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Abstract—In this research paper, we examine classes of deci-
sion tables that are closed under attribute (column) removal and
changing of decisions associated with rows. For decision tables
belonging to these closed classes, we investigate lower bounds on
the minimum cardinality of reducts. Reducts are minimal sets of
attributes that allow us to determine the decision attached to a
given row. We assume that the number of rows in the decision
tables from the closed class is not limited by a constant. We divide
the set of these closed classes into two families. In one family, the
minimum cardinality of reducts for decision tables is bounded
by standard lower bounds of the form Ω(log cl(T )), where cl(T )
represents the number of decision classes in the table T . In the
other family, these lower bounds can be significantly tightened

to the form Ω(cl(T )1/q) for some natural number q.

I. INTRODUCTION

D
ECISION tables are a widely recognized method for

organizing and presenting information that is crucial

for decision-making. These tables have various applications

in data analysis, such as classification problems, studying

combinatorial optimization, fault diagnosis, and computational

geometry, among others. They have been extensively studied

and utilized in different fields, as evidenced by the works

[1], [2], [3], [4], [5], [6], [7], [8], [9]. It is worth noting that

finite information systems with a designated decision attribute,

datasets with a selected class attribute, and partially defined

Boolean functions, which are commonly used in various data

analysis domains to represent decision problems, can all be

naturally interpreted as decision tables.

In this study, we focus on classes of decision tables that

exhibit closure properties regarding operations of attribute

(column) removal and decision modification attached to rows.

One of the most natural examples of such classes is the set

of decision tables derived from information systems. This set

forms a closed class of decision tables. However, the family of

all closed classes of decision tables is more extensive than the

family derived from information systems alone. For instance,

the union of classes derived from two separate information

systems is also a closed class. However, it is important to

note that there may not exist a single information system from

which this union can be derived as a closed class.
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We investigate lower bounds on the minimum cardinality of

reducts for decision tables belonging to closed classes. Reducts

are minimal sets of attributes that enable the recognition of

the decision attached to a given row of the table. In rough

set theory, reducts play a crucial role in feature selection,

classification problem solving, and knowledge compression

[2], [7], [10], [11], [12], [13], [14]. Therefore, determining

the lower bounds on the minimum cardinality of reducts is of

considerable significance in rough set theory.

In this study, we make the assumption that the number of

rows in decision tables belonging to the closed class is not

restricted by a constant. We categorize these closed classes

into two families. In one family, the minimum cardinality

of reducts for decision tables is bounded by standard lower

bounds of the form Ω(log cl(T )), where cl(T ) represents the

number of decision classes in the table T . In the other family,

these lower bounds can be significantly tightened to the form

Ω(cl(T )1/q) for some natural number q. The findings obtained

from this research can be valuable for experts in the field of

data analysis.

This paper is divided into six sections. Sections II and III

provide the primary definitions and relevant results pertaining

to decision tables and closed classes of decision tables. In Sect.

IV, we explore lower bounds on the cardinality of reducts.

Section V presents examples that are associated with closed

classes of decision tables derived from information systems.

Finally, Sect. VI summarizes the main findings and presents

brief conclusions.

II. DECISION TABLES

Consider a nonempty finite set B with k elements, where

k ≥ 2. We define a B-decision table T as a rectangular table

with n columns. Each column is labeled with attributes (specif-

ically attribute names). The rows of the table consist of distinct

tuples from Bn, and they are labeled with nonnegative integers

representing decisions. In this context, Rows(T ) refers to the

set of rows in table T , N(T ) represents the total number

of rows in T , and cl(T ) represents the number of distinct

decisions attached to the rows of T (also known as the number

of decision classes in table T ). The value n is referred to as

the dimension of table T and is denoted as dimT .
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A test for a table T is defined as a set of attributes (columns)

from the table T such that any two rows in T with different

decisions have at least one differing attribute in the selected

set of columns. A reduct for table T is a test for T where none

of its proper subsets can serve as a test. The minimum number

of attributes in a reduct for table T is denoted as R(T ). If the

number of distinct decisions in T (i.e., cl(T )) is less than 2,

then R(T ) is defined as 0.

Let [T ] represent the set of decision tables that can be

derived from T using the following process: we are allowed

to remove any number of attributes (columns) from T , retain

only one row from each group of identical rows in the resulting

table, and modify the decisions attached to the remaining rows

in any desired manner.

A decision table T that has n columns is referred to as

quasicomplete if there exist subsets B1, . . . , Bn of the set

B, each consisting of two elements, such that the Cartesian

product B1 × · · · ×Bn is a subset of Rows(T ). We use I(T )
to represent the highest dimension among all quasicomplete

tables from [T ]. The following statement immediately follows

from Theorem 4.6 in the work [5].

