
An Ontology to Understand Programming Cocktails

Alvaro Costa Neto

0000-0003-1861-3545

Research Centre in Digitalization and

Intelligent Robotics (CeDRI)

Laboratório para a Sustentabilidade e Tecnologia

em Regiões de Montanha (SusTEC)

Instituto Politécnico de Bragança

Campus de Santa Apolónia, 5300-253 Bragança, Portugal

ALGORITMI Research Centre / LASI, DI

University of Minho, Braga, Portugal

Instituto Federal de Educação,

Ciência e Tecnologia de São Paulo

Barretos, Brazil

Email: alvaro@ifsp.edu.br

Maria João Varanda Pereira

0000-0001-6323-0071

Research Centre in Digitalization and Intelligent Robotics (CeDRI)

Laboratório para a Sustentabilidade e Tecnologia

em Regiões de Montanha (SusTEC)

Instituto Politécnico de Bragança

Campus de Santa Apolónia, 5300-253 Bragança, Portugal

Email: mjoao@ipb.pt

Pedro Rangel Henriques

0000-0002-3208-0207

ALGORITMI Research Centre / LASI, DI

University of Minho, Braga, Portugal

Email: prh@di.uminho.pt

Abstract—An ever-growing landscape of programming tech-
nologies (tools, languages, libraries and frameworks) has rapidly
become the norm in many domains of computer programming—
Web Development being the most noticeable example. The
concurrent use of many compartmentalised technologies has
advantages: it allows for flexibility in implementation, while
also improving reusability. On the other hand, this proliferation
tends to create convoluted development workflows that must be
(painstakingly) planned, managed and maintained. The combi-
nation of multiple languages, libraries, frameworks and tools
(Ingredients) in a single project effectively forms a Programming
Cocktail, that can rapidly become cognitive and financially
onerous. Aiming at understanding these complex situations, an
ontology was created to provide a formal and structured analysis
of these cocktails. It emerged from a survey of technologies that
several companies are currently using to develop their systems,
and aims to provide support for better understanding, classifying
and characterising Programming Cocktails. This paper presents
not only the ontology itself, but also the consequent knowledge
that was constructed and structured through its development.

Index Terms—Ontology, Programming Cocktails, Software De-
velopment, Programming Technologies, Knowledge Construction

I. INTRODUCTION

T
HE DEVELOPMENT process of an application invari-

ably requires the use of certain technologies, such as lan-

guages (for programming, specification etc.), libraries, frame-

works and tools. This process may be monotonic, requiring

no more than a base language and, occasionally, a handful

of libraries. On the other hand, it may also be plural and

This work has been supported by FCT – Fundação para a Ciência e
Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.

The work of Maria João and Alvaro was supported by national
funds through FCT/MCTES (PIDDAC): CeDRI, UIDB/05757/2020
(DOI: 10.54499/UIDB/05757/2020) and UIDP/05757/2020 (DOI:
10.54499/UIDP/05757/2020); SusTEC, LA/P/0007/2020 (DOI:
10.54499/LA/P/0007/2020).

polyglot, with several frameworks, libraries, tools and com-

ponents (modern Web applications being the most prominent

examples).

As is typical in the latter case, whenever a project

demands—or is propelled by—the presence of multiple tech-

nologies, those involved in the construction of the application

must learn, use and manage them. The epistemological chal-

lenges that arise in these situations resemble the ones that

have been studied in Computer Programming Education for

decades [1]. These studies range from tools to aid students and

teachers [2]–[5], educational methodologies [6]–[8], success

and failure factors [9], [10] to more psychological endeav-

ours [11]–[14]. Technologies that are unfamiliar to program-

mers must be learnt and understood [9], [15] during the entire

life cycle of an application. Either in the initial development

phases of a project, or when technology adoption changes,

knowledge must be constructed for the learning process to

happen. In the presence of several technologies, a new caveat

appears: beyond understanding each one, programmers must

also manage a surge in cognitive burden as their brains are

required to cope with alternating mental models.

Research into dealing with these challenges usually present

themselves as comparative surveys [16]–[18] that list differ-

ent programming technologies and their main characteristics.

They usually aim to establish a clear landscape and support

decisions on which technologies are best suited to specific

contexts based solely on individual properties of each tech-

nology. Inherently, these studies fail to take into account any

possible combination thereof, focusing their efforts in relating

and comparing pre-determined aspects. It then becomes clear

that a comparative study is not enough to understand how

these programming technologies relate to each other in real-

life scenarios. The concepts that relate to these technologies,

and their interconnections must be formally and structurally

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 453–464

DOI: 10.15439/2024F7885

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 453 Thematic Session: Advances in Programming Languages



mapped. Knowledge must be constructed to cover not only

each Ingredient (technology), but the Cocktail (combination)

itself. A possible answer to this challenge relies in the use of

ontologies [19], [20], a formal method to structure knowledge,

to conceptualize and instantiate information from Cocktails,

establishing reasonable inferences on its landscape of pro-

gramming technologies.

This article is divided into four more sections. Section II

presents the definitions for Programming Cocktails, their In-

gredients and other related concepts. Section III details a

survey of real-life Cocktails conducted with several Software

Companies, and the overall results that have been observed.

Section IV presents the ontology that was created to formally

analyse and understand Programming Cocktails, the concept of

a Cocktail Identity Card, and what knowledge was constructed

around and through them. Finally, Section V concludes the

paper with with a summary of lessons learned, and presents

the next steps in the research of Programming Cocktails.

II. PROGRAMMING COCKTAILS

Before delving into the intricacies of application develop-

ment and the complex relations between the components that

are used to build them, it is of good measure to define what

Programming Cocktails and Ingredients actually mean.

It is comprehensible that the use of such relaxed terms

to describe logical and structured concepts might seem as a

stretch (or even sarcastic) at first sight. Maybe just an analogy,

that is furiously gripping itself on the edge of an undeniably

sharp, sleek and mathematically sound cliff. Nevertheless, it is

in fact very meaningful to this article’s context and objectives.

Anyone who has ever tried to concoct actual cocktails should

be able to described them by more than a list of components.

