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Abstract—The detection and control of diseases constitute a
primary objective of French viticultural research. In this paper,
we present a bottom-up hierarchical approach for selecting spec-
tral bands suitable for class discrimination of spectra acquired by
Infrared spectroscopy. Our method entails evaluating neighbor-
ing bands using various similarity metrics, applying aggregation
criteria, and ultimately identifying a limited number of the most
relevant bands for the separation of classes. The bandwidths
are limited within a range as is typically required for choosing
existing optical filters or specifying colored filter arrays. Our
approach facilitates the discovery of distinctive spectral bands
associated with a disease of interest, enabling the customization
of multispectral cameras to meet specific requirements. It was
applied to spectra collected on vine leaves spanning a three-year
period with the goal to identify the most discriminant bands for
the detection of grapevine yellows. The results show that a limited
number of bands are sufficient to identify this class of interest
through a classifier based on Linear Discriminant Analysis.

Index Terms—Band selection, hierarchical model, classifica-
tion, Grapevine Flavescence Dorée

I. INTRODUCTION

F
LAVESCENCE Dorée, a serious epidemic disease, is
one of the yellow diseases of grapevines. In order to

control the risk of its spread, it is necessary to develop an
effective and high-throughput detection tool. In this context,
we are interested in developing an approach for selecting
discriminative spectral bands based on spectra acquired by
Near Infrared (NIR) spectroscopy, with a view to specifying
a multispectral camera suitable for large-scale acquisitions.
These spectral bands must allow optimal separation of the
different classes, two in our application: yellow plants and
healthy plants. On the other hand, we want to identify a limited
number of spectral bands that can have different widths, but
with restricted minimum and maximum bandwidths.

We position ourselves in the context of reducing the dimen-
sions of spectral data. This goal can be achieved through band
selection techniques that allow the selection of representative
bands from an original spectrum. Although there are several
selection methods, we will focus on those that are most
relevant to our topic.

In [1], unsupervised hierarchical clustering approaches that
merge similar wavelengths into bands were proposed. The
models named WaluMi for mutual information and WaluDi
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for Kullback-Leibler divergence use these metrics to assess
the similarity between bands. The wavelength representing a
band with the highest average similarity to others is selected as
the band’s representative. These models offer the advantage of
merging wavelength similarities into a single band and choos-
ing the optimal wavelength as the representative of this band.
The main disadvantage is that only wavelengths are selected,
which means that if one wants to specify an optical filter for a
multispectral camera, it must have a very narrow band, which
is very difficult to achieve in practice. Our approach focuses on
aggregating multiple wavelengths into bands, thereby reducing
computational complexity while maintaining the performance
of identified bands. The rationale behind this choice is rooted
in the physical correlation of adjacent wavelengths of NIR
spectra, making the computation of similarities restricted to
neighboring wavelengths sufficient. Additionally, the bands in
our context are inherently adjacent wavelengths with minimal
bandwidth. This deliberate restriction not only simplifies the
computational requirements but also aligns with the practical
constraints of our intended application.

A similar approach was proposed in [2], but using an adap-
tive hyperbolic distance as similarity measure. This distance
avoids obtaining bands with a single or very limited number
of wavelengths. Thereby, it partially respects our constraints,
however, does not impose a maximum width of the bands.
This is problematic in practice, particularly if we use the
same sensor on which a colored filter array is placed, the
quantity of absorbed light by the sensor being dependent on
the bandwidth of each filter. Furthermore, this approach only
calculates similarities restricted to neighboring bands.

In [3], the MRMR (Max Relevance and Min Redundancy)
algorithm uses statistical selection to independently evaluate
the importance of features. Its objective is to select an op-
timal subset that maximizes the relevance between features
and classes, while minimizing the correlation between the
selected features, achieved through the application of mutual
information. This algorithm is typically applied to identify
a set of discriminating wavelengths. In our case, we used
this algorithm to identify discriminating bands after several
wavelengths have been merged into bands.

In [4] an approach is proposed that uses a Random Forest
method based on Recursive Feature Elimination (RFE) criteria.
This approach is able to automatically eliminate feature redun-
dancy and generally provides better and more compact subsets.
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The authors used Random Forest to evaluate the importance of
features, and we have chosen it to compare it with MRMR in
the second step of our method, where bands are selected. The
feature selection of the RFE approach is also driven by the
classes, but by a classification approach that may be different
from the information theory used in MRMR. Note that there
are similar approaches to RFE, such as Sequential Feature
Selection [5], which greedily incorporates features by either
adding or removing them to create a subset. Since fairly similar
results were obtained with a Random Forest as an estimator,
we only subsequently chose RFE for the sake of simplifying
the display of the results.

