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Abstract—We use a special edge centrality measure for node
clustering in complex networks. The measure is based on the
‘spanning tree intersection’ value motivated by previous work
on the intersection and minimum expected overlap of random
spanning trees in complex networks. First, we show that this
new metric differs from some well-known edge centralities on
random network models and real-world networks. Then, we
show the applicability of the metric for clustering the nodes and
point out some advantages over some other edge centrality based
hierarchical clustering methods.

I. INTRODUCTION

I
N NETWORK science, paths and shortest paths between
network nodes are of extraordinary interest due to the

enormous number of straightforward applications [1], [2].
Besides the applications and algorithm development [3], [4],
several metrics have been derived from paths and shortest
paths, such as betweenness and closeness centrality, k-path
centrality, etc., and used for different purposes. For example,
some community detection algorithms have efficiently used
path-based edge centrality measures, e.g., [5], [6], [7].

A widely used centrality based on shortest paths is edge

betweenness, which measures the importance of an edge in
a network by the number of shortest paths that pass through
the edge. A shortest path between two nodes in an unweighted
network is a path that has the minimum number of edges. The
edge betweenness of an edge is then calculated as the fraction
of the shortest paths between all pairs of nodes in the network
that pass through that edge. The importance of edges with high
edge betweenness is obvious. They are vital in connecting
different network parts and facilitating communication and
information flow.

On the other hand, as many real-world situations show,
there is “something artificial about shortest paths. It seems that
shortest paths are sometimes too short and do not correspond
to the underlying natural logic of the network", see [1] for
more details. Information or traffic does not always prefer the
shortest paths, but it sometimes also takes much longer paths.
Furthermore, betweenness centrality, a widely used metric
that is based on shortest paths, is unstable: adding just one
‘shortcut’ link to the network can dramatically change the
scores of edges in the network [8].

Such considerations have led to an alternative model of edge
importance based on randomly selected spanning trees [9],
[10]. A spanning tree of a connected network of n nodes is
a tree composed of n − 1 edges such that they connect all
n nodes in the network. Many results support the intuition
of using spanning trees to compute edge centrality. In social
networks, the spread of information follows tree-like cascades
[11]; in technological (e.g., roads, electricity) and transaction
networks (e.g., financial transactions, trade), the routes used
often show tree-like structures [12].

Spanning Centrality is a measure of the importance of an
edge in a network based on the number of spanning trees
that contain the edge. The spanning centrality of an edge is
calculated as the proportion of all spanning trees that contain
the edge. Edges with high spanning centrality are essential
because they are involved in many different paths through
the network. This means they play a vital role in connecting
other parts of the network and facilitating communication
and information flow. Spanning centrality can be used to
analyze the structure of networks and identify bottlenecks or
critical points that could disrupt the flow of information or
communication [13].

Recently it has been discussed that the average intersection
(i.e., the number of common edges) of random spanning
trees encodes some structural information about the network
regarding homogeneity [14] and resilience [15], and also
closely related to several concepts like fairest edge usage,
spanning tree modulus and secure broadcasting over networks,
see [14], [16]. The idea of checking that an edge of a network
will likely be in the intersection of randomly chosen spanning
trees then comes naturally.

In this short paper, we introduce the concept of spanning

tree intersection edge centrality with the goal of using it in
top-down hierarchical clustering of network nodes. This is
motivated by at least two things. One is to use a metric,
instead of betwenness, which is faster to calculate, but possibly
provide a similar clustering. The other is to see how much it
gives different clusters than the usual clustering or community
detection procedures.

Throughout this paper, G = (V,E) will be a finite,
connected, undirected, and unweighted graph representing a
network with |V | = n nodes and |E| = m edges.
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Fig. 1. Running time comparison on Gaussian random partition network.

II. DEFINITIONS AND METHODS

A. Edge centrality measures

Given a network G, edge centrality is a function that assigns
a number to each edge of the network. Next, we define the
three edge centrality measures we want to compare and briefly
discuss the algorithms’ complexity for calculating them.

Edge betweenness: Let σij be the number of shortest paths
between nodes i and j of an undirected and connected graph
G = (V,E), and σij(e) be the number of shortest paths
between them that pass through edge e ∈ E. Note that
there can be more than one shortest path between any two
nodes in the case of unweighted graphs. The betweenness
centrality BC(e) ∈ (0, 1] of edge e is defined as BC(e) =∑

i ̸=j σij(e)/σij . The greater the number of shortest paths
that pass through a particular edge, the greater the importance
of that edge. Intuitively, a high BC(e) identifies edges that
act as bridges or intermediaries between nodes in the network
and are essential for maintaining efficient communication and
information flow between different parts of the network.