The results are sometimes clean and homogeneous, with strong

and decisive tastes. In other cases, the components barely

mix together, presenting fuzzy (even chunky) separations that

stubbornly remain. In the worst scenarios, when the list

of ingredients, their measures, and combinations are poorly

chosen, the final result may become undrinkable.

Analogously, the term Programming Cocktail defines a

combination of computer programming technologies—such

as programming languages, libraries and frameworks—that is

used to develop specific software applications. Ingredients are

the components of a Cocktail. It is important to note that a

Cocktail is associated with a specific application or service,

and its Ingredients may also appear in the Cocktail for other

application under the same development context1. Suppose a

company develops three applications:

• Application A: HTML, CSS, JavaScript, and ReactJS;

• Application B: HTML, CSS, JavaScript, MySQL, and

PHP;

• Application C: C++, and Unity.

It might seem that, as a whole, there is one Cocktail for the

company: the union of the sets formed by each application’s

1Development context represents the set of factors that influence the
actual construction of an application, including, but not limited to, its team,
technologies, tools, organization, and requirements

Cocktail. Nonetheless, for the purposes of this study, each

Cocktail is taken independently, even if it means to consider

Ingredients more than once in the same development context.

In short, there are three Programming Cocktails in the previous

example, one for each application (A, B, and C).

As is expected, a few decisions had to be made while

defining these terms. The first and foremost was: which devel-

opment technologies should be considered Ingredients? At first

sight, there are countless technologies that are involved in the

development of an application. From standard and well-known

programming languages, through Domain-Specific Languages

(DSL) for diverse specifications, configuration and commu-

nication; to niche libraries, full-stack frameworks, editors and

debuggers, the list of candidates to be identified as Ingredients

is varied and long. A qualitative threshold was defined to

separate what would be considered part of a Cocktail. A

programming technology was identified as an Ingredient only

if it is directly applied to the development2 process of an

application.

On the other hand, several technologies are commonly used

during deployment or execution of an application, such as

Database Management Systems (DBMS), queue coordinators,

etc. Despite their influence on the design and implementa-

tion of an application, these technologies are not considered

Ingredients, they are Resources. Examples include: Apache

Web Server [21], ActiveMQ [22], MySQL [23], and mem-

cached [24].

The second decision concerned the definition of categories

for the Ingredients. For the purposes of this study, an Ingre-

dient may be categorized as one of four possibilities:

• Language: encompasses any kind of text or graphics-

based language. May be used for programming, specifi-

cation, description, communication, scripting, so on and

so forth. Examples: C [25], Python [26], HTML [27],

CSS [28], SQL [29], etc.

• Library: a portion of code (either in source form or

pre-compiled) that augments programming languages and

their standard libraries with extra functionality. Examples:

LibSSH [30], RayLib [31], etc.

• Framework: scaffolding augmentations to programming

languages. Albeit similar to libraries, frameworks add

functionality while imposing some form of structure to

the source code (syntactic, semantic, or paradigmatic)

or the use of pre-defined components3. Examples: Swif-

tUI [32], React Native [33], etc.

• Tool: specifies any tool that is directly used for develop-

ment, such as editors, Integrated Development Environ-

ments (IDE), debuggers etc.

There might be cases in which the borders between these

categories become tenuous. In these situations, an Ingredient

that has multiple roles in the development process might need

2Development here indicates a generalised concept which includes, but is
not limited to, programming tasks.

3Given that there is no standard for distinguishing between libraries and
frameworks, this definition may collide with others’.

454 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



to be either sliced into its constituent parts, or included in

more than one category. As an example, testing frameworks,

such as JUnit [34], usually include both libraries and servers to

allow for concurrent testing. These Ingredients could possibly

be separated into their individual roles (JUnitLibrary and

JUnitServer, per example) or included in both categories

(Library and Tool).

The reasoning behind these decisions became clear through

the construction of the ontology (explained in Section IV),

with its foundational rationale extracted from real-world Cock-

tails, surveyed from several multi-national companies in Por-

tugal.

III. COCKTAILS ASSEMBLAGE

As previously stated, obtaining the current uses of Pro-

gramming Cocktails was paramount to establishing an overall

picture of computer programming technologies. To this intent,

several companies were contacted in a survey for information

about which Programming Cocktails they have used. Their

feedback allowed for the construction of the ontology’s main

concepts (presented in Section IV) and the consequent struc-

turing of the knowledge surrounding Programming Cocktails.

A. Survey

Starting in October 2023, several companies that have

offices in Portugal were contacted via email for a survey of

Programming Cocktails. The email (shown in the Appendix)

described the context of the study and asked for the pro-

gramming technologies each company has used, divided by

applications in which each Cocktail was used. Companies were

specifically asked to answer informally via email, in order

to stimulate participation and consequently obtain faster and

more numerous responses. Given previous experiences, online

survey questionnaires, such as those created via platforms akin

to Google Forms4 tend to be postponed, resulting in fewer

answers. While the amount of companies that responded was

far from ideal, this number would possibly be even lower if a

formal system was used.

Up to the time of this paper’s submission5, 213 companies

were contacted and of those, 15 responded with several

Cocktails they have used in the past, or still use in the present.

A few important considerations:

• Given the informal nature of the survey, some answers

had to be either supplemented (in the case of obvious

missing elements, such as Cocktails with React that

missed JavaScript) or followed up with further commu-

nication;

• Some answers pointed to the fact that the borders between

some systems are a bit fuzzy, and their Cocktails represent

overall divisions that are shared between groups of ap-

plications. Such is the case with systems that are heavily

structured around micro-services, as example;

4Available at: https://www.google.com/forms/
5All data discussed in this paper should be considered from the same time

period, unless stated otherwise.

• Despite the fact that only Portuguese offices of the

surveyed companies were contacted, the majority of them

have international endeavours or are multinational them-

selves, which reduces the locality bias of the answers;

• Exhaustiveness was never the goal for the survey. Given

that the programming technologies landscape is ever

changing in a fast pace, the survey was designed to sup-

port the construction of knowledge about Programming

Cocktails, which in turn, may eventually be applied to

future works and studies.

Currently, 49 Programming Cocktails have been obtained,

spanning a total of 124 different Ingredients and Resources,

that range from programming languages and frameworks, to

database management systems and resource cache manage-

ment applications.

