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Abstract—Forest wildfires pose a significant threat to ecosys-
tems, human settlements, and the global environment. Early
detection is important for effective mitigation and response. This
paper introduces a novel approach to forest wildfire detection by
harnessing the unique sound signatures associated with wildfires.
Our proposed model combines the strengths of deep learning
techniques with heuristic optimization algorithms. The deep
learning component focuses on recognizing the intricate patterns
in the sound data, while the heuristic optimization, based on
a Particle Sworm Optimization (PSO) algorithm, ensured the
model’s adaptability and efficiency in diverse forest environments.
Preliminary results indicate that our hybrid model outperforms
traditional methods and existing machine learning models in
terms of accuracy, sensitivity, and specificity, demonstrating
robustness against ambient forest noise, ensuring fewer false
alarms.

Index Terms—Forest Wildfire Detection, Sound Recognition,
Audio Processing, Deep Learning, Convolutional neural Network,
Heuristic Optimization.

I. INTRODUCTION

F
OREST wildfires have become one of the most pressing

environmental challenges of the 21st century. With in-

creasing global temperatures and changing climatic patterns,

the frequency and intensity of these wildfires have seen a

significant increase. The devastation caused by these fires

is not limited to the loss of flora and fauna; they also

have profound socioeconomic implications, affecting human

settlements, agriculture, and contributing to global carbon

emissions, making the timely detection and monitoring of

forest wildfires a paramount task.

Historically, wildfire detection relied heavily on human ob-

servers, often stationed in lookout towers, to visually spot and

report fires. As technology advanced, satellite imagery became

a popular tool, offering a broader view of vast forested areas.

Although satellites can provide valuable data, they come with

their own set of challenges: cloud cover can obscure views

and there can be delays in data acquisition and processing,

which might not always allow real-time detection [1], [2].

Ground-based sensors, such as smoke detectors and infrared

cameras, have also been deployed in certain high-risk areas.

These systems, while effective in specific contexts, have

limitations in terms of coverage and can sometimes be prone

to false alarms due to other heat sources or smoke from non-

wildfire sources [3], [4].

In recent years, the idea of using sound for environmental

monitoring has gained attention in forests rich with distinct

acoustic signatures of wildlife, vegetation, and natural phe-

nomena such as wildfires [5]. Recognizing this, researchers

have begun to explore the potential of sound-based detection

systems as a complementary tool to existing methods [6],

[7]. Wildfires, for example, create a distinct sound pattern

that results from the combustion of materials and the rapid

movement of air. The advantage of sound-based systems

lies in their ability to continuously monitor an environment,

unaffected by visual obstructions such as smoke or foliage

[4]. With the advent of machine learning and advanced signal

processing techniques, the ability to accurately distinguish

between different forest sounds and pinpoint the onset of a

wildfire has become a tangible reality [8], [9], [10].

The purpose of this study is to harness the potential of

sound-based signatures, combined with advanced machine

learning techniques, to improve the early detection of forest

wildfires. Given the limitations of existing methods and the

urgency of timely wildfire detection, our study seeks to explore

a novel, efficient, and scalable solution, aiming to integrate a

heuristic optimization algorithm with the deep learning model,

aiming to enhance the adaptability, efficiency, and robustness

of the model in varied forest environments.

This paper is structured as follows. Following this in-

troduction, we present related work. Section III focuses on

the methodology, detailing data collection, the deep learning

model, and the integration of heuristic optimization. Section

IV describes the experimental evaluation, while in Section V

concludes the paper.

II. RELATED WORKS

The domain of wildfire detection has seen a number of

research efforts, each aiming to harness the potential of

various technological advances. Sound-based detection, while

relatively new, has shown promise in recent years [11].

The idea of using sound as a detection mechanism is

rooted in the understanding that every event, especially those

involving rapid physical changes, such as wildfires, produces

distinct acoustic signatures. Initial attempts at sound-based

wildfire detection were rudimentary, relying on basic acoustic

sensors to detect sudden increases in ambient noise levels
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[12]. These systems were prone to false alarms, especially in

noisy environments or during storm events. The integration of

machine learning into sound-based wildfire detection marked

a significant turning point. Algorithms capable of classifying

complex sound patterns have been developed [13], [14], [15].

