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Abstract—This work provides a comprehensive analysis of
the optimization of a Virtual Power Plant (VPP), that con-
sider the presence of energy storage systems and controllable
loads, through the benchmarking of various solvers. It delves
into the development of a Mixed Integer Linear Programming
(MILP) algorithm aiming at optimizing energy management and
exchange within a VPP, that takes into account the operation
of shift electric appliances and battery storage systems among
different houses. The proposed model aims to minimize the
overall electricity cost while ensuring that the energy demand
of the system is met, the battery state of charge is maintained
within safe operating limits, and the shift electrical appliance
is scheduled. Furthermore, the experimental comparisons, the
study evaluates the performance of commercial and open-source
solvers in handling the complex dynamics of energy demand
and supply. The findings highlight the importance of solver
selection in enhancing the management, scalability, and reliability
of VPP optimization strategies, offering insights into the optimal
combination of programming interfaces and solvers for efficient
VPP operation.

I. INTRODUCTION

A
ROUND the world, Renewable Energy Sources (RESs)

have taken advantage of the strong development of

Distributed Energy Resources (DERs) [1]. A solution to this

challenge is to aggregate the RESs, assuming that there may be

unstable output and inconsistent generation of individual RES

to emerge like a conventional generator with relatively stable

output. Virtual Power Plants (VPPs) provide the potential

solution for this problem, integrating Cyber-Physical Systems

(CPS) to enhance the efficiency and coordination of various

distributed energy resources [2].

The concept of VPPs represent a transformative approach

in the energy sector, aiming to integrate various DERs such as

renewable energy sources, controllable loads, and Energy Stor-

age Systems (ESSs) into a cohesive and optimized network.

This integration is facilitated through advanced software and

hardware technologies, allowing for centralized control while
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Business Innovation”), within the Recovery and Resilience Plan (PRR).
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maintaining the autonomy of individual resources. The concept

of VPPs is becoming increasingly important as the global

shift towards RESs intensifies, requiring innovative solutions

to manage the variability and decentralization inherent in these

sources [3].

In this sense, based on strategies and technologies for

monitoring, controlling and programming DERs, it is pos-

sible for a VPP to generate benefits such as decreasing the

customer’s energy cost, reducing emissions, increasing energy

efficiency, and asset control/optimization [4]. In this paper, a

benchmark study for a VPP algorithm is addressed, where

energy balance is guaranteed, the battery’s state of charge

is kept within safe operating limits, and electrical appliances

are shifted accordingly to the user’s requirements, all with a

view to minimize operating costs. The scenario that served as

the basis for this work was based on the model formulated

in [5]. This deals with energy consumption management in

the residential sector, as it is crucial to mitigate peak demand.

It is based on reprogramming household appliances to change

their load during peak hours, which significantly helps the

grid. By combining the capabilities of ESS and load-shifting

appliances, the Home Energy Management System (HEMS)

can intelligently program and coordinate the operation of these

devices to maximize the use of renewable energy resources and

minimize electricity costs.

Moreover, this paper explores the development of a MILP

algorithm designed to optimize the energy exchange among

different houses within a VPP, focusing on the decision-

making process regarding energy trading in specific time

frames. The need for such optimization arises from the com-

plex dynamics of energy demand and supply, the integration of

RESs, and the economic considerations of buying and selling

energy in the competitive market. The study delves into the

performance of various commercial and open-source solvers in

handling the optimization model. This comparative analysis is

crucial for identifying the most effective computational tools

for VPP optimization, taking into account factors such as

computational efficiency, scalability, and the ability to handle

VPP operations.

This paper is organized as follows: Section II presents the
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literature review on VPPs, highlighting their significance, op-

erational challenges, and the role of optimization algorithms.

Section III describes the optimization algorithm used in VPP,

detailing the mathematical model, objectives, parameters, and

key constraints. Section IV discusses the practical implemen-

tation of the optimization service, including the architecture,

data workflow, and comparison between commercial and open-

source solvers. Section V presents the results of the study,

focusing on the input/output data, test scenarios, implementa-

tion, and discussion. Finally, Section VI concludes the paper

and suggests directions for future work.

II. LITERATURE REVIEW

The emergence of VPPs marks a significant evolution in

the power system architecture, aggregating DERs such as

distributed generation, energy storage, and flexible charging

capabilities to provide vital grid services [6], [7]. The inte-

gration of VPPs into the energy system enhances efficiency,

reliability, and sustainability, addressing the challenges posed

by the increasing penetration of variable RESs like solar

and wind energy. Since the early 2000s, the concept of

VPPs has gained prominence as a solution to the variability

and unpredictability of RESs, which, despite their clean and

renewable nature, introduce issues related to system stability

and reliability [2].