B. Data Overview

As previously mentioned, statistical data analysis is not the

main goal of this study. Nonetheless, a few statistical facts

can be extracted from the Programming Cocktails that were

gathered in the survey.

In order to better organize the survey results, an online

spreadsheet6 was created, listing Ingredients on the lines and

Cocktails on the columns (Table I represents a summarised

example of the actual spreadsheet). Column A contains the

names of the Ingredients. The columns from B to D catego-

rize each Ingredient into, respectively, its type7 (Language,

Library, Framework or Tool), the Language with which it was

used, and the Task it was applied to (Tasks will be further

explained in Subsection IV-B). In the eventual case of an

Ingredient either being used with more than one Language,

or applied to more than one Task, its line would be duplicated

and its categories adapted as needed. An hypothetical example

would be the .NET Framework, which can be used with

several different programming languages, and would require

such treatment. Finally, from E onwards, each Cocktail was

listed in its own column, with their Ingredients’ rows marked

to represent their inclusion. As an example, in Table I, the

column App2 represents the second Cocktail that was gathered

and includes both C# and YAML.

In total, 63 different Ingredients have been collected:

• 23 Languages;

• 14 Libraries;

• 22 Frameworks;

• 4 Tools.

As per Resources, 61 have been gathered. Overall, each

Cocktail has an average of 8 Ingredients and Resources, which

a 4.6 standard deviation. Some other observations include:

• 2 Cocktails are based either on Low Code or No Code

Ingredients;

• Most of the Cocktails belong to Web Development (32

in total);

6A read-only version is available at: https://bit.ly/4aFjSjj
7Resources have also been included in the spreadsheet and are categorized

as such, despite not being Ingredients per se.

ALVARO COSTA NETO ET AL.: AN ONTOLOGY TO UNDERSTAND PROGRAMMING COCKTAILS 455



TABLE I
SUMMARISED EXAMPLE OF THE COCKTAILS SPREADSHEET.

Ingredient Type Language Task App1 App2 · · · AppN

.NET Framework C# Full-stack development · · · X
C# Language C# Server implementation X · · ·

C# Language C# Full-stack development X · · ·

.

.

.
YAML Language YAML Communication X · · ·

• The most frequent Ingredients are (from most to least

used):

– Language: HTML, CSS, JavaScript, SQL, C#;

– Library: OData, Bootstrap, (all the other tied in one

use);

– Framework: React, Node.js, .NET, Angular,

ASP.NET;

– Tool: Visual Studio, Visual Studio Code, Power-

Pages, Liferay;

• The most frequent combination of a programming lan-

guage and a framework is JavaScript with React, followed

by JavaScript with Node.js, C# with .NET, and JavaScript

with Angular;

• 7 Cocktails use only one language;

• At the time of writing, no Cocktails have been collected

that directly apply any Artificial Intelligence (AI) support

or technology.

As previously mentioned, micro-services architectures pre-

sented a challenge in defining borders between systems—and

consequently, their Cocktails. In these cases (5 in total), their

Cocktails were defined taking into account a group of micro-

services that implement logical parts of the whole system.

The logic behind this definition was dependent on the system

itself, and as such, stipulated by the company that provided

the Cocktails.

IV. ONTOLOGY FOR PROGRAMMING COCKTAILS

The data collected through the survey has a purpose: to

allow for better understanding of Programming Cocktails,

which entails the construction and structuring of knowledge.

Our research group has had several interactions with and has

made several contributions to the study of ontologies [35]–

[41], both in their construction and definition. Consequently,

from several approaches that could be applied to achieve the

construction of knowledge about Programming Cocktails, an

ontology seemed a straightforward and appropriate choice. It

allowed for the formal definition of Programming Cocktails’

main concepts, the generation of Identity Cards, an ontology-

based characterisation mechanism for Cocktails, and the orga-

nization of their Ingredients.

Moreover, the ontology will be paramount for future use in

coming studies, that will deal with the evaluation of Cocktails

in cognitive load metrics. The construction of the ontology

was then, in practice, a two-fold endeavour, as it aided in

structuring and understanding the data that was collected

through the survey (its initial goal), while also providing a

foundation on which several studies might surge.

A. OntoDL

The initial version of the ontology was created using a

spreadsheet to organize and list its concepts, relations, in-

stances, and connections. While suitable for the beginning

phases, when the number of elements was small, as the

ontology grew it became evident that other solutions would

offer better scaling and future-proofing. A visual represen-

tation would be ideal to quickly present the connections

between the ontology’s elements. Given previous experiences

and its simple yet capable syntax, OntoDL [42] was chosen

as the main source for the definition and instantiation of the

ontology. OntoDL is a Domain-Specific Language (DSL) that

was created for modelling ontologies, as an alternative to

more verbose options such as the Web Ontology Language

(OWL) [43]. It has been used in several projects, including

the WebOntoDL application8, which can interpret ontologies

written in OntoDL and translate them to several other formats,

such as DOT9 and OWL. It contains a syntax that is reminis-

cent of the mathematical formal definition of ontologies. It also

allows the use of keywords in Portuguese or in English, which

could be a beneficial factor for exchange and contribution from

third parties.

The basis for OntoDL’s syntax relies on five main structures:

the name of the ontology, the list of concepts, the list of

individuals, the list of relation types and the triples that

actually declare relations. Listing 1 shows the basic declaration

for each structure. A few basic rules:

• The language follows basic principles of ignoring whites-

paces and line-breaks, as well as the use of curly brackets

as group delimiters;

• The order of the declarations matters;

• Concepts, relationships and triples are mandatory;

• Comments are line based, beginning with the percent sign

(%) and ending with a line-break;

• There are pre-defined relation types for specialization

(isa), composition (pof), and instantiation (iof);

• Triples are directional, and may be formed using any

combination of concepts and individuals.

8Available at: https://webontodl.epl.di.uminho.pt
9DOT is a graphics format written in plain text that is used to define visual

elements in a diagrammatic form. It is part of the Graphviz project, available
at https://graphviz.org

456 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Listing 1 Basic syntax for OntoDL.

% Identifiers must follow the C standard.