For example, Lee and Kim utilized Support Vector Machines

(SVM) to classify forest sounds, achieving a notable accuracy

in distinguishing wildfire sounds from other ambient noises

[16]. Their work laid the foundation for more sophisticated

models, emphasizing the potential of machine learning in

this domain. Researchers also investigated distinguishing the

unique sound signatures of wildfires from other forest noises

[17]. Johnson and Rodriguez used Fourier transforms to ana-

lyze the frequency components of recorded sounds, success-

fully identifying the characteristic low-frequency rumblings of

wildfires [18]. Although more accurate than its predecessors,

this approach still faced challenges in real-time processing and

scalability.

The deep learning application in environmental monitoring

[19], [20] is now very popular, because of the complexity

and vastness of environmental data, where traditional machine

learning methods often struggle due to their need for manual

feature extraction, since deep learning excels at automatically

learning and extracting features from raw data, making it

particularly suited for complex environmental datasets [19] or

environmental conservation and management [19]. One of the

most prominent applications of deep learning in this field is the

analysis of satellite imagery. Convolutional Neural Networks

(CNNs), known for their prowess in image recognition, have

been used to detect changes in land cover, deforestation, and

even soil moisture levels with greater precision than tradi-

tional methods [21]. Recurrent Neural Networks (RNNs), and,

specifically, their variant long-short-term memory (LSTM)

networks, have been instrumental in predicting air and water

quality parameters. These networks are ideal for handling

sequential data, making them suitable for time series envi-

ronmental data [22]. For example, studies have used LSTM

networks to predict air quality indices in urban areas, demon-

strating the potential of deep learning for real-time environ-

mental monitoring [22]. In addition, deep learning has found

applications in the monitoring of wildlife and biodiversity.

Automated systems equipped with deep learning algorithms

have been developed to identify species from camera trap

images, track animal movements, and even recognize bird

songs, helping eco-conservation efforts and providing valuable

information about ecological dynamics.

Heuristic optimization techniques, inspired by natural pro-

cesses and phenomena, have been used to solve complex

optimization problems [23], especially in domains where tra-

ditional methods might be computationally expensive or infea-

sible. Recent studies have used convolutional neural networks

(CNN) to analyze sound spectrograms, achieving remarkable

accuracy rates in wildfire sound detection, thanks to the

optimization capabilities of heuristic methods [24]. These

techniques have found significant applications in optimizing

model parameters, selecting features, and enhancing overall

model performance [25], [26], and the ability to process and

analyze large datasets and complex patterns [27], [28], [29].

III. METHODOLOGY

A. Data Preprocessing

1) Sound Data Denoising: For our methodology, we pro-

pose a combination of wavelet-based denoising and deep

learning-based denoising. The wavelet method provides an

initial denoising step, removing coarse-grained noise, while

the autoencoder fine-tunes the denoising process, capturing

and removing more subtle noise components.

Denoising is the process of removing unwanted noise from

the audio signal, enhancing the signal-to-noise ratio, and en-

suring that the primary focus remains on the sounds of interest,

in this case, the sounds produced by wildfires. AWavelet

transform provides a multiresolution analysis of signals, as

it is particularly suited for audio denoising. Given an audio

signal x(t), its continuous wavelet transform with respect to

a wavelet ψ(t) is expressed by:

Wx(a, b) =

∫

∞

−∞

x(t)ψa,b(t)dt (1)

where ψa,b(t) is the wavelet shifted by parameter b and

scaled by parameter a. By transforming the audio signal into

the wavelet domain, we can threshold the wavelet coefficients,

effectively eliminating noise. The denoised signal xd(t) can

then be obtained using the inverse wavelet transform.

Spectral subtraction is based on the principle of subtracting

the estimated noise spectrum from the noisy signal spectrum.