Spanning tree centrality: Given an undirected and con-
nected graph G = (V,E), the spanning centrality SC(e) ∈
(0, 1] of an edge e ∈ E is defined as the fraction of spanning
trees of G that contain e. Intuitively, a high SC(e) quantifies
how important the edge e is for G to ensure its connectivity.
An edge with a high SC value is present in most spanning
trees, all of which will fall apart if the edge is removed from G.
In the case where SC(e) = 1, G is broken when e is removed,
i.e., e is a cutting edge if and only if SC(e) = 1. This means
that such an edge participates in all possible spanning trees.
Important edges participate in many spanning trees, assuming
that spanning trees encode candidate paths through which
information flows.

Spanning tree intersection centrality: The spanning tree

intersection centrality value STI(e) ∈ (0, 1] of an edge e ∈ E
is the fraction of spanning tree pairs among all such pairs
that both contain e, i.e., e is in the intersection of the pair.

Fig. 2. Running time comparison on Watts-Strogatz network.

In other words, STI(e) shows how likely an edge will be
in the intersection of randomly chosen spanning tree pairs.
Intuitively, STI is very similar to SC but more restrictive
in giving a high value for an edge. It also holds here that
STI(e) = 1 if and only if e is a cutting edge. The relevancy of
edges with high STI values can be seen from the perspective
of spanning tree overlap. These are the edges that are somehow
crucial in order to get a not empty overlap between randomly
chosen spanning trees.

According to [15], the minimum of the expected number
of edges in the intersection of two randomly chosen spanning
trees is (n−1)2/m, while the expected value can be calculated
precisely as

∑
e∈E p2(e), where p(e) is the probability that the

edge e is in a uniform random spanning tree. It suggests (not
dealing with the variance) that the probability of an edge e
being in the intersection of randomly chosen spanning trees
is ≈ p2(e). In this sense, STI can be derived from SC, but
we argue that it can provide some added value to it, and more
restrictive in assigning high values to the edges.

B. Algorithms

Betweenness centrality can be computed efficiently, e.g.,
using the Brandes algorithm, in O(nm) time.

The number of spanning trees of G is explicitly known by
Kirchhoff’s matrix tree theorem [17] and can be computed as
the product of the positive eigenvalues of the graph Laplacian
L divided by n. It can be calculated in polynomial, (O(n3)),
time (let L̃ be the Laplacian with be the Laplacian with
row and column ith removed (for any i), then detL̃ be the
number of spanning trees). This allows us to precisely define
uniform random spanning trees, i.e., the uniform probability
distribution over all spanning trees.

For an edge e ∈ E(G), we can compute the probability p(e),
that the edge e is in a uniform random spanning tree of G,
in polynomial time. This is p(e) = det(L̃G\{e})/detL̃, where
L̃G\{e} is defined similarly as above for the graph G \ e, the
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graph obtained by contracting the original one after the edge e
is deleted. So, the nominator is the number of spanning trees
containing e.

Although we can determine the probability of picking a
uniform spanning tree, it does not follow that we can generate
one. Moreover, calculating determinants is still expensive. Sev-
eral algorithms have been developed to generate random span-
ning trees of an undirected graph; see, for instance, Broder’s
[18] and Wilson’s [19] algorithms, worst case O(nm), but
on average O(n log n) time. Moreover, almost linear time
algorithms exist [20]. That allows us to perform Monte-Carlo-
style experiments, described in detail next.

Figure 1 shows the running times of the betweenness
centrality and our spanning tree intersection centrality in a
Gaussian random partition network. The network was gener-
ated with the size parameter n varying from 100 to 4000 in
increments of 100. Each network was constructed with sub-
community sizes s = n/10 and v = n/20, and probabilities
of intra-community and inter-community connections set at
0.7 and 0.001, respectively. We also generated Watts-Strogatz
networks where the size parameted varied from 100 to 4000
in increments of 100. For each network, we set the number
of nearest neighbours in the ring topology (k) to 4 and the
rewiring probability (p) to 0.1. The corresponding running
times can be seen on Figure 2.

The running times for many other random network models
have a similar shape. Our choice of the two models we
present was based on the motivation of using the metric for
community detection purposes, and these two models provide
well-structured networks with community structure and other
small-world properties that appear in real-world networks.

