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Abstract—Super-resolution reconstruction is aimed at generat-
ing images of high spatial resolution from low-resolution obser-
vations. State-of-the-art super-resolution techniques underpinned
with deep learning allow for obtaining results of outstanding
visual quality, but it is seldom verified whether they constitute
a valuable source for specific computer vision applications. In
this paper, we investigate the possibility of employing super-
resolution as a preprocessing step to improve optical character
recognition from document scans. To achieve that, we propose
to train deep networks for single-image super-resolution in a
task-driven way to make them better adapted for the purpose of
text detection. As problems limited to a specific task are heavily
ill-posed, we introduce a multi-task loss function that embraces
components related with text detection coupled with those guided
by image similarity. The obtained results reported in this paper
are encouraging and they constitute an important step towards
real-world super-resolution of document images.

I. INTRODUCTION

INSUFFICIENT image spatial resolution is often a bottle-

neck for computer vision systems that limits the capabilities

of image analysis algorithms. In order to address that obstacle,

considerable research attention has been paid to developing

techniques for image enhancement [1] and super-resolution

(SR) [2] aimed at reconstructing high-resolution (HR) images

from low-resolution (LR) observations, being either a single

image [3] or multiple images presenting the same scene [4].

Potentially, SR algorithms can be extremely valuable in the

cases when acquiring an HR image is subject to a trade-off

with the acquisition cost (e.g., in remote sensing [5]), speed

(e.g., in document scanning [6]), or other factors [7]. However,

the attempts to apply SR algorithms as a preprocessing step

prior to fulfilling a proper image analysis task are still rather

scarce—commonly, the techniques are trained and validated

relying on HR reference images, which are downsampled and

degraded to simulate the input LR images. As noted in an

excellent review by Chen et al. [3], deep networks trained

from the simulated data render overoptimistic results and

their performance in real-world conditions is much worse,

when they are applied to enhancing original, rather than

downsampled images. There have been some attempts reported

to address this problem relying on the use of real-world data

for training [8], [9], but acquiring such data is challenging
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and costly, and it is not straightforward to exploit the HR

references when HR and LR images are captured using differ-

ent sensors [10]. Another possibility to regularize the training

performed from the simulated data is to combine the low-level

computer vision task of SR reconstruction with high-level ones

like semantic segmentation [11], object detection [12], [13]

and recognition [14], [15]. However, this research direction

has not been extensively explored so far.

A. Related Work

Existing SR techniques can be roughly categorized into

single-image (SISR) [3] and multi-image (MISR) [4] ones.

The latter also embrace methods specialized for video [16]

and burst-image SR [17]. While MISR techniques underpinned

with information fusion are more successful in recovering the

actual HR information, they are also definitely more chal-

lenging to apply, as multiple images of the same scene must

be acquired and co-registered at subpixel precision. As these

restrictions turn out to be impractical in many real-life cases,

SISR techniques can be straightforwardly applied and they

received much larger research attention. With the advent of

deep learning, the field of SISR experienced unprecedented ad-

vancements [18] which nowadays allow for generating realistic

images even at large magnification ratios of 8× and more [19].

The first convolutional neural network (CNN) for SR (SR-

CNN) [20] already outperformed the techniques based on

sparse coding, despite a relatively simple architecture, which

was extended and accelerated to create a faster FSRCNN [21].

The subsequent advancements adopted the achievements in

feature representation and nonlinear mapping to modeling the

relation between LR and HR images [22]. The larger models

included a very deep SR (VDSR) network [23], deep Laplacian

pyramid network (LapSRN) with progressive upsampling [24],

enhanced deep SR network (EDSR) [25], and SRResNet with

residual connections [26] which was used as a generator in

a generative adversarial network (GAN) setting. The latest

trends in SISR are more focused on reducing the size of the

deep models, while preserving the reconstruction quality [27].

Recently, it was demonstrated that SISR can benefit from

vision transformers [28] which dynamically adjust the size of

the feature maps, thus reducing the model complexity.