These methods have been proposed to select wavelengths.
Multispectral cameras typically capture a range of wavelengths
with a central value and a certain number of wavelengths on
either side. Those composed of several sensors use an optical
filter for each sensor having fixed bandwidths imposed by the
filter manufacturers, typically at least 10 nm. For specifying
such a camera, it is possible to integrate the available NIR
spectra with windows of desired width, such as Hanning, and
then apply one of the previous methods by identifying bands
which correspond to these integrations. However, all the filters
will have the same bandwidth. For multispectral cameras using
a single sensor with a color filter array, it is possible to specify
the bandwidths of each filter but which, for practical reasons,
must have a specified minimum and maximum limit.

The objective here is to propose an approach allowing
aggregating similar wavelengths into bands and then identify a
limited number of the most relevant bands for the separation of
classes. In the first step, our hierarchical model allows multiple
wavelengths to be combined into a band, emulating the physics
of optical filters that can have different bandwidths, as may be
the case for specifying color filter arrays. In the second step,
a few bands are selected, as is necessary when one wishes to
specify a suitable multispectral camera. Indeed, for cameras
composed of several sensors, increasing the number of bands
requires as many sensors and suitable electronics, which leads
to cameras with important dimensions and weight and to a
significant parallax phenomenon. For cameras using colored
filter arrays, increasing the number of bands leads to a decrease
in spatial resolution. This work is an extension of our previous
work [6] in which we take into account new constraints,
minimal and maximal bandwidths. The application is the
same: specify a camera adapted to the detection of grapevine
yellows by identifying optimal bands capable of effectively
distinguishing healthy plants and grapevine yellows.

Since our method consists of two crucial steps: band group-
ing and band selection, we chose to use the spectral clustering
algorithm studied in [7] to compare the performance of the
band grouping. Spectral clustering is widely used to group
data points based on their similarity. The author explores the
concept of representing data as a graph, where connections be-
tween points reflect their similarity, and aims to divide the data
into clusters such that points within a cluster are similar, while
points in different clusters are dissimilar. In our approach,
we adapt spectral clustering to group similar adjacent bands

by generating an adjacency matrix in which only adjacent
bands are connected. This adjacency matrix is then passed to
the spectral clustering algorithm with the affinity set to ’pre-
calculated’ to use the user-defined adjacency matrix. Once we
have the groups of bands, we apply the same selection criteria
as our approach to selecting the discriminative bands for class
separation.

II. PROPOSED METHOD

As shown in Figure 1, the proposed hierarchical clustering
approach is a two-step procedure. First, the wavelengths are
merged based on their similarity by a bottom-up clustering
into several bands that respect a width constraint, as presented
in Section II-A. Each band is characterized by an interval
that combines several weighted wavelengths to emulate the
response of an optical filter. The pseudocode outline is shown
in Algorithm 1. Following that, we assess the relevancy of
the obtained bands for classes differentiation, as elaborated
in Section II-B. A selection among these bands is done that
is relevant according to the available classes. Finally, we
choose the most effective bands for class discrimination, which
are the final output of our algorithm, bands that allow the
best classification, indicating whether they are relevant to the
classes we have.

The inputs are the P NIR spectra, each acquired for a class
c ∈ C and having n wavelengths. A spectrum S(λi) ∈ R

P

gives the reflectance of the target for each wavelength λi in
the range [λ1, . . . , λn].

Fig. 1: The pipeline of our band selection approach.