Given the power spectrum P (f) of the noisy signal and the

estimated noise power spectrum N(f), the denoised signal

power spectrum D(f) is given by:

D(f) = |P (f)− αN(f)| (2)

where α is an over-subtraction factor, typically slightly

greater than 1, to account for the potential underestimation

of noise.

Autoencoders can be also trained to denoise audio data,

so we also tried to exploit this feature. The noisy audio

signal is passed through the encoder to produce a compressed

representation, which the decoder then uses to reconstruct the

denoised signal. Given an input noisy signal x and its denoised

version x′, the reconstruction loss L is minimized:

L =
N
∑

i=1

(xi − x′i)
2 (3)

where N is the number of samples in the signal.

2) Feature Extraction: Feature extraction is a required step

in transforming raw audio data into a structured format that

can be processed effectively by machine learning models. By

extracting salient features, we can capture the characteristics

of the audio signal that are most relevant to wildfire detection.

For our methodology, we propose extracting a combination of

time-domain, frequency-domain, and time-frequency features,
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as this comprehensive feature set ensures that our model

captures the multifaceted nature of wildfire sounds, from

transient crackling noises to sustained roaring sounds. These

features will then serve as input to our deep learning model

for classification.

Time-Domain Features are as follows:

1. Root Mean Square Energy (RMSE), which quantifies the

signal’s energy and is given by:

RMSE =

√

√

√

√

1

N

N
∑

i=1

x2i (4)

where xi is the amplitude of the signal at time i and N is the

total number of samples.

2. Zero Crossing Rate (ZCR), which measures the rate at

which the signal changes sign. A high ZCR can indicate the

presence of noise or rapid events, such as crackling fires.

ZCR =
1

N − 1

N−1
∑

i=1

I(xi · xi+1 < 0) (5)

where I is the indicator function.

Frequency-Domain Features are:

1. Spectral Centroid, which represents the center of mass

of the spectrum and can be used to distinguish between low-

and high-frequency sounds.

Spectral Centroid =

∑F

f=1
S(f) · f

∑F

f=1
S(f)

(6)

where S(f) is the spectral magnitude at frequency f and F

is the total number of frequency bins.

2. Spectral Bandwidth, which describes the width of the

spectrum and is defined as:

Spectral Bandwidth =

√

√

√

√

∑F

f=1
(f − Spectral Centroid)2 · S(f)

∑F

f=1
S(f)

(7)

3. Mel-Frequency Cepstral Coefficients (MFCCs) collec-

tively represent the short-term power spectrum of a sound

from a type of cepstral representation of the audio clip in

the frequency domain.

Time-Frequency Representations are:

1. Spectrogram is a visual representation of the spectrum

of frequencies in a sound signal as they vary over time. It

can capture the temporal evolution of frequency components,

which can be crucial to detect transient events such as wild-

fires.

2. Wavelet Transform, as discussed in the denoising section,

can also be used for feature extraction. By analyzing the

wavelet coefficients at different scales, we can capture both

high-frequency events (such as crackling sounds) and low-

frequency modulations (such as the roar of a fire).

B. Deep Learning Model

We propose a hybrid deep learning architecture that com-

bines Convolutional Neural Networks (CNNs) for feature

extraction from spectrograms with long-short-term memory

(LSTM) to capture temporal dependencies in the audio data.

The architecture of the proposed model and its parameters

are summarized in Table II.

TABLE I: Summary of the proposed deep learning model

architecture.

Layer Type Output Shape Parameters Activation

Input 128× 128× 1 - -
Conv2D 126× 126× 16 160 ReLU

MaxPooling2D 63× 63× 16 - -
Conv2D 61× 61× 32 4640 ReLU

MaxPooling2D 30× 30× 32 - -
LSTM 30× 64 24832 Tanh
Dense 30× 128 8320 ReLU
Dense 30× 64 8256 ReLU

Dense (Output) 30× 2 130 Softmax

The input to the model is a spectrogram of the audio signal,

which provides a representation of time and frequency. This

allows the model to process both the spectral content of the

sound and its temporal evolution. The initial layers of the

model are convolutional layers designed to extract spatial

features from the spectrogram. These layers can identify

patterns such as the onset of a fire’s crackling or the sustained

energy in a fire’s sound.