There have been also some reported attempts to employ

SISR to improve text detection and optical character recog-
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Fig. 1. Outline of the proposed self-supervised task-driven training underpinned with text detection. Red arrows indicate the propagation of the loss functions,
and the black arrows show the data flow.

nition (OCR). Dong et al. adapted their SRCNN for that

purpose [29] and in [30] a network with a fairly simple

architecture with three convolutional layers was employed

for super-resolving document scans. Wang et al. proposed to

enrich a GAN-based approach with text perceptual loss to help

the generator produce recognition-friendly information [31]

and later they introduced a TextZoom dataset [6] composed

of cropped texts from the RealSR dataset [32] with natural

images captured in uncontrolled environment. In [33], a text-

focused SR method was introduced which employs a vision

transformer to extract sequential information. Inspired by the

Gestalt psychology, stroke-based text priors were proposed

in [34] and text priors were exploited for training an SR

network in [35].

The aforementioned SR techniques were trained to enhance

images for OCR, relying on loss functions that are correlated

with that specific computer vision task. In addition to that,

it is also possible to train an SR network in a task-driven

manner, in which the task itself is exploited as a loss function

to optimize the network’s parameters. Haris et al. applied an

object detection loss [12] which although leads to worse peak

signal-to-noise ratio (PSNR) scores than relying on the image-

similarity L1 loss, but object detection from the super-resolved

images is much more effective. Similar task-driven loss func-

tions were also defined for semantic image segmentation [36],

[37]. However, in all these cases the ground-truth references

related with the specific task are required for the training data.

B. Contribution

In this paper, we report our work on task-driven SISR

aimed at improving text detection for an OCR system. Our

contribution can be summarized as follows:

1) We propose a multi-task training underpinned with a

loss function composed of image-similarity and text

detection-based components.

2) The individual components of the loss function are

dynamically balanced during the network training to

ensure that all components are optimized at a similar

pace, even though they have different magnitudes and

learning speeds.

3) We propose a self-supervised approach to task-driven

training, with the reference labels automatically ex-

tracted from the HR reference images.

4) We report the results of an extensive experimental

study which demonstrates that the proposed technique

enhances text detection accuracy from document scans

super-resolved using three different SR methods.

II. PROPOSED APPROACH

The proposed task-driven training scheme is outlined in

Fig. 1. An SR network is trained using three types of loss

functions: (i) similarity with the HR reference image, (ii) con-

sistency component—similarity between the downsampled SR

outcome and the input LR image, and (iii) task quality

components—the similarity in the space of deep features

extracted using a network that performs text detection and

recognition. For image-based loss components, we employ the

L2 metric (they are termed L2-HR and L2-LR for reference-

based and consistency components, respectively), while for

computing the task-based loss, we rely on the L1 distance.
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In our study, we employed1 the connectionist text proposal

network (CTPN) for text detection [38]. For CTPN, we exploit

512 features from the final fully-connected layer (we term

them as CTPN-deep), as well as the final outputs that en-

code the coordinates and confidence scores (20 features each,

termed CTPN-out). During training, we compute the distances

for these three feature spaces and we treat them as different

tasks in our setup. For training SR networks, we used a CTPN

model that has been already trained—its parameters are frozen

during task-driven training and the gradient is propagated to

optimize the SR network. Importantly, we establish the target

text positions based on the outcome of text detection in the

HR reference images. In this way, we do not need the text

positions to be annotated, making the training self-supervised.

Our initial attempts to exploit a loss function constructed

from multiple components revealed that it is quite challenging

to ensure the stability between them during training. Even if

we weigh these components to provide a proper initial balance,

the training is becoming focused on those that are easier to be

optimized and the problem turns into an imbalanced one over

time. In order to address that issue, we employed a dynamic

weight averaging (DWA) algorithm that adjusts the weights

assigned to the particular tasks based on their individual

improvements observed in subsequent training steps [39]. In

DWA, for N tasks, the weight assigned to an x-th task at t-th
step is determined as:

wx(t) = N exp
rx(t− 1)

T

/

N
∑

i=1

exp
ri(t− 1)

T
, (1)

where

ri(t) = Li(t)/Li(t− 1). (2)

Li is the value of the i-th loss component and T is the

temperature controlling the softness of the task weighting

(here, T = 1). In this way, the larger weights are assigned

to these tasks in the t-th step whose losses decreases less in

the preceding (t − 1)-th step. This makes the training more

focused on these tasks that are more difficult to optimize and

it prevents a single component from dominating the training

process or being neglected.