To further enrich our understanding of VPPs and their

pivotal role in integrating DERs, it’s crucial to explore the

operational challenges they face in greater depth, particularly

in terms of reliability, scalability, and security. VPPs, being

at the forefront of the transition to a decentralized energy

system, face unique challenges related to the intermittent

nature of RESs, the complexity of managing diverse en-

ergy assets, and ensuring cybersecurity in an increasingly

digitalized infrastructure. VPPs offer a strategic response to

these challenges by enhancing system flexibility. They play

a crucial role in balancing the generation from RESs with

demand, providing essential grid services such as frequency

re-balancing, load management, and participating in energy

markets. This ability to mitigate the impacts of variable energy

sources on the grid underlines the importance of developing

advanced optimization algorithms for VPP operation [4].

When exploring the development and optimization of VPPs,

the importance of Cyber-Physical Systems (CPS) in smart

grids becomes evident [8]. The integration of such systems

is crucial for the efficiency of VPPs, as it facilitates commu-

nication and coordination between the various DERs, from

generation to consumption. This context lays the foundation

for understanding VPPs not just as technological entities,

but as complex energy ecosystems that require advanced

optimization to operate effectively.

The optimization of VPPs, especially with regard to the

control of microgrids, is an area of growing interest in the

scientific community [9]. Effective control of microgrids,

essential components of VPPs, plays a significant role in the

management of DERs, highlighting the need to develop robust

algorithms that can deal with the complexity and dynamism of

the energy system. The approach of using MILP to optimize

DERs in microgrids illustrates the applicability of this method-

ology in solving complex optimization problems in VPPs [10].

The ability to model sizing, allocation and operation decisions

in an integrated way offers a powerful tool to optimize the

performance of VPPs, ensuring energy efficiency and sustain-

ability. The objective is to minimize energy usage costs in a

day-ahead operation. Furthermore, on the application of MILP

in integrated power systems provides valuable insights into

the different interfaces and solvers used in optimizing VPPs

([11]). This analysis highlights the diversity of available tools

and the importance of selecting the most appropriate approach

for each specific scenario, emphasizing the need for detailed

benchmarks that evaluate the performance of these different

solvers.

More recently, some works provide insights into the cur-

rent trends and methodologies in VPP optimization, includ-

ing the application of MILP models, consideration of trade

markets, and the optimization of solvers to enhance VPP

operations [12], [13]. Recent studies have underscored the

importance of addressing these challenges through advanced

optimization strategies, real-time data analytics, and robust cy-

bersecurity protocols. For instance, the integration of machine

learning algorithms for predictive analysis can significantly en-

hance the forecasting accuracy of renewable energy production

and consumption patterns, thus improving the VPP’s ability to

balance supply and demand effectively [14], [15].

To ensure the resilience of VPP operations, research has

also focused on developing sophisticated strategies that can

dynamically adapt to changes in the energy market and

regulatory environments. This includes the application of

adaptive optimization algorithms that can accommodate mul-

tiple objectives, such as minimizing costs, maximizing the

use of renewable energy, and ensuring grid stability. The

contribution of this article lies in the application of a MILP

algorithm developed specifically to optimize energy exchanges

within VPP, addressing the complexity inherent in energy

purchase and sale decisions taking into account the shifts

of home appliances’ energy management. By comparing the

performance of various solvers and interfaces, this research

not only fills an identified gap in the existing literature, but

also offers practical guidelines for effectively implementing

optimization solutions in VPPs. This approach allows for a

deeper understanding of the capabilities and limitations of

available solvers, guiding future research and development in

optimizing VPPs to improve the sustainability and efficiency

of the energy system.

III. OPTIMIZATION ALGORITHM IN VPP

The optimization algorithm for VPPs needs a comprehen-

sive approach that not only considers the economic objectives,

such as cost minimization and revenue maximization but

also integrates technical constraints including battery storage

capacities, renewable energy forecasts, and load demand vari-

ations.
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A critical component of the VPP algorithm involves the

formulation of a robust decision-making framework that can

efficiently manage the scheduling of appliance usage, the

charging and discharging of ESSs, the dispatch of distributed

generation units, and the real-time bidding in electricity mar-

kets. This requires the inclusion of predictive models that use

historical data and real-time inputs to forecast prices, genera-

tion capacity, and demand, thereby enabling more accurate and

dynamic optimization. The description of the general model

proposed in this work aims to support the management of

the VPP. The notation used for the model is presented below,

together with the mathematical formulation of the objectives,

parameters, assumptions, and key constraints of the model.

The VPP operation is modeled using a MILP mathematical

programming model that considers integer and continuous

variables and all functions, objective and constraints, are linear.