• Layer 1: 16 filters, kernel size of 3×3, ReLU activation.

• Layer 2: 32 filters, kernel size of 3×3, ReLU activation.

After each convolutional layer, a max-pooling layer reduces

the spatial dimensions, focusing on the most salient features.

Following the convolutional layers, an LSTM (Long Short-

Term Memory) layer captures the temporal dependencies in

the audio data for recognizing patterns that evolve over time,

such as the progression of a fire.

• LSTM Layer: 64 units, return sequences set to True.

After the recurrent layer, fully connected (dense) layers

provide the capability to classify the extracted features into

the desired categories (wildfire sound or non-wildfire sound).

• Dense Layer 1: 128 units, ReLU activation.

• Dense Layer 2: 64 units, ReLU activation.

• Output Layer: 2 units (corresponding to the two classes),

softmax activation.

C. Heuristic Optimization

The weights of our neural network were optimized using

Particle Swarm Optimization (PSO). This part of the opti-

mization process was aimed at finding the set of weights

that minimizes the error between the predicted and actual

results during training. Each particle in the swarm represents a

potential solution, that is, a specific set of weights for the entire

network. The position and velocity of each particle correspond

to the weights and the change in weights, respectively. The

fitness function evaluates the performance of the network with

a given set of weights on the training data.
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PSO is inspired by the social behavior of flocking birds or

the schooling of fish. In PSO, each solution in the search space

is considered a "particle". These particles "fly" through the

solution space with velocities that are dynamically adjusted

based on their own experience and the experience of their

neighbors.

The position update rule for each particle is given by:

xi(t+ 1) = xi(t) + vi(t+ 1) (8)

where xi(t) is the current position of the particle and vi(t+1)
is its velocity at the next time step.

The velocity update rule is:

vi(t+ 1) = w · vi(t) + c1 · rand() · (pbesti − xi(t))

+ c2 · rand() · (gbest− xi(t)) (9)

where w is the inertia weight, c1 and c2 are cognitive and

social scaling parameters, respectively, pbesti is the personal

best position of the particle, and gbest is the global best

position among all particles.

D. Training and Validation

Given that our task is a binary classification (wildfire sound

or non-wildfire sound), we employ the categorical cross-

entropy loss function, defined as:

L = −
N
∑

i=1

yi log(pi) + (1− yi) log(1− pi) (10)

where N is the number of classes, yi is the true label, and pi
is the predicted probability for class i.

We used adam optimizer to dynamically adjust the learning

rate during training, ensuring efficient and effective conver-

gence.

To avoid overfitting, especially given the complexity of our

model, we employ dropout regularization. Dropout layers are

introduced after each dense layer, randomly setting a fraction

of input units to 0 at each update during training time.

The data set was divided into three subsets. The training set,

comprising 70% of the data, is used to train the deep learning

model, where the Adam optimizer adjusts the model weights

based on the input data to minimize the loss function. The

15% validation set is used for post-training by evaluating the

model’s performance after each epoch or batch. It facilitates

hyperparameter tuning, namely through grid search (weights

are optimized using the PSO), ensuring optimal settings like

learning rates and batch sizes that prevent overfitting to the

training data and promote generalization to new data. Lastly,

the 15% test set remains unseen throughout model training and

validation, providing an independent evaluation of the model

performance.

After each epoch of training, the model performance was

evaluated in the validation set. This provided an indication of

how well the model is likely to perform on unseen data and

helps in early stopping if the validation loss starts to increase,

indicating potential overfitting. Hyperparameters that affect

the model’s learning process but are not directly optimized

by PSO, such as learning rates, batch sizes, and dropout

rates were further fine-tuned using grid search, which allowed

systematically exploring a predefined set of hyperparameter

combinations to identify the configuration that maximizes the

model’s performance on our validation set.