III. EXPERIMENTS

In our experiments, we exploited three types of datasets:

(i) natural MS COCO images [40] for training baseline

SR models, (ii) scans from the benchmark datasets: Old

Books2 and LRDE Document Binarization Dataset (LRDE-

DBD)3 [41], and (iii) our scanned documents dataset with

real-world scans performed using a Canon LiDE 400 scanner.

In our study, we investigated the SRCNN [20], FSRCNN [21]

and SRResNet [26] techniques for SR at 4× magnification

factor. We selected these networks, as they are easy to train,

while having a different level of architecture complexity. For

1For CTPN, we use implementation available at https://github.com/courao/
ocr.pytorch

2Available at https://github.com/PedroBarcha/old-books-dataset
3Available at https://www.lrde.epita.fr/wiki/Olena/DatasetDBD

training these methods using the regular image-based loss

function (L2-HR), we exploited the MS COCO images (LR

images were obtained by downsampling the HR images) and

for task-based training, we exploited a training set extracted

from the Old Books and LRDE-DBD datasets (70% images).

The test sets were formed from the remaining 30% of Old

Books and LRDE-DBD datasets, as well as from all the

scanned documents (we used five different scans split into

864 patches with 512 × 512 pixels). The CTPN model was

trained beforehand from the ICDAR2017 dataset [42] and its

parameters were frozen during the task-driven trainings.

The reconstruction quality was measured relying on im-

age similarity metrics, namely PSNR, structural similarity

index (SSIM), and learned perceptual image patch similarity

(LPIPS) [43], computed between the super-resolved image and

the HR reference (thus, reflecting the L2-HR loss function).

For assessing the text detection quality, we employed intersec-

tion over union (IoU) between the text positions detected in the

super-resolved image and in the corresponding HR reference.

We also report the distances in the CTPN-deep and CTPN-

out feature spaces that are used for computing the task-based

components of the loss function.

First, we trained each network from scratch (60 epochs),

guiding the training using a standard baseline configuration

(with the L2-HR loss) and using all loss components, including

L2-HR, the consistency (L2-LR) and task-based CTPN-deep

and CTPN-out components. For FSRCNN and SRResNet,

we fine-tuned the baseline models (100 epochs) relying on

(i) L2-HR loss combined with the task-based loss components,

(ii) the task component coupled with the consistency loss,

and (iii) using all loss components. In addition to that, we

trained SRResNet (as the best performing model) from scratch

relying only on the task-based components (hence without

using the image similarity at all). In Table I, we report the

scores obtained for two test sets (unseen during training): for

the test set of the benchmark datasets and for our dataset with

the scanned documents. It can be observed that incorporating

the task-based components improves the scores in terms of

the image-based metrics in most cases and it always improves

the quality of the text detection task (the differences are

definitely higher for our scanned documents). It is also clear

that the models cannot be trained from scratch without using

the image-based components—apparently the problem is not

convex enough and the training gets stuck in a local minimum.

A sample of the qualitative results is presented in Fig. 2 for

a benchmark image and one of our scans (the configurations

presented in the figure are referenced from Table I). While

for the benchmark image (two upper rows), the text quality is

consistently good across all configurations, for our scan, it is

definitely better for the model fine-tuned in a task-driven way

(d), and it is actually quite close to the result obtained in the

HR reference. It can also be seen that the texts are quite clear

when SRResNet is trained without using the image-based loss

components (which also leads to good detection outcome),

but the stability in the color space is not preserved, leading to

extremely poor quantitative scores reported earlier in Table I.
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TABLE I
QUANTITATIVE SCORES OBTAINED FOR THE IMAGES FROM THE OLD BOOKS AND LRDE-DBD BENCHMARKS AND FROM OUR DATASET WITH

DOCUMENT SCANS, OBTAINED USING DIFFERENT SR TECHNIQUES TRAINED WITH A VARIETY OF LOSS FUNCTIONS. FOR EACH METRIC AND CATEGORY,
THE BEST RESULT IS BOLDFACED.