III. EXPERIMENTAL RESULTS

A. Experiment design

The main objective of the simulation was to explore the
behavior of the two spanning tree-based centrality measures
and compare them with the well-known and widely used edge
betweenness centrality. As we noted the direct connection
between SC and STI before, we restrict the presentation
of the comparison results to those between BC and STI .
To perform a detailed comparison, we collected real-world
networks with varying properties and a curated set of random
model networks. In the following section, we present the
selection of networks we used in the simulation.

Selection of random and real-world networks: During the
initialization of the experiment, we generated four different
types of networks with the following parameters:

1) Random regular graph with parameter d = 3, 4, . . . , 9
(degree of each node) and number of nodes n =
100, 200, 500 [21], [22].

2) Erdős-Rényi random graph with parameter p =
0.1, 0.2, . . . , 1 (probability of edge creation) and number
of nodes n = 100, 200, 500 [23], [24].

3) Preferential attachment random network using the
barabasi_albert_graph function from NetworkX with pa-
rameter m = 1, 2, . . . , 10 (number of edges to attach

Algorithm 1 Random Spanning Tree Simulation (RSTS)

1: Input: Graph G(V,E), sample size s
2: j ← 0
3: ∀e ∈ E : C intersection

e = 0
4: While j < s
5: H1 = WilsonRST(G)
6: H2 = WilsonRST(G)
7: I = intersection(H1, H2)
8: For e in E
9: If e ∈ I: C intersection

e ← C intersection
e + 1

10: End For

11: End While

12: ∀e ∈ E : C intersection
e ← C intersection

e /s

from a newly created node to existing nodes) and
number of nodes n = 100, 200, 500 [25].

4) Watts-Strogatz network using the watts_strogatz_graph
function from NetworkX with parameters k = 4 (con-
nected nearest neighbors in the ring topology) and
p = 0.1, 0.2, . . . , 1 (probability of rewiring the edges)
and number of nodes n = 100, 200, 500 [26].

For each type and parameter, we generated 100 networks
and then calculated sample means and standard deviations.

In the case of real-world networks, we selected 15 well-
known networks from the field of network science with various
graph properties. The list of the selected graphs and their
important basic properties can be seen in Table 1.

Tools and Libraries: The simulation environment was im-
plemented in Python 3.9 using the following libraries. Net-
workX (2.6.3) library was used for the betweenness centrality
calculation, random network generation, and other network
manipulation. Our own modified version of the open-source
library DPPy (0.3.2) [27] was used to extract the spanning
trees. However, the Wilson algorithm for the random spanning
tree generation (sample method) remained unchanged. (The
original library could not return the network graph containing
the random spanning tree itself.). We visualized the results
using the Matplotlib (3.5.2) and Seaborn (0.12.1) libraries.
Pandas (1.4.2) was used for basic data manipulation, while
Numpy (1.22.3) was used for basic calculations regarding the
results.

Simulation Environment: The pseudocode shows the steps
of our Random Spanning Tree Simulation environment. In the
case of a network where we had multiple connected compo-
nents, we always chose the largest connected component.

We generated a 2s number of random spanning trees during
the simulation. The algorithm counts how often it is in the
intersection of two random spanning trees. To calculate the
expected value of being the intersection, we divide the result
by the sample size for each edge. Throughout our experiment,
we used s = 1000 as the sample size parameter in the case
of both random and real networks (except for the real Email-
Enron network, due to its large size, where we used s = 100).
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Fig. 3. Correlations between Intersection Probability and Edge Betweenness
measures.

B. Comparison on random network models

As mentioned above, we generated 100 networks for each
type and parameter. To gain valuable insights from the sim-
ulation, we took the mean STI(e) and BC(e) values (i.e.,
“intersection probabilities” and edge betweenness) for each
edge, computed their correlations for each graph, and then
aggregated them across the different parameters, sizes, and
graph types to compare the patterns and behavior of the
different measures.

The heatmap in Figure 3 shows the correlation between
intersection probability and edge betweenness. In this case, in
the case of Erdős-Rényi networks, no significant pattern can
be observed. In the case of Barabási-Albert networks, there
is a negative correlation with increasing size and k parameter
values. The values are between -0.01 and -0.58. It can be seen
that in the case of size 500, the values are between -0.39
and -0.55, so there is a negative correlation even at higher
k-parameters. Random regular and Watts-Strogats networks
again behave similarly for small d and p parameters. However,
at higher parameter values, the correlation becomes negative
in the case of WS. On the other hand, the random regular
shows a slight decrease in correlations with decreasing size
and parameter, with values between 0.05 and 0.59.