E. Dataset Description

The Forest Wild Fire Sound dataset [30] includes sound

recordings that capture the unique acoustic signatures associ-

ated with forest wildfires. This dataset is designed to support

the development and testing of machine learning models for

the detection of wildfires through sound analysis, utilizing

audio data that represent various stages and intensities of forest

fires. The samples of audio record used are presented in Figure

1.

(a) Signal Plot of Building on Fire Audio

(b) Spectrogram of Building on Fire Audio

Fig. 1: Audio Analysis of Building on Fire

Data processing included the extraction of various sound

characteristics such as Mel frequency cepstral coefficients

(MFCC), root mean square energy (RMSE), zero crossing rate

(ZCR), spectral centroid and spectral bandwidth (Table II).

IV. EXPERIMENTAL EVALUATION

A. Evaluation Metrics

We have used accuracy, precision, recall and F1-score to

evaluate the performance.

Accuracy represents the fraction of correctly predicted in-

stances out of the total instances.

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(11)
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TABLE II: Description of features extracted from the Forest

Wild Fire Sound Dataset

Feature Description

MFCCs Mel-Frequency Cepstral Coefficients: Repre-
sents the short-term power spectrum of a sound

RMSE Root Mean Square Energy: Quantifies the en-
ergy of the audio signal

ZCR Zero Crossing Rate: Measures the rate at which
the signal changes its sign

Spectral Centroid Represents the center of mass of the spectrum

Spectral Bandwidth Describes the width of the spectrum

Spectrogram Visual representation of the spectrum of frequen-
cies in a sound signal as they vary with time

Wavelet Transform Captures both high-frequency events and low-
frequency modulations in the sound signal

Precision and recall are crucial metrics, especially when

classes are unbalanced.

• Precision: It represents the number of true positive pre-

dictions divided by the number of true positive and false

positive predictions.

Precision =
True Positives

True Positives + False Positives
(12)

• Recall (or Sensitivity): It represents the number of true

positive predictions divided by the number of true positive

and false negative actual instances.

Recall =
True Positives

True Positives + False Negatives
(13)

• F1-Score: The F1-score is the harmonic mean of preci-

sion and recall. It is particularly useful when the class

distribution is imbalanced.

F1-Score = 2×
Precision × Recall

Precision + Recall
(14)

A confusion matrix was used to describe the performance of

a classification model on a set of data for which the true values

are known, as it provides a detailed breakdown of true positive,

true negative, false positive, and false negative predictions.

The ROC was also used as a graphical representation of

the true positive rate versus the false positive rate for various

threshold values. In addition, we provide the AUC value that

represents the degree or measure of separability, indicating

how well the model distinguishes between the classes.

B. Model Performance

The performance metrics obtained are presented in Table III,

showing that the model performs well in classifying wildfire

sounds. The high metric values indicate that the model is reli-

able and effective. The high precision value (93.2%) indicates

a low false-positive rate. Which is crucial for operational effi-

ciency as it minimizes unnecessary responses to non-wildfire

sounds. The high recall value (96.1%) ensures that most actual

wildfires are detected. Which is critical for early intervention

and minimizing the spread of wildfires. Model exhibited a

balanced Performance. The high F1-Score (94.6%) showed

a good balance between precision and recall, as the high

AUC value (0.987) indicates that the model’s performance is

robust across various threshold settings, making it versatile

and reliable in different scenarios.

TABLE III: Performance of the hybrid deep learning model.

Metric Value

Accuracy 94.7%
Precision 93.2%

Recall 96.1%
F1-Score 94.6%

AUC 0.987

The classification results are presented as confusion matrix

in Figure 2 that shows the goof wildfire detection performance

with only a few misclassifications.