Lemma 1. For arbitrary B-decision table T with cl(T ) ≥ 2,

N(T ) ≤ (k2 dimT )I(T ).

III. CLOSED CLASSES OF DECISION TABLES

Consider a set C consisting of B-decision tables. We define

C as a closed class of decision tables if it can be represented as

the union of [T ] for all T belonging to C. In other words, C =⋃
T∈C [T ]. A closed class C is referred to as nondegenerate

if the number of rows in tables from C is not restricted by a

constant upper bound.

Next, we introduce a parameter I(C) for a nondegenerate

closed class C of decision tables. If the parameter I is limited

by a constant for all tables in class C, then we define I(C)
as the maximum value among all I(T ) for T in C. However,

if there is no upper bound on I for the tables in class C, then

we assign I(C) the value of positive infinity.

Let’s examine the characteristics of the function

NC(n) = max{N(T ) : T ∈ C, dimT ≤ n}.

This function, defined over the set of natural numbers, rep-

resents the manner in which the number of rows in decision

tables from the class C increases in the worst-case scenario

as their dimension grows.

Lemma 2. Consider a nondegenerate closed class C of B-

decision tables.

(a) If I(C) < +∞, then NC(n) ≤ (k2n)I(C) for any

natural n.

(b) If I(C) = +∞, then 2n ≤ NC(n) ≤ kn for any natural

n.

Proof. (a) Suppose I(C) < +∞. From Lemma 1, we can

derive that NC(n) ≤ (k2n)I(C) for any natural n.

(b) Assume that I(C) = +∞ and let n be a natural

number. The inequality NC(n) ≤ kn is straightforward. Since

I(C) = +∞, there exists a quasicomplete table Tn ∈ C with

a dimension dimTn = n. It is evident that N(Tn) ≥ 2n.

Therefore, we have 2n ≤ NC(n).

IV. BOUNDS ON CARDINALITY OF REDUCTS

To begin, we establish a preliminary statement.

Lemma 3. Consider a nondegenerate closed class C of B-

decision tables, and let T be a decision table from C for which

cl(T ) ≥ 2. Then

NC(R(T )) ≥ cl(T ).

Proof. Assume that R(T ) = m, and let {f1, . . . , fm} be a

reduct of table T with the smallest possible cardinality. We

represent the table obtained by removing all attributes from T
except for f1, . . . , fm as T ′, where T ′ is a table from [T ]. In

this case, the number of rows in the table T ′ must be at least

as large as the number of decision classes in T , which can

be expressed as N(T ′) ≥ cl(T ). Additionally, it is evident

that N(T ′) ≤ NC(m). Consequently, we can conclude that

NC(m) ≥ cl(T ).

Theorem 1. Consider a nondegenerate closed class C of B-

decision tables.

(a) If I(C) < +∞, then R(T ) ≥ cl(T )1/I(C)/k2 for any

table T ∈ C with cl(T ) ≥ 2.

(b) If I(C) = +∞, then R(T ) ≥ logk cl(T ) for any table

T ∈ C with cl(T ) ≥ 2.

(c) If I(C) = +∞, the inequality R(T ) ≥ log2 cl(T ) +
1 does not hold for infinitely many tables T from the class

C where both the dimension (number of attributes) and the

number of decision classes are not bounded from above by

any fixed constants.

Proof. (a) Suppose I(C) < +∞, T ∈ C, cl(T ) ≥ 2,

and R(T ) = m. Using Lemma 2, we can obtain that

NC(m) ≤ (k2m)I(C). By Lemma 3, NC(m) ≥ cl(T ).
Therefore, (k2m)I(C) ≥ cl(T ) and m ≥ cl(T )1/I(C)/k2.

(b) Suppose I(C) = +∞, T ∈ C, cl(T ) ≥ 2, and R(T ) =
m. Using Lemma 2, we can obtain that NC(m) ≤ km. By

Lemma 3, NC(m) ≥ cl(T ). Therefore, km ≥ cl(T ) and m ≥
logk cl(T ).

(c) Consider a natural number n. Since I(C) = +∞, there

exists a quasicomplete decision table Tn in the class C with

a dimension dimTn = n and a number of decision classes

cl(Tn) ≥ 2n. Let us assume that R(Tn) ≥ log2 cl(Tn) + 1.

Then we have R(Tn) ≥ log2 2
n+1 = n+1. It is evident that

n ≥ R(Tn). Therefore, the inequality R(Tn) ≥ log2 cl(Tn)+1
does not hold.