Loss function Image similarity metrics Text detection metrics

Model and training type L2-HR L2-LR CTPN-deep CTPN-out PSNR↑ SSIM↑ LPIPS↓ IoU ↑ CTPN-deep↓ CTPN-out↓

(a reference in Fig. 2) (dB) (·10−2) (·10−2)

Test set from the simulated benchmark images (Old Books and LRDE-DBD):

SRCNN (from scratch) (a) ! 21.16 0.8481 0.1818 0.8923 — —

SRCNN (from scratch) ! ! ! ! 21.08 0.8489 0.1897 0.9290 1.831 3.366

FSRCNN (from scratch) (b) ! 24.17 0.9134 0.1790 0.9332 — —

–fine-tuned ! ! ! 25.00 0.9071 0.2982 0.9604 1.005 1.750

–fine-tuned ! ! ! 20.06 0.6394 0.4681 0.9559 0.993 1.742

–fine-tuned ! ! ! ! 24.59 0.8848 0.3471 0.9560 1.113 1.939

FSRCNN (from scratch) ! ! ! ! 24.54 0.8880 0.3245 0.9588 1.097 1.919

SRResNet (from scratch) (c) ! 24.10 0.9147 0.1553 0.9392 — —

–fine-tuned ! ! ! 28.16 0.9537 0.1037 0.9614 0.676 1.177

–fine-tuned ! ! ! 24.67 0.8404 0.3048 0.9676 0.694 1.198

–fine-tuned (d) ! ! ! ! 28.04 0.9578 0.0993 0.9761 0.714 1.235

SRResNet (from scratch) ! ! ! ! 25.49 0.9302 0.1614 0.9590 1.036 1.802

SRResNet (from scratch) (e) ! ! 2.97 −0.1832 0.7714 0.9197 2.564 4.737

Scanned documents:

SRCNN (from scratch) (a) ! 16.83 0.5709 0.4301 0.7103 — —

SRCNN (from scratch) ! ! ! ! 17.06 0.5782 0.4344 0.7275 2.827 5.342

FSRCNN (from scratch) (b) ! 18.68 0.6542 0.3681 0.7341 — —

–fine-tuned ! ! ! 18.84 0.6467 0.3585 0.7608 2.363 4.290

–fine-tuned ! ! ! 16.39 0.4796 0.4343 0.7688 2.294 4.174

–fine-tuned ! ! ! ! 18.82 0.6429 0.3588 0.7635 2.328 4.219

FSRCNN (from scratch) ! ! ! ! 18.82 0.6444 0.3644 0.7641 2.414 4.348

SRResNet (from scratch) (c) ! 18.70 0.6634 0.3798 0.7264 — —

–fine-tuned ! ! ! 19.62 0.7075 0.3189 0.7910 1.985 3.397

–fine-tuned ! ! ! 19.00 0.6327 0.3261 0.7886 1.994 3.520

–fine-tuned (d) ! ! ! ! 19.81 0.7076 0.3164 0.7807 2.023 3.483

SRResNet (from scratch) ! ! ! ! 19.23 0.6731 0.3591 0.7576 2.361 4.280

SRResNet (from scratch) (e) ! ! 2.91 −0.0929 0.9250 0.7186 3.170 5.592

D
et
ec
ti
o
n
in
p
u
t

LR image HR reference (a) (b) (c) (d) (e)

D
et
ec
ti
o
n
re
su
lt

D
et
ec
ti
o
n
in
p
u
t

D
et
ec
ti
o
n
re
su
lt

Fig. 2. Examples of SR reconstruction with: (a) SRCNN, (b) FSRCNN and (c) SRResNet (all with L2-HR loss), (d) fine-tuned SRResNet (L2-HR, L2-LR,
CTPN-deep and CTPN-out loss functions), and (e) SRResNet trained from scratch (CTPN-deep and CTPN-out loss functions). These settings are also referred
to in Table I. For each example (top: Old Books; bottom: our dataset), we include the detection input (i.e., the SR outcome) and the detected text.
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IV. CONCLUSIONS AND OUTLOOK

In this paper, we reported our initial attempts to apply task-

driven training for SISR, guided by text detection. The results

are highly encouraging, revealing high potential of task-based

loss functions. Importantly, in contrast to the earlier works

concerned with task-driven SR, we train the models in a self-

supervised way, as we retrieve the annotations by processing

the HR reference images.

Our ongoing research is focused on including the text

recognition components that may improve the guidance during

training. Also, we plan to adapt our approach to MISR

problems and to create a dataset embracing samples composed

of multiple scans of the same document.
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