47 3

2 48

Predicted

Non-Wildfire Wildfire

Actual

Non-Wildfire

Wildfire

Fig. 2: Confusion matrix of Forest Wildfire Detection Results

Figure 3 shows the ROC plot of the classification perfor-

mance of the model, indicating that it performs well with an

AUC of 0.987, showing that our hybrid approach has a strong

discriminative ability in the detection of wildfires.
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Reference line

Fig. 3: ROC curve for Forest Wildfire Detection Results

C. Ablation Study

An ablation study has been performed to systematically

evaluate the contribution of various features (e.g., MFCCs,
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RMSE, ZCR) and model’s components (e.g., Conv2D layers,

LSTM layers) to the overall performance of the wildfire

detection model. This analysis helps to understand the impact

and significance of each component in the overall performance

of the model. The study involved creating several modified

versions of the baseline model, each with specific features

or components removed, and then measuring the resulting

changes in performance metrics. The methodology of the

ablation study involved the following steps:

• The complete model, integrating all features and com-

ponents, was first evaluated to establish a performance

benchmark.

• Individual features and network components were sys-

tematically removed or altered, creating several distinct

ablation scenarios.

• For each modified model, key performance

metrics—accuracy, precision, recall, F1-score, and

AUC—were measured and compared against the

baseline.

We have followed these experimental scenarios:

1) Baseline Model, includes all features and components.

2) Without MFCCs, removing MFCCs to assess the impor-

tance of spectral features.

3) Without RMSE, excluding RMSE to evaluate the signif-

icance of this time-domain feature.

4) Without ZCR, omitting ZCR to understand its impact.

5) Without Conv2D Layers, eliminating the convolutional

layers to gauge their role in spatial feature extraction.

6) Without LSTM Layers, removing LSTMs to examine

their contribution to capturing temporal dependencies.

The results of the ablation study are presented in Table

IV. The baseline model, which integrates all features and

components, achieved the highest performance in all metrics,

confirming its robustness and effectiveness. The removal of

MFCCs resulted in the most significant performance drop,

underscoring the critical role of these spectral features in the

capture of the unique sound signatures of wildfires. Without

MFCCs, the model accuracy fell to 88.5%, precision to 85.0%,

recall to 90.0%, F1-score to 87.4%, and AUC to 0.921. Ex-

cluding time-domain features like RMSE and ZCR also led to

noticeable performance degradation, although to a lesser extent

than MFCCs. The accuracy without RMSE and ZCR dropped

to 91.2% and 92.0%, respectively, indicating that while these

features are important, they are not as critical as the spectral

features. The precision and recall also declined, highlighting

that these features contribute to the model’s overall ability to

accurately classify wildfire sounds amidst ambient noise. The

removal of Conv2D layers caused a substantial reduction in

performance, with accuracy decreasing to 85.3% and AUC to

0.900. This highlights the essential role of convolutional layers

in extracting spatial features from spectrograms, which are cru-

cial for identifying patterns indicative of wildfires. Similarly,

the absence of LSTM layers resulted in a performance drop,

although less severe than the removal of Conv2D layers. This

suggests that while the temporal dependencies captured by the

LSTM layers are important, the spatial features extracted by

the Conv2D layers play a more significant role in the overall

performance of the model.

TABLE IV: Ablation Study Results for Wildfire Detection

Model

Scenario Accuracy Precision Recall F1-
Score

AUC

Baseline Model 94.7% 93.2% 96.1% 94.6% 0.987
W/o MFCCs 88.5% 85.0% 90.0% 87.4% 0.921
W/o RMSE 91.2% 89.1% 92.5% 90.8% 0.943
W/o ZCR 92.0% 89.5% 94.0% 91.7% 0.950
W/o Conv2D layers 85.3% 83.0% 88.0% 85.4% 0.900
W/o LSTM layers 89.7% 87.2% 91.0% 89.0% 0.928

Overall, the performance drop without MFCCs shows that

they are crucial for high accuracy, precision, and AUC,

highlighting their importance in capturing spectral features

of wildfire sounds. Removing RMSE and ZCR also reduces

performance, though not as significantly as MFCCs, indicating

that these time-domain features contribute to the model’s

robustness but are not as critical as spectral features. The

significant performance decline without Conv2D layers shows

their importance in extracting spatial features from the spec-

trograms. The drop in performance without LSTM layers

indicates their importance in capturing temporal dependencies,

though the impact is less severe than removing Conv2D layers.

