlier detection using Isolation Forest improved accuracy to

0.50, F1-Score to 0.46, and reduced error to 0.85. Applying

SMOTE for handling class imbalance reduced accuracy to

0.46 but improved error to 0.77, enabling predictions for

class 0. Further experiments with feature selection based on

SelectKBest and removing highly correlated features reduced

the score to 0.74 and decreased accuracy and F1-Score to 0.43.

The FedCSIS leaderboard showed a score of 0.84. Further

techniques like PCA and SelectFromModel did not improve

results.

We experimented with Support Vector Regression (SVR) for

performance prediction due to its robustness to outliers and

effectiveness with high-dimensional datasets. The best results

were obtained with rbf kernel, Gamma set to ’scale’ and C

set to 0.1, resulting in a validation score of 0.89. However,

when applied to the submission dataset, the score dropped to

0.79. Switching from median to K-Nearest Neighbors (KNN)

imputation with two neighbors did not enhance performance,

resulting in a score of 0.84. We also detected the importance

of the Group attribute regarding the performance so we in-

troduced group-based approaches. Group-based preprocessing,

including mean, median, and KNN imputations, and numerical

attribute scaling within groups, yielded the best result with the

score of 0.80, though still lower than the initial preprocess-

ing strategy. Despite extensive experimentation, combining

OneHotEncoding, median imputation, and standard scaling,

alongside an SVR model with gamma set to ’scale’ and C

set to 0.1, provided the best results.

For XGBoost, The final model, trained with a learning rate of

0.05, 500 estimators, and a maximum depth of 5, achieved

an F1-Score of 0.61 and a validation cost of 0.5956. The

submission dataset score was 0.7822. Applying SMOTE to

address class imbalance and using SelectKBest for feature

selection did not yield improvements, leading to the exclusion

of these steps. Furthermore, we experimented with new feature

generation. These new features were created based on domain-

specific knowledge and combined with existing features to

enhance the model’s performance, but the scores worsened.

Therefore, this step was also excluded.

In addition, the Random Forest approach was utilized in man-

ual experiments. The best classification score on the FedCSIS

Submission Set was 0.8861, though it did not reach the top

leaderboard positions. Regarding testing and other prediction

MAX LAUTENBACH ET AL.: EXPERIMENTING WITH MANUAL AND AUTOMATED DATA MINING PIPELINES 753



targets, the work was focused on predicting the risk-reward

performance. Switching to this target lowered the leaderboard

score from 0.8861 to 0.7970, indicating high potential. That is

why the following steps focussed on the regression problem

of the "Perform" column.

The utilization of TPOT and FLAML seemed promising.

Using FLAML with a cost-efficient approach should lower

the time-to-value for best-in-class results. Nevertheless, both

packages could not outperform the XGBoost classification or

Random Forest regression approaches. The TPOT approach

scored a best score of 0.8336 while running much longer than

the FLAML package. This behaviour is reasonable, as FLAML

has a specific time budget for gathering results. In a maximum

of 30 minutes of training the FLAML package achieved a score

of 0.8119 on the submission dataset.

In the last step and after three of four weeks in the competition,

the goals was to tweak the last performance out of the models.

Therefore, hyperparameter tuning, like in subsection II-D

presented, was used. In addition to the scikit-learn models,

FLAML was integrated as another machine-learning model.

Overall, the best-performing model within this step was a

random forest with a score of 0.7921 on the leaderboard.

Other models like XGBoost or even the FLAML approach

were behind this pipeline.

Like already outlined, we explored the use of stacking to

combine the strengths of multiple predictors. Unfortunately,

this idea was implement near to the deadline of the com-

petition and is therefore very rudimentary. Specifically, we

employed the default scikit-learn StackingRegressor with the

default underlying RidgeCV regression algorithm, feeding

in the predictions from our best-performing LightGBM and

Random Forest models from the hyperparameter tuning before,

selected based on their optimal preprocessing configurations.

This approach allowed us to capture more nuanced patterns

and relationships in the data, leveraging the diverse strengths

of each model. The resulting stacking model yielded a score of

0.7921, demonstrating the potential benefits of combining mul-

tiple predictors. Stacking has shown promise in this project,

and it could be effectively used with an even broader range

of models and meta-learners in future projects to enhance our

predictive capabilities further.

Overall, this left three best models: a randomly experienced

XGBoost Classifier, a hyperparameter-tuned pipeline based on

Random Forest and a rudimentary stacking approach. Both

more sophisticated approaches were experienced as outper-

formed slightly by the XGBoost Classifier. As the FedCSIS

challenge allowed three models for the final evaluation, those

three were handed in randomly to catch the best perfor-

mance experienced and the models with the highest expected

generalization. The final score was 0.8076, which is very

close to the results experienced before. Unfortunately, the

FedCSIS challenge platform is publishing which model of the

three was the best performing. It is worth mentioning that

good generalization was vital in getting a top 5 rank in the

challenge. The best score of 0.7822 was only 42nd on the

public leaderboard, with the best score being 0.5921.

IV. CONCLUSION

Through extensive experimentation with various models and

preprocessing techniques, we explored various techniques to

tweak the performance to the top 5 on a final leaderboard. Dif-

ferent preprocessing strategies, outlier detection methods, and

hyperparameter tuning influenced each model’s performance.

Although improvements were made, some methods like group-

specific preprocessing for SVR and feature selection for XG-

Boost did not enhance performance. In addition, the evolution

steps produced better reproducible results, but they never

passed the XGBoost classifier. Overall, our best results were

achieved using a combination of careful preprocessing and

model-specific adjustments.

REFERENCES

[1] Christo El Morr, Manar Jammal, Hossam Ali-Hassan,

and Walid EI-Hallak. Machine Learning for Practical

Decision Making: A Multidisciplinary Perspective with

Applications from Healthcare, Engineering and Business

Analytics. Springer International Publishing, 2022. ISBN

9783031169908. doi: 10.1007/978-3-031-16990-8. URL

http://dx.doi.org/10.1007/978-3-031-16990-8.

[2] Frederic Lardinois, Matthew Lynley, and John Mannes.

Google is acquiring data science community kaggle. URL

https://techcrunch.com/2017/03/07/google-is-acquiring-d

ata-science-community-kaggle/?guccounter=1&guce_ref

errer=aHR0cHM6Ly9kZS53aWtpcGVkaWEub3JnLw&g

uce_referrer_sig=AQAAAEu9gSzQHtMGz1fxcvTfrr5VG

V41GmfxVdjjnmodYOzlHNhlxLXWNY7by5UshvhMO

qu7rfB4Qcx05Z5fi8vMGelVAxyorBLu--6UN1lxAG_nN

gSdNy1MNv9L3m92Fxlz8kIr5YF1Kjv9z2ErFaqh3qeHz

l_2_QiWylNrJMEJsK4L.

[3] Pau Rodríguez, Miguel A. Bautista, Jordi Gonzàlez, and

Sergio Escalera. Beyond one-hot encoding: Lower di-

mensional target embedding. Image and Vision Com-

puting, 75:21–31, July 2018. ISSN 0262-8856. doi:

10.1016/j.imavis.2018.04.004. URL http://dx.doi.org

/10.1016/j.imavis.2018.04.004.

[4] Andre Ye and Zian Wang. Modern Deep Learning for

Tabular Data: Novel Approaches to Common Modeling

Problems. Apress, 2023. ISBN 9781484286920. doi:

10.1007/978-1-4842-8692-0. URL http://dx.doi.org/10.10

07/978-1-4842-8692-0.

754 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