A. Searching for relevant similarity while preserving adja-

cency

Initially, each band Bi consists of a single wavelength
λi. The merging process is based on the similarity between
adjacent bands, which is calculated on the representatives Ri

of each band Bi. It begins by combining the most similar
adjacent bands at each step and continues until no feasible
band combination exceeds the specified maximum number
Max of wavelengths. Here, Max represents the largest size of
the desired optical filter response. If the merging of the most
similar adjacent bands is constrained by Max, the algorithm
will not merge them and consider them as independent bands,
it will merge the next most similar adjacent bands that are not
constrained by Max, and so on. This program accomplishes
the task by calculating the distances between each pair of
adjacent bands and generating a sorted list of bands. The
algorithm attempts to merge bands, starting with the top
selection and working down the list. As soon as two bands are
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merged, the sorted list loop is closed, and the next iteration is
started. At each iteration, it checks the total number of bands.
If the number remains constant for two consecutive iterations,
it indicates that the model cannot merge two bands without
violating constraints. At this point the main loop is closed
and the optimal set of bands is obtained. Additionally, each
band should consist of at least Min wavelengths. At the end
of the process, a check is performed and any bands that do
not meet this criterion are removed.

Since similarity calculations are exclusively performed be-
tween a band and its two neighbors, the search for maximum
similarity follows a linear pattern. To speed up the algorithm,
similarities are not calculated at each iteration. Instead, the
list of similarities between adjacent bands is computed at the
beginning and is only updated between the new merged band
and its neighbors in each iteration. Compared to the bottom-up
hierarchical groupings mentioned above, this implementation
is more adaptable to our case for selecting the groups of
neighboring wavelengths. It also has quadratic complexity
compared to cubic complexity.

Data: List of wavelengths λ1, . . . , λn

Data: Reflectance S(λi) ∈ R
P , with P the number

total of spectra, each belonging to a class c ∈ C

Result: Set of m bands B = {B1, . . . , Bm}
/* Initialization */

Bi =
{

λi

}

, i = 1, . . . , n;
Representatives Ri = S(Bi) cf section II-A1;
Distances d(Ri, Ri+1) between the representatives of

bands adjacent, i = 1, . . . , n− 1 cf section II-A2;
/* Hierarchical grouping */

while length(B) > 1 do

list_sort← argsortid(Ri, Ri+1);
bandsize = length(B) ;
while a ∈ list_sort do

if length(B(a)) + length(B(a+ 1)) < Max

then
Ba ← Ba ∪Ba+1 and remove Ba+1 from
B;

Compute the representative Ra = R(Ba) of
Ba;

Update the distances d(Ra−1, Ra) and
d(Ra, Ra+1);
/* adjacent bands found */

break;

if length(B) = bandsize then

/* no aggregation found */

break;

for i from 1 to length(B) do

if length(B[i]) < Min then

Delete B[i];

return B;
Algorithm 1: Our hierarchical bottom-up classification

1) Representative of a band: Our approach consists of
weighting spectral information at wavelengths composing a
band Bi. We use a Hanning window that emulates a real
optical filter physically, but other windows can also be used.
The Ri representative of the Bi band is calculated as the
weighted average of the spectral information in this window

Ri =
1

L
S(Bi) ·W (L), (1)

where W (L) ∈ R
L is the Hanning window of size L,

corresponding to the number of wavelengths contained in the
band Bi, and S(Bi) ∈ R

P×L is the spectral information at
the wavelengths contained in this band.

2) Distance between the representatives: We estimate the
distance between the representatives of these bands as the
similarity between these bands. Four distances between band
representatives are considered in our work: the commonly
used Euclidean distance DL2; the adaptive hyperbolic distance
DHY proposed by [2]; the Jensen-Shannon divergence DJS ,
which takes advantage of the distribution of spectral informa-
tion rather than spectral values; and the conditional mutual
information DCMI , which takes into account the labels c ∈ C

associated to each spectrum. Only the last two are described
in detail below.

a) Jensen-Shannon (JS) divergence: can be interpreted
as a kind of similarity between two probability distributions
that symmetries the Kullback-Leibler distance. We assume that
Ri and Rj are the representatives of the bands Bi and Bj . The
distance based on the divergence of JS, DJS is defined by

DJS(Ri, Rj) =
1

2
DKL(Ri |M) +

1

2
DKL(Rj |M), (2)

where DKL is the Kullback-Leibler divergence between the
probability densities of the variables Ri, Rj and M , the mean
distribution of the distributions of Ri and Rj . The Jensen-
Shannon divergence is always positive or zero. It cancels out
when Ri and Rj have the same probability distribution. Thus,
two bands Bi and Bj with a low value of DJS are combined
if the representatives of these bands have close densities.

b) Conditional Mutual Information (CMI): measures the
dependence between the spectral information of the Bi bands
in each class c ∈ C. Each class c has a probability p(c)
corresponding to its proportion among the data set. The mutual
information I(Ri;Rj | c) between the representatives of Bi

and Bj conditioned to class c is given by the weighted average

I(Ri;Rj | C) =
∑

c∈C

I(Ri;Rj | c)× p(c). (3)

and the CMI distance is defined by

DCMI(Ri, Rj) =
1

1 + I(Ri;Rj | C)
. (4)

This distance offers a key advantage because it incorporates
spectral information from two bands within different classes.