The statement (c) demonstrates that the bound mentioned

in the statement (b) cannot be significantly improved.

V. CLOSED CLASSES OF DECISION TABLES DERIVED

FROM INFORMATION SYSTEMS

The most common instances of closed classes of decision

tables arise from infinite information systems. An infinite

information system is defined as a triple U = (A,F,B), where
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A represents an infinite set of objects known as the universe,

B is a finite set with k elements (where k ≥ 2), and F is an

infinite set of functions from A to B known as attributes. A

problem within this context is specified by a finite number

of attributes f1, . . . , fn ∈ F where these attributes divide

the universe A into nonempty domains, with each domain

having fixed values for the attributes f1, . . . , fn. Each domain

is associated with a decision. The objective is to determine

the decision assigned to a given object a ∈ A based on the

domain to which a belongs.

A decision table represents this problem as follows: the

table consists of n columns that are labeled with the attributes

f1, . . . , fn. The rows of the table correspond to the domains

and are labeled with the decisions assigned to those domains.

We use Tab(U) to represent the set of decision tables that

correspond to all problems over the information system U . It

can be proven that Tab(U) is a nondegenerate closed class of

decision tables. We refer to this class as being derived from

the information system U .

A subset {f1, . . . , fp} of the set F is considered indepen-

dent if there exist two-element subsets B1, . . . , Bp of the set

B such that for any tuple (b1, . . . , bp) ∈ B1 × · · · × Bp, the

system of equations

{f1(x) = b1, . . . , fp(x) = bp}

has a solution from A. If, for any natural number p, the

set F contains an independent subset of cardinality p, then

I(Tab(U)) = +∞. Otherwise, I(Tab(U)) is equal to the

maximum cardinality of an independent subset in the set F .

Next, we examine some examples of infinite information

systems provided in the book [6].

Example 1. Consider the Euclidean plane P and a straight

line l within it. This line divides the plane into two open half-

planes, denoted as h1 and h2, along with the line l itself. We

assign an attribute to the line l, where this attribute takes the

value 0 for points in h1 and the value 1 for points in h2 and

on the line l. We denote the set of attributes corresponding to

all lines in P as FP , and we define the information system

UP = (P, FP , {0, 1}).
In this system, there exist two lines that divide the plane

P into four domains. However, there are no three lines

that can divide P into eight domains. As a result, we have

I(Tab(UP )) = 2. For any table T ∈ Tab(UP ) with the

number of distinct decisions in the table cl(T ) ≥ 2, we have

a lower bound on the minimum cardinality of reducts R(T )
given by R(T ) ≥ cl(T )1/2/4. This lower bound is significantly

tighter than the standard bound R(T ) ≥ log2 cl(T ).

Example 2. Consider two natural numbers, m and t. We

use Pol(m) to represent the set of polynomials with integer

coefficients that depend on variables x1, . . . , xm. Similarly,

Pol(m, t) refers to the set of polynomials from Pol(m) that

have a degree no greater than t. We define information

systems U(m) and U(m, t) in the following way: U(m) =
(Rm, F (m), E) and U(m, t) = (Rm, F (m, t), E), where R is

the set of real numbers, E = {−1, 0,+1}, F (m) = {sign(p) :

p ∈ Pol(m)}, F (m, t) = {sign(p) : p ∈ Pol(m, t)},

and sign(x) = −1 if x < 0, sign(x) = 0 if x = 0,

and sign(x) = +1 if x > 0. It can be demonstrated

that I(Tab(U(m))) = +∞ and I(Tab(U(m, t))) < +∞.

Consequently, for any natural number m and any table T
from Tab(U(m)) such that cl(T ) ≥ 2, we have a lower

bound for the minimum cardinality of reducts R(T ) given

by R(T ) ≥ log3 cl(T ). This bound cannot be significantly

improved.

Similarly, for any natural numbers m and t, and any table

T from Tab(U(m, t)) such that cl(T ) ≥ 2, we have a lower

bound for the minimum cardinality of reducts R(T ) given by

R(T ) ≥ cl(T )1/q/9 for some natural number q.

VI. CONCLUSIONS

This research paper introduces a division of nondegenerate

closed classes of decision tables into two distinct families.

In one family of closed classes, the minimum cardinality

of reducts for decision tables is bounded by standard lower

bounds, specifically Ω(log cl(T )), where cl(T ) represents the

number of decision classes in the table T . In the other family

of closed classes, these lower bounds can be significantly

improved, reaching the form of Ω(cl(T )1/q) for some natural

number q.
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