Ontology OntologyName

% The order of declarations matters.

concepts { Concept1, Concept2, ... }

individuals { Individual1, Individual2, ... }

% Whitespace and line-breaks are ignored.

relationships {

RelationType1,

RelationType2,

...

}

triples {

% Triples may relate both concepts and

individuals, in any combination.

Concept1 =RelationType1=> Concept2;

Individual4 =RelationType2=> Individual5;

% Specialization.

ConceptChild =isa=> ConceptFather;

% Composition.

ConceptPart =pof=> ConceptWhole;

% Instantiation.

IndividualA =iof=> ConceptA;

}

% The period indicates the end of the ontology.

.

There are more rules for defining properties, axioms and

other elements, that have not been used in this paper. With

the foundation firmly established on OntoDL, the first step

to create a valid ontology that would allow for reasoning on

the surveyed Programming Cocktails was to model its main

concepts.

B. Open Conceptual Model

Before delving into the actual ontology and its concepts, it

is important to establish a graphical notation that will be used

and referenced in figures that represent them. Fig. 1 shows

the basic elements and how they are graphically styled, more

specifically for OntoDL’s pre-defined relations. Other relation-

ships use a simple arrow. This notation is emblematic because

it allows for quick identification of element types (concepts or

individuals), and pre-defined relation types that carry specific

semantics (instantiation, specialization and composition).

The main concepts of the ontology were incrementally

created. The first concepts meant to establish a foundation,

based on the fact that each Cocktail is directly associated to a

System that either is or has been under Development. Listing 2

and Fig. 2 present them.

The next step in the development of the conceptual model

was the addition of the Ingredients and their types. The

results of the survey reaffirmed the initial proposal for their

types (Language, Library, Framework and Tool), but also

highlighted a basic problem: some tools that were listed by

the companies did not participate directly in the development

process. In some cases, such as the main Operating System that

programmers chose or a note taking application, it was evident

Concept

Concept

isa

Individual

Concept

iof

Concept

Concept

pof

Individual

Individual

pof

Fig. 1. Graphical notation for the ontology.

Listing 2 Initial concepts for the ontology.

Ontology Cocktails

concepts { System, Development, Cocktail }

relationships { uses, requires }

triples {

% Foundation.

System =requires=> Development;

Development =uses=> Cocktail;

}

.

System

Development

Cocktail

requires

uses

Fig. 2. Initial concepts for the ontology.

ALVARO COSTA NETO ET AL.: AN ONTOLOGY TO UNDERSTAND PROGRAMMING COCKTAILS 457



that their inclusion as Ingredients would be a stretch that could

backfire in later developments. Other elements were not so

easy to distinguish, such as Database Management Systems,

and Queue Managers.

At that moment, a decision had to be made: would these

tools be included as Ingredients? Which category would they

belong to? At first, the intention was to include all of them as

Tools, but as more Cocktails were obtained, it became clear

that this choice could easily distort the category’s meaning. In

the end, in order to avoid this negative effect, the concept

of a Resource was created to implement this solution. A

Resource represents an external system (or service) that is used

at runtime by the application, but that does not participate

directly during the development process. For obvious cases,

such as Operating Systems, the separation between a Tool

and a Resource was clear. Alas, that was not always the

case. Some Resources required some kind of implementation

in the development phases, such as a communication library,

or a configuration language. In these cases, the runtime of

the system (or service) was considered a Resource, while any

mandatory Application Programming Interface (API), library,

framework or language that was used to interact with it was

considered an Ingredient (of the correct type). As an example,

in order to communicate with MySQL, an external library or

framework (such as libmysqlclient) is usually included as part

of the project. Given that the runtime of the MySQL server

provides support for the execution of the application, it would

be considered a Resource. On the other hand, libmysqlclient

would be considered a Library, as it participates directly in the

development phase to program the interaction to the server.

In order to highlight this difference in purpose (supporting

the application execution versus the development process), the

concept of the Resource was moved from its initial relationship

(a specialization of Ingredient) to a supporting role to the

System itself. Listing 3 and Fig. 3 show the inclusion of these

concepts to the ontology. It can be seen that while the concepts

of Language, Library, Framework and Tool are specializations

of the more general concept of an Ingredient, Resource is

directly connected to the System concept.

The last two additions to the conceptual model consisted

in a series of relationships that highlighted the central role

of Languages in the Cocktail, and the definition of Tasks.

Languages are usually the central element in the development

of almost any kind of System. In fact, it is very unusual that

a Language choice will depend on other types of Ingredients,

such as Frameworks, or Libraries. The reverse, although, is

commonplace: the choice of a Language usually dictates which

other Ingredients will be part of the Cocktail.

In order to illustrate and define Language’s central role,

three relationships were added, each connecting one of the

other Ingredient types to it (see the extends, encloses and

supports relationships that terminate in Language in Listing 4

and Fig. 4).

The definition of Tasks and how they were modelled was

the last step in the construction of the conceptual model for

the ontology. As with any specification for concepts that rely

Listing 3 The inclusion of Ingredients and Resources to the

ontology.

Ontology Cocktails

concepts {

System,

Development,

Cocktail,

Resource,

Ingredient,

Language,

Library,

Framework,

Tool

}

relationships { uses, requires, supports }

triples {

% Foundation.

System =requires=> Development;

Development =uses=> Cocktail;

% Runtime resources (OS, DBMS, etc.)

Resource =supports=> System;

% Ingredients and their types.

Ingredient =pof=> Cocktail;

Language =isa=> Ingredient;

Library =isa=> Ingredient;

Framework =isa=> Ingredient;

Tool =isa=> Ingredient;

}

.

System

Development

Cocktail

Resource

Ingredient

Library

Language

Framework

Tool

requires

uses

supports

Fig. 3. The inclusion of Ingredients and Resources to the ontology.

458 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



System

Development

Cocktail

Resource

Ingredient

Library

Language

Framework

Tool

Task

TaskA

TaskB

...

TaskZ

requires

uses

supports

extends

encloses

supports

supports

Fig. 4. The conceptual model for the ontology.

heavily on a particular context, there is no optimal solution.

A few strategies were considered:

• A general concept is created in order to future-proof

the definition, such as ProgrammingTask, or equivalent.