In terms of notation for indices and sets, different time periods

(t ∈ Nt), different houses (i ∈ Ni) and different appliances

(l ∈ Nl) were considered. Nt, Ni and Nl refer to the total

number of periods, houses, and appliances respectively. It

should be noted that the model in [5] refers to one household,

however, as the aim is to study the optimization of a VPP,

tests were carried out with several households.

This section presents the mathematical formulation used

to model the problem of VPP energy management, which

considers the scheduling of shift loads.

Equation 1 represents the objective function of the VPP,

which is the calculation of energy costs:

min
P

buy

t,i
,P sell

t,i

EC

EC =

Ni
∑

i=1

Nt
∑

t=1

(

P
buy
t,i × tou

buy
t,i − P sell

t,i × fitsell
t,i

)

×∆t+ cfix
i

(1)

where EC represents the energy costs, P
buy
t,i is the power

purchased from the grid, tou
buy
t,i is the time-of-use tariff for

buying, P sell
t,i is the power sold to the grid, fitsell

t,i is the tariff

for selling power, ∆t represents the hourly adjust value, and

cfix
i is the fixed costs. Equation 2 represents the VPP energy

balance:

P
buy
t,i + P

gen
t,i + P dch

t,i = P sell
t,i +

Nl
∑

l=1

P shift
t,i,l + P load

t,i − P ch
t,i,

∀t ∈ Nt, ∀i ∈ Ni

(2)

where P
gen
t,i is the power generated by the PV system, P dch

t,i

is the power discharged from the battery, P shift
t,i,l is the power

of shifted controllable loads, P load
t,i is the power consumed

by the uncontrollable loads and P ch
t,i is the power charged to

the battery. Equation 3-5 are used to simulate the buying and

selling of electricity:

0 ≤ P
buy
t,i ≤ P

buy
t,i × Y

buy
t,i , ∀t ∈ Nt, ∀i ∈ Ni (3)

0 ≤ P sell
t,i ≤ P sell

t,i × Y sell
t,i , ∀t ∈ Nt, ∀i ∈ Ni (4)

Y
buy
t,i + Y sell

t,i ≤ 1, ∀t ∈ Nt, ∀i ∈ Ni (5)

where P
buy
t,i and P sell

t,i are the maximum limits for buying

and selling electricity, and Y
buy
t,i , Y sell

t,i are binary variables

indicating whether buying or selling actions are taken. In this

case, the use of binary variables is important to ensure that

only one action is performed in a given period. Equations 6-9

are used to emulate the battery behavior:

0 ≤ P ch
t,i ≤ P ch

t,i × Y ch
t,i , ∀t ∈ Nt, ∀i ∈ Ni (6)

0 ≤ P dch
t,i ≤ P dch

t,i × Y dch
t,i , ∀t ∈ Nt, ∀i ∈ Ni (7)

Y ch
t,i + Y dch

t,i ≤ 1, ∀t ∈ Nt, ∀i ∈ Ni (8)

SoCbat
t,i ≤ SoCbat

t,i ≤ SoCbat
t,i , ∀t ∈ Nt, ∀i ∈ Ni (9)

where, P ch
t,i represents the maximum limit for battery

charge, Y ch
t,i is a binary variable associated to the battery

charge action, P dch
t,i denotes the maximum value for battery

discharge, Y dch
t,i indicates the binary variable associated to the

discharge action, SoCbat
t,i represents the state of charge of the

battery, SoCbat
t,i and SoCbat

t,i are the minimum and maximum

limit for the state of charge of the battery. Equation 10 is

used to calculate the balance of the battery for period t=1 and

equation 11 to calculate the balance in the remaining periods:

SoCbat
t,i = SoCbat init

i + (P ch
t,i − P dch

t,i )∆t, t = 1, ∀i ∈ Ni

(10)

SoCbat
t,i = SoCbat

t−1,i+(P ch
t,i−P dch

t,i )∆t, ∀t ∈ [2, Nt], ∀i ∈ Ni

(11)

where SoCbat init
i is the state of charge value for the first

instant. Equation 12 presents the shift power loads calculation:

P
shift
t,i,l = P controllable load

t,i,l ·zt,i,l, ∀t ∈ Nt, ∀i ∈ Ni, ∀l ∈ Nl

(12)

where, P controllable load
t,i,l represents the power for the con-

trollable load and zt,i,l indicates whether the load is turned on

or off. Equations 13 and 14 are used to control and shift the

controllable loads:

zt,i,l ≤ tont,i,l, t = 1, ∀i ∈ Ni, ∀l ∈ Nl (13)

zt,i,l ≤ zt−1,i,l + tont,i,l, ∀t ∈ [2, Nt], ∀i ∈ Ni, ∀l ∈ Nl (14)

where, tont,i,l represents a binary variable that indicates the

moment when the load is turned on. Equation 15 ensures
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that shift loads will be activated during the predefined period

number, while equation 16 ensures that each shift load will

only be activated once:

Nt
∑

t=1

zt,i,l = P
controllable load periods
t,i,l , ∀i ∈ Ni, ∀l ∈ Nl

(15)

Nt
∑

t=1

tont,i,l = 1, ∀i ∈ Ni, ∀l ∈ Nl (16)

where p
controllable load periods
t,i,l represents the total number of

periods that each shift load needs to be activated. Equation 17

presents the limits for binary variables.

{Y buy
t,i , Y sell

t,i , Y ch
t,i , Y

dch
t,i , zt,i,l, t

on
t,i,l} ∈ {0, 1} (17)

IV. PRACTICAL IMPLEMENTATION

The optimization service plays a pivotal role in the opera-

tional framework of the system. It is designed as a modular

service, which intakes operational data from both external

sources, processes this data through a mathematical optimiza-

tion model, and receive the outputs and directives for the

operational control. The core of this service is the optimization

algorithm, which relies on solver software to find optimal

solutions within a predefined time constraint. Fig. 1 presents

the architecture and data workflow of the optimization service.

Optimization Service

Output

Input

MILP model

Commercial
Solvers

PuLP
Python-MIP
Gurobipy
DOcplex

Interfaces

Gurobi
CPLEXCBC

Open-source
Solvers

Fig. 1. Architecture and data flow for the optimization service.

The service fetches data through an abstract class, mean-

ing any database system could be integrated if a concrete

implementation of the abstract class is provided. This class

defines an interface with a single function, which takes the

input for the algorithm (defined in Table I) and returns a

solution as an output (defined in Table II). The optimization

service can be considered as a single worker; i.e., at any given

moment, it can only process one single input dataset using

one single solver. This does not imply that no parallelization

is achievable, however, as it is up to the solvers to adopt such

parallel computing strategies internally. If the optimization of

multiple input datasets is required, then multiple instances of

the optimization service can be deployed, every single one of

them with a different solver, if desired. It should be noted

that there is no automatic choice of solver; the solver must be

chosen manually during the configuration of the service.

The practical implementation of VPP optimization ser-

vices requires a critical evaluation of the available solver

technologies, both commercial and open-source. Our com-

parison focuses on aspects such as computational efficiency,

scalability, ease of integration, and cost-effectiveness. In the

realm of optimization problems, especially those as complex

and dynamic as those encountered in VPP operations, the

choice of solver can significantly impact the efficiency and

reliability of the solution process. While open-source solvers

offer accessibility and flexibility, commercial solvers typically

provide superior performance in terms of computational speed

and problem-solving capabilities. Two of the most renowned

commercial solvers are Gurobi and CPLEX [16], [17], both

of which have established a reputation for their robustness

in handling large-scale optimization problems across various

industries, including energy management and optimization in

VPPs.

To achieve optimal performance, it is important to ex-

amine the solver behavior through the log file analysis. If

feasible, it is advisable to explore various solvers, in order

to expand the range of options. However, it is crucial to

exercise caution when relying solely on recommendations for

well-established, state-of-the-art solvers, particularly without

conducting practical computational experiments. Additionally,

it is essential to take into account the complexity of the

modeling environment/language and estimate the amount of

time required to complete the modeling phase.

A. Commercial Solvers

Commercial solvers play a pivotal role in the efficient

handling of complex optimization problems. Below are two

solvers, Gurobi and CPLEX, renowned for their advanced

algorithms and high-performance capabilities.

• Gurobi: Developed by Gurobi Optimization, LLC, the

Gurobi Optimizer is a state-of-the-art solver for a wide

range of optimization problems, including Linear Pro-

gramming (LP), MILP, Quadratic Programming, and

Mixed-integer Quadratic Programming. Gurobi is cele-

brated for its high-performance computing capabilities,

scalability, and comprehensive support for programming

languages and development environments. It integrates

advanced algorithms that can be tuned for specific prob-

lem types, ensuring optimal performance and accuracy in

solving complex optimization models [16].

• CPLEX: IBM ILOG CPLEX Optimization Studio en-

compasses solvers for LP, MILP, QP, and MIQP prob-

lems. CPLEX Optimizer stands out for its powerful pre-

solve and cutting-plane algorithms, which efficiently re-

duce problem size and complexity, significantly speeding

up the solution process. Its parallel processing capabilities

allow it to leverage multiple processors to handle intricate

problems more efficiently, making it particularly suitable
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for the demanding optimization tasks associated with

managing VPP operations. CPLEX also offers a flexible

API and is supported by a wide range of programming

languages, facilitating its integration into custom appli-

cations [17].