B. Selecting relevant bands for classification

Since the bandwidth of the built bands is constrained, the
procedure may yield too many representative bands.
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1) Examining the variance (VAR): Examining the variance
between each band and the classes allows us to prioritize bands
with higher values. The ranking of them involves computing
the variance between the final representative of each band and
the class, and the selection of discriminating representatives is
based on this ranking.

2) Leverage state-of-the-art methods: Using band selection
techniques such as MRMR and RFE, we are able to select
discriminating representatives with respect to the class.

We chose these selection criteria because they allow us
to evaluate the variance, mutual information and accuracy of
the classifier, three different aspects that allow us to evaluate
the discriminatory power of the bands identified for class
separation. Once we have found those bands, given that they
are the most relevant bands for class separation that we have,
we can then specify the filters of a multispectral camera
suitable for the application considered.

III. RESULTS

We have carried out several acquisition campaigns on vine
leaves of the Chardonnay grape variety at the Comité Cham-
pagne’s Plumecoq experimental estate. The acquisitions were
carried out after the harvest periods of the years 2021 to 2023.
NIR spectra were acquired with a LabSpec4 portable spec-
trometer on around 700 grapevine leaves per year that were
picked and arranged on polystyrene boards. Two spectra were
acquired on each leaf, which gives a collection of P = 4282
spectra acquired between 2021 and 2023. This spectrometer
provides spectral information every 1 nm from 350 to 2500
nm, but only the 400 − 1000 nm region was retained. The
collection S(λi) ∈ R

P thus represents the reflectance of the
leaves for each wavelength λi in the range [λ1, . . . , λn] with
n = 600. The aim of this study was to identify the spectral
bands that allow us to distinguish the C = 2 classes: healthy
plants and grapevine yellows. To identify the discriminating
bands, from the collection of P = 4282 spectra, 1709 spectra
correspond to grapevine yellows and 2573 spectra to healthy
plants.

We set Min = 10 wavelengths and Max = 100 wave-
lengths because the bands of the optical filters available on
the market or the color filter array that can be specified are
generally within these limits. All available P = 4282 spectra
were used to identify discriminative bands with the proposed
approach. For comparison, as mentioned in the introduction,
we adapted the spectral clustering to group the adjacent wave-
lengths into bands, without bandwidth restriction, and then
applied the selection techniques to obtain the discriminative
bands.

Once the bands have been identified, we divided the data,
i.e. the spectral information at the selected bands, into two
sets, one training and one test. The training set contains
90% of the data, i.e. 3854 spectra, and the test set contains
the remaining 10%, i.e. 428 spectra. In the former set, a
Linear Discriminant Analysis (LDA) classifier was trained,
and classification performance was evaluated in the latest set
considering spectral information at the bands identified by

the selection methods. We decided to use the LDA classifier
for the evaluation because, compared to other classifiers such
as Support Vector Machine (SVM) or k-Nearest Neighbors
(KNN), LDA is more often used for feature extraction, where
it identifies the most relevant features for class discrimination.

Fig. 2: Band grouping and VAR selection.

Fig. 3: Band grouping and MRMR selection.

Fig. 4: Band grouping and RFE selection.
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Fig. 5: Accuracy values for LDA with all methods.