It does not conceive any particular information about

real Tasks that are effectively conducted in the develop-

ment context. By doing so, the model will not require

further updates, while remaining valid for any future

Programming Cocktails. The drawback relies on the lack

of effective representation, given its generalist nature;

• Given a survey of Programming Cocktails, a set of pre-

defined Tasks is established in order to achieve more

practical representation than one general concept. These

Tasks are fixed and any future use of the ontology will

require “fitting” of the actual development context into

the set of pre-defined Tasks. This option has the evident

risk of rapidly becoming outdated, specially in dynamic

domains, such as Web Development. It may also require

distortions on the division of Tasks in order to fit the pre-

defined concepts, potentially losing its representativeness;

• The conceptual model becomes open and adaptable to

specific development contexts. This was the chosen strat-

egy for the ontology. Given that the main intention is

to construct knowledge on Programming Cocktails and

that each project, team, company, or organization has

specific demands and requirements, keeping the ontology

adaptable was a better solution to the definition of Tasks.

The final solution for the ontology and how it must deal with

Tasks relies on adapting the Task concept (via specialization)

to include in the model a logical division of Programming

Tasks, fit for the context in case.

As an example, a company with different projects might

establish different conceptual models for their ontologies.

Suppose that the first project is a simple Web Application, with

just a few Ingredients. In this case, the team behind it might

simplify the conceptual model and only specialize general

Tasks, such as FrontEndProgramming and BackEndProgram-

ming. In another project, with multiple Ingredients and a much

larger problem to solve, the team might find it appropriate

to specialize Task into a more granular level, such as Land-

ingPageStructuring, ClientInterfaceStyling, DatabaseCommu-

nication, so on, and so forth. This is what the term open in

open conceptual model means.

This strategy future-proofs the conceptual model by making

it adaptable, while providing both flexibility and a solid

foundation for Programming Cocktails analysis.

C. Cocktail Identity Cards

The conceptual model of an ontology is crucial to define

its structure, how the modelled concepts are related, and

what level of detail is expected for the overall organization

of knowledge. Nonetheless, the concepts, besides being fun-

damental, are usually materialized into individuals, on their

occurrences in the context being modelled.

ALVARO COSTA NETO ET AL.: AN ONTOLOGY TO UNDERSTAND PROGRAMMING COCKTAILS 459



Listing 4 The conceptual model for the ontology.

Ontology Cocktails

concepts {

System,

Development,

Cocktail,

Resource,

Ingredient,

Language,

Library,

Framework,

Tool,

Task,

TaskA, TaskB, ..., TaskZ

}

relationships {

uses,

requires,

supports,

extends,

encloses

}

triples {

% Foundation.

System =requires=> Development;

Development =uses=> Cocktail;

% Runtime resources (OS, DBMS, etc.)

Resource =supports=> System;

% Ingredients and their types.

Ingredient =pof=> Cocktail;

Language =isa=> Ingredient;

Library =isa=> Ingredient;

Framework =isa=> Ingredient;

Tool =isa=> Ingredient;

% Language's central role.

Library =extends=> Language;

Framework =encloses=> Language;

Tool =supports=> Language;

% General Task concept.

Task =pof=> Development;

Ingredient =supports=> Task;

% Context-specific Tasks. These tasks depend on

the development context and its structure.

TaskA =isa=> Task;

TaskB =isa=> Task;

...

TaskZ =isa=> Task;

}

.

The conceptual model of the ontology was applied to the

Cocktails in order to test its validity and aid in structuring

the information from the survey. Initially, all individuals and

concepts were pictured, which resulted in a convoluted image

and many overlapping connections. In order to establish a

clearer picture of each Cocktail, the focus shifted to showing

the individuals, their relations and, when necessary, some

concepts to avoid misidentification of the individuals. The

concepts that were kept in the diagram were:

• Resource to explicitly show which supporting systems

and services each application used;

• Language, Library, Framework, and Tool, to categorise

each Ingredient;

• Task specializations to identify the parts of the application

that each Ingredient tackles.

In all of these cases, a concept is only added to the diagram

if a relation to or from it is also present. As an example, if

there are no libraries in the Cocktail, the Library concept will

not be shown.

The instantiation of an application from the survey is

presented in Fig. 510. It is a Question & Answer (Q&A) Web

Application used for internal communication (and documen-

tation) in the company. It requires three different supporting

systems for its execution11: Elasticsearch [44], MongoDB [45],

and RabbitMQ [46]. The three basic Ingredients for almost any

Web Application are present (HTML, CSS, and JavaScript),

as are two well known Frameworks (Node.js and React.js).

The three Task concepts (WebSiteStyling, WebSiteMarkup,

and WebSiteScripting) have been determined based on the

main areas of the development context. They do not represent

specific tasks, as these have not been provided by the company.

Their role is to exemplify how Ingredients relate to their

supported Tasks.

As a first proof of concept, the instantiation in Fig. 5 is able

to visually represent each development component and how

they relate to the application. It does so in a compact form,

with enough elements to quickly provide interesting insights

into the Cocktail:

• Dependency on external services and systems is directly

represented by the number of Resources that support the

System;

• Dependency on Ingredients is represented by the number

of the equivalent instances;

• Possible redundancies (too many Ingredients of the same

type supporting the same Task) are quickly identified;

• Tasks that are too reliant on many Ingredients—a possi-

ble weakness point—can be directly identified by their

number of support relations.

The instantiation provides enough information about the

application and its development (specially its Cocktail) that it

is effectively an Identity Card (CIC). It has been successfully

applied to the other Cocktails obtained from the survey,

providing CICs to all of them. Fig. 6 shows two more CICs

for comparison.

The Identity Card shown in Fig. 6a represents a mobile

educational game. In this case, the tasks have been chosen in

a more granular manner, in order to better represent specific

parts of development context. Fig. 6b also represents a mobile

application, but not a game. It is a Covid-pass related front-

end application. Differently from Fig. 6a, which applied a

multi-platform engine (Unity [47]) to create and deploy the

game to both mobile application stores (Apple’s App Store

and Google’s Play Store), Fig. 6b shows how one application

10The names of the applications have been changed to a generic App#

format for privacy concerns. Nonetheless, they have all been gathered in the
survey and represent real software.

11Instantiated from the Resource concept.