B. Open-Source Solvers

CBC (COIN-OR Branch-and-Cut) is highlighted as a no-

table open-source solver for addressing various optimization

problems [18]. CBC has many key advantages, particularly its

cost-effectiveness due to the absence of licensing fees. This

attribute is especially valuable for enabling the application of

advanced optimization techniques without incurring the high

costs associated with commercial software. Such economic

efficiency promotes broader adoption and experimentation

with optimization models, fostering innovation and research in

energy management and beyond. It supports various modeling

languages and interfaces, such as PuLP and Python-MIP, facil-

itating its incorporation into existing systems and workflows.

This ease of integration significantly reduces development

time and complexity, rendering CBC a practical choice for

developers and researchers working on optimization problems.

Its compatibility with modeling languages and interfaces en-

sures that CBC can seamlessly fit into diverse computational

environments, enabling the formulation and solving of MILP

models with efficiency and precision. Therefore, the following

abstraction interfaces were chosen:

• PuLP: It is a LP open-source library written in Python.

It serves as a modeling layer for LP and MILP problems.

The choice of PuLP is motivated by its simplicity in

defining decision variables, objectives, and constraints

directly in Python, and its compatibility with multiple

solvers (CBC, GLPK, CPLEX, and Gurobi), offering

flexibility in solver selection based on the problem at

hand and available licenses. This makes PuLP ideal for

scenarios requiring straightforward modeling and diverse

solver option [19].

• Python-MIP: Focused on MILP problems, Python-MIP

is particularly noted for its performance and advanced

features, essential for solving large and complex MILP

efficiently. The choice of Python-MIP was driven by the

need for a tool that provides deeper integration with

MILP solver technologies, enabling more sophisticated

problem-solving strategies. This tool provides specialized

features for MILP that are not as readily accessible in the

other tools [20].

V. RESULTS

This section presents the results from the benchmark study

of solvers for VPP optimization, detailing the performance

and efficiency of different solver technologies in managing

and optimizing VPP operations.

A. Input/Output Data

As detailed in Section III, the model takes in consideration

several constraints and decision variables, where only some are

provided as input and the rest as output from the solver. The

input data used in this study were collected from real historical

data of residential energy consumption and local photovoltaic

generation. This information was obtained through continuous

measurements in households utilizing HEMS. These data in-

clude appliance load profiles, photovoltaic energy production,

and electricity tariffs [5]. The input data, as outlined in the

Table I, includes a variety of parameters essential for the model

to perform accurately.

These parameters encompass the number of periods (Nt),

the number of houses (Ni), time interval between periods

(∆t), and various other technical and economic factors that

influence the VPP energy management decisions. The range of

values for these parameters is meticulously defined to accom-

modate the diversity in VPP configurations and operational

scenarios.

The output data, presented in Table II, details the results pro-

duced by the optimization model, which are critical for making

informed decisions regarding energy transactions within the

VPP.

These outputs are crucial in strategizing the VPP operations

to enhance efficiency, reduce costs, and maintain energy bal-

ance.

This distinction between input and output data underscores

the comprehensive approach adopted in the optimization

model, where various economic and technical aspects are taken

into consideration to optimize the VPP operations effectively.

The model ability to process a wide range of input param-

eters and produce actionable outputs facilitates the effective

management of energy resources, thereby contributing to the

overall efficiency and sustainability of the VPP ecosystem.

B. Testing Environment

All tests were executed on a machine with the following

hardware/software specifications:

• CPU: Intel Xeon E5-2686 v4 (only 4 vCPU)

• RAM: 16 GB

• OS: Ubuntu 24.04 LTS (virtualized), running Linux 6.8.0

As for Python and optimization libraries, the following

versions were used:

• CPython 3.10.14

• PyPy 7.3.16 (implements the Python 3.10.14 standard)

• Gurobi 11.0.2

• CPLEX 22.1.1.0 (with DOcplex 2.27.239)

• Python-MIP 1.15.0

• PuLP 2.7.0

To measure the scalability of the algorithm, four different

test scenarios were considered: 1 house, micro VPP (2 houses),

small VPP (4 houses) and community VPP (8 houses). A

fixed number of 96 periods with 15 minutes each was set,

to allow a full day-ahead optimization. Furthermore, it is

important to note that each house has controllable appliances

for energy management, more specifically 12 appliances (in-

cluding, for example, clothes washing machines, hair dryers,

coffee makers, and phone chargers, among others). Each
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TABLE I
INPUT DATA OF THE ALGORITHM.