We believe these results show that the hybrid architecture suffi-

ciently leverages both convolutional and recurrent layers, along

with the combination of spectral and time-domain features, to

achieve high accuracy in wildfire detection.

D. Comparison with other models

For a holistic evaluation, we compared our hybrid model

with two baseline models: a pure convolutional neural network

(CNN) [31], ResNet-based CNN with attention module [32],

long-short-term memory (LSTM) [33], and Transformer-based

Model [34]. As evident in Table V, CNN-based models,

which excel in extracting spatial features from spectrograms,

achieved an accuracy of 90.3%, an F1-score of 90.1%, and an

AUC of 0.965. Similarly, LSTM models focusing on temporal

dependencies achieved an accuracy of 88.7%, an F1-score of

88.5%, and an AUC of 0.952. Our hybrid approach achieved

the best accuracy of 94.7%, an F1-score of 94.6%, and an AUC

of 0.987. A ResNet-based CNN model reported an accuracy

of 91.2%, an F1-score of 91.0%, and an AUC of 0.971. Using

Transformer architectures achieved 92.5% accuracy, a 92.3%

F1-score, and an AUC of 0.975.

TABLE V: Comparison of hybrid model with baseline models.

Model Accuracy F1-Score AUC

Hybrid Model 94.7% 94.6% 0.987
CNN 90.3% 90.1% 0.965

LSTM 88.7% 88.5% 0.952
ResNet-based CNN 91.2% 91.0% 0.971

Transformer-based Model 92.5% 92.3% 0.975
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E. Feature Importance Analysis

To analyze feature importance, we employ the permutation

importance method. The idea is to permute the values of

each feature and measure the decrease in the model perfor-

mance. A larger decrease indicates a higher importance of

the characteristic. Figure 4 visualizes the importance of var-

ious features. Spectral features, especially the Mel frequency

cepstral coefficients (MFCCs), emerge as highly significant,

followed by time-domain features such as root mean square

energy (RMSE) and zero-crossing rate (ZCR). Our results

show the efficacy of the proposed hybrid deep learning model

in detecting forest wildfires from sound data.

Fig. 4: Feature importance plot for the hybrid deep learning

model.

V. CONCLUSION

The ability to detect wildfires in their infancy stages can

lead to faster response times, potentially saving vast expanses

of forests and the biodiversity they house. The deployment of

audio sensors in forests presents a cost-effective alternative to

visual surveillance systems, allowing more extensive coverage

and continuous monitoring.

The hybrid deep learning model, which combines convolu-

tional and recurrent layers, demonstrated superior performance

in capturing spatial and temporal features from the audio

data. Integrating heuristic optimization techniques, particularly

PSO, improved the model’s performance by optimizing hyper-

parameters and weights, showcasing the potential of combin-

ing traditional optimization techniques with deep learning.

In our nearest future, enhancing the performance of our

model is the key focus, expanding the model on the diversity

and quality of the additional sound data being collected. We

believe, that integrating sounds from a broader range of forest

types, spanning different seasons, and encompassing varying

intensities of wildfires, can significantly improve our models

ability to generalize wild fire sounds across even more diverse

environmental conditions. While our model demonstrated

promising outcomes in controlled environments, rigorous real-

world testing remains to be done. We plan to establish IoT

sensors, developed at center of real time computing system, in

Aukstaitijos parkas, Lithuania, for evaluating efficacy amidst

ambient forest noises, fluctuating weather patterns, and un-

foreseen environmental variables will be pivotal to validate its

robustness and reliability in practical applications.

Moreover, the hybrid architecture of our model introduces

inherent computational complexities. As part of our future

research, optimizing the model for real-time processing be-

comes imperative second goal, particularly in environments

constrained by computational resources such as the IoT edge

nodes we use in the Lithuanian forests. This optimization will

focus on streamlining algorithms, minimizing computational

overhead, and exploring efficient hardware implementations.

Hopefully, this will help enhancing the model’s operational

efficiency and scalability, ensuring its practical viability across

a spectrum of wildfire monitoring and detection scenarios.
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