460 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



App1

App1Development

App1Cocktail

RabbitMQMongoDBElasticsearch

Resource

JavaScriptHTMLCSS NodeJS ReactJS

Language Framework

WebSiteStyling WebSiteMarkup WebSiteScripting

requires

uses

supports supportssupports

supports supports supports supports supports

encloses

Fig. 5. An example of a Cocktail Identity Card modelled for a Q&A Web Application.

may require more than one development context, since it used

mutually exclusive technologies for each platform (Swift for

Apple’s ecosystem, and Kotlin for Google’s). In both cases,

the CICs quickly present the previously listed properties for

their Programming Cocktails.

The Identity Cards are valuable for quick identification of

several Cocktail properties, as previously shown, but also form

a foundation for the further, deeper analysis. Risks, costs, or

any other form of valuation that would be layered on top of

their relations could become valid augmentations to the CICs.

D. Structured Knowledge on Cocktails

The instantiations are valuable in their own merit, by organ-

ising the relations between the technologies that application

development depends on. Nonetheless, its construction, by

itself, relayed valuable information about the survey.

The definition of the category columns in the spreadsheet

(mentioned in Subsection III-B) is a direct and practical result

in this case. The initial version of these columns had several

problems, from the lack of domain definitions, to redundancy

in values. Since the categorization of the Ingredients will

be paramount in future studies, columns B to D are of

great importance. After the definition of the ontology and its

application to the several Cocktails that have been gathered,

the final version of the category columns was finally obtained.

The first category column (Type, column B) was a direct

implementation of the Ingredient specializations (Language,

Library, Framework and Tool). It is a direct definition of

the ingredient’s nature. The next column (Language, column

C) represents what language is used for each other type of

ingredient. It was derived directly from the relationships that

the different types of ingredients establish to Language in the

conceptual model (see the bottom-right relations in Fig. 4).

Finally, column D (Task) represents the Task specializations,

as previously explained. In the case that an ingredient is

applied to more than one task, or used with more than one

language, its line would be duplicated and changed to reflect

these variations.

Another direct result from the construction of the ontology

was the possibility to determine which languages are more

auto-sufficient (have fewer libraries and frameworks connected

to them) or more dependant of complements.

A third point-of-view for knowledge construction based on

the ontology relates to project management. A few possibilities

include:

• By superimposing the Identity Cards, teams and compa-

nies can quickly identify which ingredients they are more

dependent on, or have more experience with;

• The definition of the Task specializations render an op-

portunity to identify common threads between projects, in

ALVARO COSTA NETO ET AL.: AN ONTOLOGY TO UNDERSTAND PROGRAMMING COCKTAILS 461



App2

App2Development

App2Cocktail

MySQLUbuntu

Resource

dotNETCSharpSQL Unity

Language Framework

Tool

BackendLogicGameLogic GameInterface RenderizationDatabaseInterface

requires

uses

supportssupports

supports supportssupports supports supports supports

encloses

(a)

App3

App3iOSDevelopment App3AndroidDevelopment

App3iOSCocktail App3AndroidCocktail

Swift KotlinAdobeXD

Language Language

Tool

Prototyping

BusinessLogic UserInterface

requires requires

uses uses

supports

supports supports

(b)

Fig. 6. Identity Cards for two different applications: a mobile educational game (a) and a Covid-pass management front-end (b).

462 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



order to standardize or evaluate how teams are structured,

personnel is allocated, etc.

• The Identity Cards provide quick documentation about a

project’s technological evolution. Given that it can also be

encoded in OntoDL, it can be easily registered in version

control systems, such as Git [48].

As with any kind of structural representation, this ontology

may be applied to analyse and support decisions on many

facets of project developments, from simple documentation,

to critical factors such as risk and dependency.

V. CONCLUSION

This paper presented an ontology based on an open con-

ceptual model of Programming Cocktails. This ontology was

initially idealised to aid in defining classifications for in-

gredients that were surveyed from several companies, and

how they related to their development context. This result

was successfully accomplished, and a new point-of-view also

emerged from the instantiation of the Cocktails: the Identity

Cards.

As can be observed from the previous sections, the act of

constructing the ontology has already structured knowledge for

the surveyed Cocktails, that will provide valuable information

for future studies. Nonetheless, the ontology itself and the

Identity Cards also presented more interesting opportunities.

By creating a foundation on top of which further, more

complex analysis could be applied, the Cocktail Identity Cards

became a strong result from the ontology. It allows for quick

visualization, identification and extraction of knowledge on

Programming Cocktails.

Future projects will continue on this development by ex-

tending both the methodology for gathering and identifying

Cocktails, but also by applying the Identity Cards on con-

sequent studies. For attaining the former, a project for the

automatic extraction of Programming Cocktails from public

open source projects would be of great use, both for overall

analysis, but also as a further proof of concept for the ontology.

Also functioning as a direct application of the ontology, the

Identity Cards will be augmented with cognitive analysis for

a subsequent decision-support system for developers, project

managers and teachers.

APPENDIX — SURVEY MESSAGE

The following is a redacted version of the email used to sur-

vey Programming Cocktails, as explained in Subsection III-A.

Personal details were removed for privacy concerns.

* * *

In the context of our research project, we need to collect infor-
mation about what we call Programming Cocktails, that is, clusters
formed by programming languages (marking, formatting, commu-
nication. . . ), libraries, frameworks and development environments
that are used together to develop complex Applications (software
systems).

For example, a very common Cocktail used to develop a current
web application is:

• HTML and CSS for formatting;
• JavaScript for client-side programming;

• React as a framework for JS;
• VSCode for development.

As such, we have been contacting prominent companies in the
area of Software Development to find out which Cocktails they have
effectively used. As you have already shown interest in the academic
context, given your participation in our Conferences/Seminars; or
even proposing themes for master’s theses, I come to ask: would
it be possible for you to reply to this email sending me information
about the Programming Cocktails that are used in your company? If
this matter is not within your possibilities, we would be extremely
grateful if you send us the contact of someone from your company
who can help us with this information.

We make it clear that we do not intend to collect any type of
confidential information. The answer is informal and should be as
simple as shown in the examples below:

Application A, we used:

• Front-end: HTML, CSS, JavaScript, React;
• Back-end: Java, libssh;
• Communication: JSON;
• Database: MySQL;
• Other: Visual Studio, ActiveMQ, . . .