Parameter Designation Value Range Unit

Nt Number of periods 96 -

Ni Number of houses 2− 8 -

Nl Number of controllable loads 12 -

∆t Time interval between periods 0.25 h

tou
buy
t,i

Price for buying electricity 0.1034− 0.2314 e/kWh

fitsell
t,i

Price for selling electricity 0.045 e/kWh

c
fix
i

Fixed costs 0.2197− 0.6249 e

P
buy
t,i

Maximum buy amount 4.6− 13.8 kWh

P sell
t,i

Maximum sell amount 4.6− 13.8 kWh

P ch
t,i

Maximum charge amount 0− 5 kWh

P dch
t,i

Maximum discharge amount 0− 5 kWh

P
gen
t,i

Generated energy forecast 0− 8.474 kWh

P load
t,i

Consumed energy forecast 0.052− 9.822 kWh

P controllable load
t,i,l

Controllable load power 0.01− 5.20 kWh

P
controllable load periods

t,i,l
Number of periods that each shift load needs to be activated 1− 8 -

SoCbat init
i

Initial state of charge of the battery 0− 1.92 kWh

SoCbat
t,i

Minimum SoC of the battery 0− 1.824 kWh

SoCbat
t,i

Maximum SoC of the battery 0− 9.6 kWh

TABLE II
OUTPUT DATA OF THE ALGORITHM.

Parameter Designation Unit

P
buy
t,i

Energy amount to be bought kWh

P sell
t,i

Energy amount to be sold kWh

P ch
t,i

Energy amount to be charged kWh

P dch
t,i

Energy amount to be discharged kWh

SoCbat
t,i

Resulting state of charge of the battery kWh

P
shift

t,i,l
Power of shifted loads kWh

Y
buy
t,i

Indicates whether energy was bought or not Binary

Y sell
t,i

Indicates whether energy was sold or not Binary

Y ch
t,i

Indicates whether energy was charged or not Binary

Y dch
t,i

Indicates whether energy was discharged or not Binary

zt,i,l Indicates whether the load is on or not Binary

ton
t,i,l

The period when the load is first turned on Binary

house has the same number of appliances, and the idea is

to implement strategies to monitor and schedule appliance

usage in a manner that reduces overall energy consumption

and minimizes electricity costs, regardless of the appliances

themselves.

Each optimization library was tested on each one of the

four test scenarios, only accounting for the time spent using

the solver (i.e., preparing the problem and optimizing); the

fetching of the data and subsequent output were not consid-

ered. The data was collected through the measurement of five

separate executions on sequentially-running processes.

This study does not aim to provide a direct comparison

between PyPy—an alternative Python implementation with a

just-in-time (JIT) compiler—and CPython; the two runtimes

are merely presented with the aim of analyzing how each

optimization library performs in their respective environments.

As noted by the PyPy developers, the usage of short-lived

processes and external libraries—which is, in essence, the

workload featured in this article—is not well-suited for JIT

compilation, and, as such, performance benefits will not be

visible1. In addition, since PyPy has no support for the official

Gurobi and DOcplex libraries, those tests were omitted from

the final results.

C. Implementation and Discussion

Implementing an optimization service for VPP requires

careful consideration of several factors beyond the selection

of a solver. These include the complexity of the optimization

model, the scalability of the solution (to accommodate varying

sizes of VPP networks), and the integration of the optimization

service with existing data sources and control systems. The

practical experiences of deploying commercial and open-

source solvers in VPP optimization tasks have shown that,

1https://www.pypy.org/features.html#speed (accessed 24 May 2024)
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TABLE III
EXECUTION TIME (IN SECONDS) OF THE SOLVERS, IN TERMS OF HOUSE

COUNT.

House Micro Small Community
(1) VPP (2) VPP (4) VPP (8)

Runtime Solver

docplex 0.313 1.483 2.543 9.858
gurobi 0.348 1.314 2.375 4.541
pulp:cbc 1.174 41.402 118.666 7272.551
pulp:cplex 0.540 1.868 3.988 20.937
pulp:gurobi 0.406 1.382 2.674 5.670
python-mip:cbc 0.798 24.499 110.241 2386.632

CPython

python-mip:gurobi 0.301 1.258 2.058 4.409

pulp:cbc 1.526 41.842 119.127 7279.646
pulp:cplex 1.002 2.444 4.493 20.965
pulp:gurobi 0.872 1.867 3.044 5.512
python-mip:cbc 1.244 24.979 110.855 2381.551

PyPy

python-mip:gurobi 0.716 1.693 2.419 4.391

while both types of solvers deliver different performance, their

suitability can vary depending on the specific requirements of

the task at hand, such as the problem size, the complexity

of constraints, and the computational resources available. For

example, the computational experiments revealed a significant

performance difference between commercial and open-source

solvers for MILP problems, even in small examples. This can

be attributed to algorithmic optimization, parallel processing,

advanced presolve techniques and cutting-edge features. The

results can be seen in Table III. The table is split into two

sections for CPython and PyPy runtimes.