C. Comparison on real-world networks

This section presents, analyzes, and interprets our results
for the real-world networks shown in Table 1 and introduces
the behavior of the different measures on an arbitrary real
network (as Figure 4 shows). The table briefly overviews
various network characteristics and metrics for the given set
of real-world networks. These metrics include the number of
nodes, edges, network density, clustering coefficient, average
path length, expected intersection (equals to (n − 1)2/m),

Fig. 4. Comparison intersection probability measure with the edge be-
tweenness on the Florentine graph. (left: Intersection Probability, right: Edge
Betweenness) Thicker edge refers to higher edge centrality.

observed intersection (observed intersection value based on
the simulations), std (standard deviation), the adjusted index

RTI =
observed mean−min.expected

n−min.expected
,

modularity, and the same correlation pairs as in the case of
the random network in the previous section. More precise
definitions of the calculated properties can be found in [28].

As an example shown in Figure 4, the thickness of the
edge shows the actual value of the given measure; more
precisely, the thicker the edge between two nodes, the higher
the corresponding measure of the edge.

Table 1. shows the results on each of the real networks
we used during the evaluation. The results show that our
intersection probability and spanning tree probability measures
have a relatively higher correlation with edge betweenness in
the case of “Florentine", “Adjnoun", “Jazz" and “C-elegans"
networks. As the previous section shows, our two measures
are also highly correlated with each other in real networks,
which means they express similar properties of the edges in
the network.

The relationship between the correlation between spanning
tree intersection centrality and betweenness centrality with
Newman modularity (left) and RTI (right), respectively, on
the investigated real-world dataset is shown in Figure 5.
It suggests that the modularity and RTI are higher if the
correlation between the two different centralities is high and
lower in the case of a lower correlation. It would be worth
investigating this effect in the future, as it may help us better
understand the mesoscale structure of networks (more details
will be given below).

IV. COMMUNITY DETECTION BASED ON EDGE

IMPORTANCE

A well-known community detection algorithm proposed
by Newman and Girvan [6] uses centrality indices to find
community boundaries. It is assumed that communities or
groups are only loosely connected by a few edges between
groups. Therefore, all shortest paths between communities
must be along one of these few edges. Then, the edges
connecting communities should have a high edge betweenness.
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Fig. 5. Scatter plot that shows the connection of Intersection Probability -
Edge betweenness correlation with Modularity measure and RTI .

By iteratively removing these edges, the communities can be
separated at different hierarchical levels.

A natural idea is to change edge betweenness to spanning
centrality, spanning tree intersection centrality, or a metric
derived from these. This should be done carefully, as dangling
edges (connected to 1 degree nodes) always have STI (and
SC) values equal to one (see Figure 4). To handle such nodes,
one can perform a preprocessing step that removes these nodes
after automatically assigning the label of their only neighbor
(which label will be assigned later in the process), or a unique
label, depending on the specified requirement for the clustering
algorithm. After this step, the edges are removed one by one
according to the decreasing order of STI values.At the end
of the process, all edges are removed. If we think of this
process as a top-down hierarchical procedure, then the cutters
are defined as the connected components of the network at a
particular hierarchical level. The pseudocode of the algorithm
is given below. Fig. 4 shows a benchmark example with the
clusters found by the algorithm. Since the cluster structure is
determined at a particular hierarchical level (i.e. after removing
a certain number of edges to get separate components of the
network), the level should be specified. This can be done, for
instance maximizing the Newman modularity function [29],

Algorithm 2 Iterative edge removal based on RTI values

1: Input: Graph G(V,E),
2: Repeat

3: For e in E
4: If RTI(e) = 1, e = (u, v) is a dangling edge with

d(v) = 1 then C(v) = C(u), remove v
5: End If

6: If RTI(e) > max(RTI) then

7: max(RTI) = RTI(e)
8: argmax(STI) = e
9: End If Remove e from G

10: End For

11: Until there is no more edge in G
12: Output: cluster dendogram

Fig. 6. Clustering given by the RTI value based top-down hier-
archical clustering method. The network was generated by the gaus-
sian_random_partition_graph() method from the NetworkX package.

that can be calculated for any given clustering.

V. SUMMARY

This paper introduced an edge centrality metric based on
random spanning tree intersections. We presented an algorithm
to compute it and compared it with the widely used edge
betweenness and spanning centrality metrics. Our initial results
suggest that this metric may be helpful in determining essential
links of the network in terms of path usage, connectivity and
resilience. We also experimented that this metric is efficiently
applicable for clustering the nodes and have some advantages
over some other edge centrality based top-down hierarchical
clustering methods. We also hypothesize that a metric derived
from betweenness and spanning tree intersection centrality
could help to optimize the modularity in the Girvan-Newman
algorithm. The exploration of this can be the topic of a future
work.
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