Applications B and C, we used:

• Full-stack: Node.js;
• Communication: gRPC;
• Database: MongoDB;
• Other: VSCode, . . .

Application D. . .

We don’t even need the names of the applications, just the list
of technologies used in their construction. However, the more details
you can provide, such as the area or domain of the application, the
more valuable your contribution will be to our research[...]

REFERENCES

[1] R. R. Fenichel, J. Weizenbaum, and J. C. Yochelson, “A program
to teach programming,” Communications of the ACM, vol. 13, pp.
141–146, 03 1970. doi: 10.1145/362052.362053. [Online]. Available:
https://dl.acm.org/doi/10.1145/362052.362053

[2] M. J. V. Pereira and P. R. Henriques, “Visualization/animation of
programs in alma: Obtaining different results,” in Proceedings of

the IEEE Symposium on Human Centric Computing Languages and

Environments, 2003. doi: 10.1109/HCC.2003.1260242 pp. 260–262.
[Online]. Available: https://ieeexplore.ieee.org/document/1260242

[3] T. C. Freitas, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques,
“Nlp/ai based techniques for programming exercises generation,” R. A.
P. d. Queirós and M. P. T. Pinto, Eds., vol. 104, Open Access
Series in Informatics (OASIcs). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi: 10.4230/OASIcs.SLATE.2022.14 pp. 1–15.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2022/16760

[4] S. A. Teixeira, “Automatic grading of programming exercises,” Master’s
thesis, Minho University, Braga, Portugal, 2023, to be published.

[5] P. Vasconcelos, “Haskelite: A step-by-step interpreter for teaching
functional programming,” R. A. P. d. Queirós and M. P. T.
Pinto, Eds., vol. 104, Open Access Series in Informatics (OASIcs).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/OASIcs.SLATE.2022.14 pp. 1–15. [Online]. Available: https:
//drops.dagstuhl.de/opus/volltexte/2022/16760

[6] S. A. Robertson and M. P. Lee, “The application of second natural
language acquisition pedagogy to the teaching of programming
languages: a research agenda,” ACM SIGCSE Bulletin, vol. 27,
no. 4, p. 9–12, 12 1995. doi: 10.1145/216511. [Online]. Available:
https://dl.acm.org/doi/10.1145/216511.216517

[7] M. V. P. Almeida, L. M. Alves, M. J. V. Pereira, and G. A. R.
Barbosa, “Easycoding: Methodology to support programming learning,”
R. Queirós, F. Portela, M. Pinto, and A. Simões, Eds., vol. 81, Open
Access Series in Informatics (OASIcs). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 06 2020. doi: 10.4230/OASIcs.ICPEC.2020.1.
ISBN 978-3-95977-153-5. ISSN 2190-6807 pp. 1–8. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/12288

ALVARO COSTA NETO ET AL.: AN ONTOLOGY TO UNDERSTAND PROGRAMMING COCKTAILS 463



[8] J. L. Plass, B. D. Homer, and C. K. Kinzer, “Foundations of game-based
learning,” Educational Psychologist, vol. 50, no. 4, pp. 258–283, 2015.
doi: 10.1080/00461520.2015.1122533

[9] A. Gomes and A. J. Mendes, “Learning to program: Difficulties
and solutions,” Proceedings of the 2007 International Conference
on Engineering and Education (ICEE). International Network on
Engineering Education and Research, 2007, pp. 283–287. [Online].
Available: http://icee2007.dei.uc.pt/proceedings/papers/411.pdf

[10] B. C. Wilson and S. Shrock, “Contributing to success in an
introductory computer science course: a study of twelve factors,”
Proceedings of the 32nd SIGCSE Technical Symposium on Computer
Science Education. Association for Computing Machinery, 2001. doi:
10.1145/364447.364581. ISBN 1581133294 pp. 184–188. [Online].
Available: https://dl.acm.org/doi/10.1145/364447.364581

[11] P. C. Tavares, E. M. F. Gomes, and P. R. Henriques, “O impacto da
animação e da avaliação automática na motivação para o ensino da
programação,” Ph.D. dissertation, 2017.

[12] A. Costa Neto, C. Araújo, M. J. V. Pereira, and P. R. Henriques,
“Programmers’ affinity to languages,” P. R. Henriques, F. Portela,
R. Queirós, and A. Simões, Eds., vol. 91, Open Access Series
in Informatics (OASIcs). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi: 10.4230/OASIcs.ICPEC.2021.3. ISBN
978-3-95977-194-8. ISSN 2190-6807 pp. 1–7. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2021/14219

[13] J. Alves, A. Costa Neto, M. J. V. Pereira, and P. R. Henriques,
“Characterization and identification of programming languages,”
A. Simões, M. M. Berón, and F. Portela, Eds., vol. 104, Open Access
Series in Informatics (OASIcs). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi: 10.4230/OASIcs.SLATE.2022.14 pp. 1–15.
[Online]. Available: https://drops.dagstuhl.de/opus/volltexte/2022/16760

[14] C. Casalnuovo, E. T. Barr, S. K. Dash, P. Devanbu, and E. Morgan,
“A theory of dual channel constraints,” in Proceedings of the

ACM/IEEE 42nd International Conference on Software Engineering:

New Ideas and Emerging Results, ser. ICSE-NIER ’20. New
York, NY, USA: Association for Computing Machinery, 2020. doi:
10.1145/3377816.3381720. ISBN 9781450371261 p. 25–28. [Online].
Available: https://doi.org/10.1145/3377816.3381720

[15] J. Figueiredo and F. J. García-Peñalvo, “Building skills in introductory
programming,” F. J. García-Peñalvo, Ed., Proceedings of the Sixth
International Conference on Technological Ecosystems for Enhancing
Multiculturality. New York: ACM, 10 2018. doi: 10.1145/3284179.
ISBN 9781450365185 p. 46–50. [Online]. Available: https://dl.acm.org/
doi/10.1145/3284179.3284190

[16] M. Fourment and M. R. Gillings, “A comparison of
common programming languages used in bioinformatics,” BMC