Observing the previous table, it is also possible to see that

certain parameters influence the exploratory tests of different

interfaces and solvers:

• Solver performance variability: The discussion table

highlights significant variability in solver performance,

with Gurobi and CPLEX outperforming CBC in terms

of speed and reliability, especially as the problem size

increases. This aligns with the expectations set in the

literature review, where commercial solvers are often

recognized for their superior optimization capabilities and

efficiency in handling large-scale, complex problems.

• Impact of problem size on solver efficiency: As the

number of houses increases, the computational complex-

ity of the optimization problem escalates, challenging

the solvers capabilities to find optimal solutions within

reasonable time frames. The table shows a clear trend

of increasing execution time with the number of houses,

highlighting the importance of choosing a solver that

scales well with problem size for practical VPP appli-

cations.

• Optimization under real-world constraints: The results

underscore the necessity of employing solvers that can

effectively handle the intricate constraints typical of VPP

operations, such as electricity costs, energy balance and

battery management and the management of twelve indi-

vidual appliances through shift actions. The ability of a

solver to navigate these constraints efficiently is critical

TABLE IV
DETAILED EXECUTION TIME (IN SECONDS) OF THE SOLVERS FOR ONE

HOUSE.

Runtime Solver Mean ± stdev Min Max

docplex 0.313 ± 0.001 0.312 0.314
gurobi 0.348 ± 0.007 0.339 0.358
pulp:cbc 1.174 ± 0.007 1.166 1.185
pulp:cplex 0.540 ± 0.008 0.533 0.552
pulp:gurobi 0.406 ± 0.003 0.402 0.409
python-mip:cbc 0.798 ± 0.007 0.791 0.810

CPython

python-mip:gurobi 0.301 ± 0.003 0.297 0.305

pulp:cbc 1.526 ± 0.013 1.517 1.548
pulp:cplex 1.002 ± 0.020 0.985 1.031
pulp:gurobi 0.872 ± 0.088 0.825 1.029
python-mip:cbc 1.244 ± 0.008 1.236 1.254

PyPy

python-mip:gurobi 0.716 ± 0.006 0.707 0.723

for optimizing VPP performance, minimizing operational

costs, and ensuring energy supply meets demand. Here all

interfaces showed the ability to deal with the problem in

question.

The results in the table demonstrate that Python-MIP, com-

bined with the Gurobi solver, achieves the best results. This

outcome highlights several critical factors in the context of

optimization: solver compatibility and efficiency, algorithmic

enhancements and leveraging commercial solver strengths.

In order to have a clear understanding of the results, the

variation in the performance of the solvers is represented

below for an example case of one house. In this sense, Table IV

provides a detailed analysis of the execution times for different

solvers in a VPP optimization scenario with just one house.

Each solver performance is measured in terms of the mean

execution time with its standard deviation, as well as the

minimum and maximum execution times observed.

In the CPython runtime section, the “python-mip:gurobi”

solver exhibits the best average performance with a mean

execution time of 0.301 seconds. The “docplex” solver follows

closely, indicating that commercial solvers have the upper

hand in performance. CBC, both under PuLP and Python-

MIP, offers the worst level of performance of the list, with

Python-MIP beating PuLP by a slight margin.

Under the PyPy runtime, all solvers follow the same ranking

in regard to execution times. Particularly, “python-mip:gurobi”

achieves the best performance with a mean execution time of

0.716 seconds.

In order to visually capture the results from Table IV, a box

plot visualization (Fig. 2) was generated.

The box plot provides is a graphical tool to represent

the variation in observed statistical data using quartiles (e.g.,

minimum, maximum, and median). In turn, outliers can be

plotted as individual points. This visual evidence supports

an analysis in terms of consistency and variability in solver

performance, providing empirical data on their performance in

a VPP context.

In terms of the main observations made, it is worth high-

lighting that:
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Fig. 2. Box plot with the elapsed time for optimization by various solvers
for a scenario with one house setup.

• commercial solvers offer the best level of performance,

with low execution times even in more demanding work-

loads;

• CBC is not suitable for real-time usage, as the Commu-

nity VPP scenario takes between 30 minutes and 2 hours

to complete;

• solvers executed under CPython generally have a lower

average solving time compared to those run under PyPy,

as the test workload is not suitable for JIT compilation;

• the spread of the data for each solver is quite contained.