DHY DL2 DJS DCMI

VAR 0.8659 0.8631 0.8785 0.8757
MRMR 0.8617 0.8778 0.8794 0.8619

RFE 0.8799 0.8848 0.8834 0.8808

(a) 6 discriminating bands
DHY DL2 DJS DCMI

VAR 0.8846 0.8787 0.8790 0.8757
MRMR 0.8610 0.8778 0.8820 0.8764

RFE 0.8794 0.8893 0.8846 0.8811

(b) 7 discriminating bands

Fig. 6: Accuracy of LDA for 6 and 7 discriminating bands

Figure 2, 3 and 4 show the bands obtained in relation to the
different distances proposed in section II-A2. The colors as-
signed convey the discriminatory quality of the bands for class
discrimination in relation to the different criteria proposed
in section II-B. A darker color indicates the discriminatory
nature of a band and the accompanying number indicates its

position as the nth band selected by the specified method.
A consistent trend is observed across all methods, showing a
higher frequency of selection for bands around 700 nm and
an intermediate frequency of selection for bands between 400
nm and 500 nm across all three selection methods. In contrast,
bands between 900 nm and 1000 nm are rarely selected in
the MRMR selection. We could also note that, as discussed
in the introduction, DHY has more uniform bands than the
other methods. In addition, each distance provides a different
number of bands: DHY has 15 bands, DL2 and DJS each
have 14 bands, and DCMI has 12 bands.

In Figure 5, the LDA accuracy is shown for each method,
with distinctive markers assigned based on the selection tech-
nique: variance (VAR) selection is marked with ’o’, MRMR
selection is marked with a triangle, and RFE selection is
marked with ’*’. Different colors are also assigned to each
distance metric: red for the hyperbolic distance (DHY ), green
for the L2 distance (DL2), purple for Jenson-Shannon distance
(DJS), and cyan for conditional mutual information distance
(DCMI ). Straight curves are used for spectral clustering with
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selection techniques. The results show that increasing the
number of bands is associated with an expected increase in
LDA accuracy due to the additional spectral information. Note
that the accuracy of LDA using all 600 available wavelengths
(from 400 to 1000 nm) is 0.9523. In particular, techniques that
use DJS , DL2, and DCMI show superior performance over
different numbers of bands. In contrast, methods that use DHY

show less effectiveness, especially when we select a small
number of bands, possibly due to the narrow discriminating
bands at other distances compared to the uniform nature of all
bands in DHY .

However, the hyperbolic distance works well in our previous
methods [6], which is to be expected because, as we mentioned
in the introduction, this distance produces almost uniform
bands. However, even though it is designed to avoid this type
of problem without imposing a bandwidth limit, this distance
leads to quite heterogeneous bands in terms of width. Even if
the classification results obtained with LDA are satisfactory,
the practical realization of a multispectral camera using a
color-array filter could still be difficult, since the amount of
light absorbed by the same sensor depends on the bandwidth
of the filters.

For spectral clustering, we regrouped the adjacent wave-
lengths in 15 bands using the spectral clustering, then we
applied the three criteria of selection,. We could notice that its
performance is less than our methods except for RFE-Spectral
clustering in the case of selecting 5 discriminating bands.

Compared to the original hierarchical clustering method, our
model imposes limits and stops as soon as we can’t merge
bands within the size limit. This approach prevents us from
producing a band that exceeds the camera’s range. However,
spectral clustering does not have the constraint of the camera’s
band range, meaning it is possible to obtain a band that falls
outside the camera’s range in the results.

The evaluation is limited to 1 to 10 bands, in line with the
objective of constructing multispectral cameras with relevant
characteristics, including dimension, volume, and spatial res-
olution. Beyond this threshold, the associated cost increases
significantly and widely available cameras typically offer
between 6 and 7 band configurations. Consequently, figure
6 summarizes the accuracy for two classical configurations.
Using 6 and 7 representative bands, the most effective method

is RFE-DL2 with an accuracy of 0.8848 and 0.8893.

IV. CONCLUSION AND OUTLOOK

We have proposed a new hierarchical bottom-up approach
that merges the bands and then selects the most discriminating
ones. This approach, which imposes a constraint on the band-
widths, aggregate similar bands by assessing the similarity
between band representatives using different distances (L2,
hyperbolic distance, Jensen-Shannon divergence, conditional
mutual information). Finally, it selects the most relevant bands
for the separation of classes using criteria based on maximiza-
tion of the variance between bands and classes or using state-
of-the-art selection techniques, MRMR and RFE.

This approach is useful in specifying a multispectral camera
suitable for a specific application. It requires spectra to be
recorded on samples belonging to different classes and to
indicate the number of desired bands. In our case, we used it
to identify bands distinguishing the vine yellows from healthy
plants.

Work is underway to make the algorithm robust to multi-
year acquisitions and to configure it so that it identifies bands
that are insensitive to the acquisition year.
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