Bioinformatics, vol. 82, no. 9, 02 2008. doi: 10.1186/1471-2105-9-
82. [Online]. Available: https://bmcbioinformatics.biomedcentral.com/
articles/10.1186/1471-2105-9-82

[17] A. H. Odeh, “Analytical and comparison study of main web program-
ming languages: Asp and php,” TEM Journal, vol. 8, pp. 1517–1522,
11 2019. doi: 10.18421/TEM84-58. [Online]. Available: http://www.
temjournal.com/content/84/TEMJournalNovember2019_1517_1522.pdf

[18] N. Walia and A. Kalia, “Programming languages for data mining: a
review,” International Journal of Computer Trends and Technology,
vol. 68, pp. 38–41, 2020. doi: 10.14445/22312803/IJCTT-V68I1P109.
[Online]. Available: https://ijcttjournal.org/archives/ijctt-v68i1p109

[19] T. R. Gruber, “A translation approach to portable ontology
specifications,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220,
1993. doi: https://doi.org/10.1006/knac.1993.1008. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1042814383710083

[20] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge engineering:
Principles and methods,” Data & Knowledge Engineering, vol. 25, no. 1,
pp. 161–197, 1998. doi: https://doi.org/10.1016/S0169-023X(97)00056-
6. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0169023X97000566

[21] Apache Software Foundation, “Apache http server project.” [Online].
Available: https://httpd.apache.org

[22] ——, “Apache activemq.” [Online]. Available: https://activemq.apache.
org

[23] Oracle, “Mysql.” [Online]. Available: https://www.mysql.com

[24] Dormando, “Memcached.” [Online]. Available: https://www.
memcached.org

[25] B. W. Kernighan and D. M. Ritchie, C Programming Language, 2nd ed.
Pearson, 03 1988.

[26] Python Foundation, “Welcome to python.org,” 11 2019. [Online].
Available: https://www.python.org

[27] Mozilla Foundation, “Html: Hypertext markup language.” [Online].
Available: https://developer.mozilla.org/en-US/docs/Web/HTML

[28] ——, “Css: Cascading style sheets.” [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/CSS

[29] D. D. Chamberlin, “Early history of sql,” IEEE Annals of the History of

Computing, vol. 34, pp. 78–82, 11 2012. doi: 10.1109/MAHC.2012.61.
[Online]. Available: https://ieeexplore.ieee.org/document/6359709

[30] LibSSH, “Libssh.” [Online]. Available: https://www.libssh.org
[31] R. Santamaria, “raylib.” [Online]. Available: https://www.raylib.com
[32] Apple, “Swiftui,” Apple Developer. [Online]. Available: https://

developer.apple.com/xcode/swiftui/
[33] Meta Platforms, “React native.” [Online]. Available: https://reactnative.

dev
[34] The JUnit Team, “Junit.” [Online]. Available: https://junit.org
[35] C. Araújo, P. R. Henriques, and J. J. Cerqueira, “Ontocne, character-

izing learning resources for training computational thinking,” in 2023

International Symposium on Computers in Education (SIIE), 2023. doi:
10.1109/SIIE59826.2023.10423710 pp. 1–6.

[36] S. Teixeira, R. V. Boas, F. Oliveira, C. Araújo, and P. R. Hen-
riques, “Ontojogo: An ontology for game classification,” in 2020 IEEE

8th International Conference on Serious Games and Applications for

Health (SeGAH). Vancouver, BC, Canada: IEEE Xplore, 2020. doi:
10.1109/SeGAH49190.2020.9201876. ISBN 978-1-7281-9042-6. ISSN
2573-3060 pp. 1–8.

[37] C. Araújo, L. Lima, and P. R. Henriques, “An Ontology based
approach to teach Computational Thinking,” in 21st International

Symposium on Computers in Education (SIIE), C. G. Marques,
I. Pereira, and D. Pérez, Eds. IEEE Xplore, Nov 2019.
doi: https://doi.org/10.1109/SIIE48397.2019.8970131. ISBN 978-1-
7281-3182-5 pp. 1–6.

[38] D. R. Barbosa, “CnE-Ar: Teaching of Computational Thinking to Adults
in Reconversion,” Master’s thesis, Minho University, Braga, Portugal,
April 2021, MSc dissertation.

[39] M. de La Salete Teixeira, “Adequa, a platform for choosing Games
suitable to Students’ Profile,” Master’s thesis, Minho University, Braga,
Portugal, March 2021, MSc dissertation.

[40] C. Araújo, P. R. Henriques, and J. J. Cerqueira, “Creating Learning
Resources based on Programming concepts,” in Local Proceedings of

the 15th International Conference on Informatics in Schools – ISSEP

2022, A. Bollin and G. Futschek, Eds. Klagenfurt; Wien, Auatria: The
Austrian Library Association, open-access net-library, Sep 2022. doi:
10.48415/2022/issep.2022 pp. 35–46.

[41] L. Martins, C. Araújo, and P. R. Henriques, “Digital Collection
Creator, Visualizer and Explorer,” in 8th Symposium on Languages,

Applications and Technologies (SLATE 2019), ser. OpenAccess Series
in Informatics (OASIcs), R. Rodrigues, J. Janoušek, L. Ferreira,
L. Coheur, F. Batista, and H. G. Oliveira, Eds., vol. 74. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.
ISBN 978-3-95977-114-6 p. 15:1–15:8. [Online]. Available: https:
//www.dagstuhl.de/dagpub/978-3-95977-114-6

[42] A. M. C. Dias, “ONTODL+, An ontology description language and its
compiler,” Master’s thesis, Minho University, Braga, Portugal, Sep 2021,
MSc dissertation.

[43] W3C, “Web ontology language (owl).” [Online]. Available: https:
//www.w3.org/OWL/

[44] Elastic, “Elastisearch.” [Online]. Available: https://www.elastic.co/
elasticsearch

[45] MongoDB, “Mongodb.” [Online]. Available: https://www.mongodb.com
[46] Broadcom, “Rabbitmq.” [Online]. Available: https://www.rabbitmq.com
[47] Unity Technologies, “Unity real-time development platform.” [Online].

Available: https://unity.com
[48] Software Freedom Conservancy, “Git.” [Online]. Available: https:

//git-scm.com

464 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