This visualization effectively highlights the efficiency and

consistency differences between solver implementations and

the impact of the Python runtime environment on their per-

formance. These results clearly illustrate that the choice of

both solver and runtime can significantly impact performance

in VPP optimization tasks. It also indicates that, while open-

source solvers like CBC are slower, they may offer a cost-

effective alternative to commercial solvers, especially when

used for smaller VPP sizes.

In essence, commercial solvers show superior performance,

suggesting their suitability for larger and more complex VPP

networks. However, the choice of solver also needs to consider

factors such as licensing costs, software compatibility, and the

availability of technical support. While commercial solvers

like Gurobi and CPLEX offer high performance and robust

support, their cost might not be justifiable for all project

scales. Conversely, open-source solvers like CBC provide a

viable alternative with flexibility and customization options,

although with potential trade-offs in terms of execution speed

and solution optimality. In this sense, it becomes important to

discuss the advantages of using open-source solvers. The most

evident advantage of using CBC, or any open-source solver,

is the absence of licensing fees. This cost efficiency can be

a critical factor in enabling the use of advanced optimiza-

tion techniques without the financial burden associated with

commercial software. This democratization of access allows

for a wider adoption and experimentation with optimization

models, fostering innovation and research in the field of energy

management and beyond. Furthermore, open-source software

offers unparalleled flexibility and customization opportunities.

Users can modify the source code to tailor the solver to

their specific needs, optimize its performance for particular

types of problems, or even contribute improvements back

to the community. This adaptability is particularly beneficial

in the rapidly evolving domain of VPPs, where unique and

complex optimization challenges can necessitate specialized

solver functionalities. In addition, open-source projects benefit

from the support of a broad and active community. Users

and developers can collaborate, share knowledge, and offer

support through forums, repositories, and direct contributions.

This collective intelligence can accelerate problem-solving and

innovation. Additionally, the transparency of open-source soft-

ware ensures that the algorithms and methodologies employed

are fully visible and open to scrutiny, fostering trust and

understanding among users. Finally, the CBC solver, being

a part of the Computational Infrastructure for Operations

Research (COIN-OR) project, is designed with compatibility

and integration in mind. It can be used with various modeling

languages and interfaces, such as PuLP and Python-MIP, facil-

itating its incorporation into existing systems and workflows.

This ease of integration can significantly reduce development

time and complexity, making it a practical choice for a wide

range of optimization problems. It should be emphasized that

the purpose was not to observe the effects of the optimization

results on the VPPs, but rather to theoretically evaluate the

performance of the interfaces.

Thus, for many practical applications, CBC and other open-

source solvers can offer sufficient performance and capabili-

ties, especially when the problem is well-structured and falls

within the solver optimization strengths. For VPP operators

and developers, this suggests a strategic approach to solver and

interface selection, taking into consideration not only the math-

ematical and computational capabilities but also the execution

environment. The findings encourage further exploration and

benchmarking of different combinations to identify the most

effective setup for specific VPP optimization scenarios.

VI. CONCLUSIONS AND FUTURE WORK

The research presented in this document underscores the

critical role that solver selection plays in the effective manage-

ment and optimization of VPPs. Through a detailed compari-

son of solver performance across various scenarios. The study

offers valuable insights that pave the way for the development

of more efficient, scalable, and reliable VPP optimization

strategies to optimize house energy management considering

shifting of electric appliances.

The findings point to Python-MIP and Gurobi as a par-

ticularly promising combination for achieving high efficiency

in VPP optimization, especially in the context of any sized

networks. However, it is crucial for stakeholders to conduct

a thorough assessment of a project specific requirements

when choosing between commercial and open-source solvers.
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Commercial solvers like Gurobi and CPLEX, known for their

robustness, appear particularly well-suited for larger, more

complex VPP systems, while open-source solvers like CBC

are highlighted for their cost efficiency and flexibility, making

them ideal for scenarios with small to medium-sized networks

where these factors are prioritized. The performance, scalabil-

ity, and support services of the solver are critical factors that

influence the efficiency and reliability of the VPP optimization

service.

Despite the strengths of the study, including the compre-

hensive evaluation of solver performance, there are limitations

to consider. Future research should expand on these findings,

exploring the scalability of these solutions for larger VPP

networks and integrating machine learning techniques to better

predict energy demand and production, thereby enhancing

the operational efficiency of VPPs. Furthermore, experiments

may be carried out that include JIT performance tests as

future work. Moreover, meta-heuristic techniques and high-

performance computing could be works that leverage the

strengths of multiple approaches might provide innovative

solutions for VPP optimization in a wider range of scenarios.
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