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Abstract—The teaching-learning process is complex in nature,
requiring many tasks and skills to achieve success in the con-
struction of knowledge. As per any particular kind of cognitive
development, teaching and learning Computer Programming is
no different in this regard: tasks must be executed, sometimes
repeatedly, and skills must be developed. Despite different ap-
proaches and methodologies, exercising what has been studied
is proven to be effective in pretty much any teaching-learning
process. Many tools have been developed throughout time to aid
in the execution of this important task, sometimes approaching
the problem from the students’ perspective, sometimes from
the teachers’. This paper presents Goliath, a semi-automatic
generator of Computer Programming exercises, whose function-
ality is based on Artificial Intelligence (AI) models, a Domain-
Specific Language (DSL), and an online application that binds
them together. Goliath’s goals are directed towards teachers
(and indirectly, students) by aiming to lower the burden of
repeatedly constructing exercises. This is achieved through the
use of templates that allow for automatic variations of an exercise
to be created instantly, while relying on a common foundation.
Goliath is meant to be a facilitator, raising availability of exercise
lists, while avoiding repetition and the common mistakes that
accompany their construction.

Index Terms—Computer Programming, Programming Edu-
cation, Artificial Intelligence, Domain-Specific Languages, Pro-
gramming Exercises

I. INTRODUCTION

T
EACHING and learning Computer Programming is an

advanced, arduous and complex process, both for teachers
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and students. Several challenges present themselves continu-

ously, ranging from technical to personal [1], [2]. Among the

many strategies to aid in this endeavour that have been research

for decades [3], [4], [5], exercising is paramount. Not only it is

an opportunity for the student to grow and validate his or her

lessons, but also serves as a guiding metric for the teacher, who

can evaluate how to better pace the course content, and which

points have been better cemented in the students’ minds. In this

regard, repetition is essential for a continuous and uneventful

evolution in students’ growth.

In order to achieve consistency in repetition, students should

be able to access, answer and obtain response feedback from

exercises as fast, and as frequent, as possible. In this regard,

dedicated applications to aid both teachers and students in

achieving the ultimate goal of teaching and learning how to

program are invaluable, and have been constructed for many

years. Goliath is an application that aims to leverage AI and

a dedicated DSL to support teachers in creating exercises that

offer students variation, availability and consistency in their

training time.

This paper is further divided into six more sections. Sec-

tion II contextualizes resources for practicing computer pro-

gramming. Section III presents how exercises are structurally

constructed, based on foundational research. Section IV com-

pares AI-supported methods for automatic and semi-automatic

generation of Computer Programming exercises. Section V

details structural and functional aspects of Goliath. Section VI

presents the tests, results and feedback obtained for Goliath.

Finally, Section VII concludes the paper with final regards on

Goliath’s goals and achievements, and suggests future deriva-

tions and improvements within the scope of this research.
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II. RESOURCES FOR PRACTICING PROGRAMMING

Practicing is paramount to learn and construct knowledge.

It is so intrinsic to the educational process that several ap-

proaches have been developed and applied to teach and learn.

When it comes to computer programming, practice support

assumes a wide range of implementations. Lists of exercises

(written and printed by teachers or tutors) and problems in

textbooks are classical offerings in educational contexts. More

modern tools, such as online guides to programming learn-

ing [6], online courses, program animation applications [7],

and automatic evaluation tools [8].

Nonetheless, creating exercises is still a challenge. Many

factors demand consideration in order to create clear, useful

ones: the approach to the topic under practice, the difficulty

it will present to a diverse student population, the correct

and unambiguous wording of the problem statement to avoid

misdirection and general confusion, etc. Once all of these

challenges have been surpassed and a collection of quality

exercises is reached, creating new ones, or even variations of

those that already exist, is not trivial. Besides being a time-

consuming task, it becomes ever more prone to errors as rep-

etition allows for lost of focus to creep in, resulting in typos,

missed information, and incoherence. Systems to automatize

these tasks have been implemented, such as SIETTE [9], which

allows the creation and management of exercises repositories,

and R/exams [10], a package for the R language that provides

mechanisms to create both HTML and LATEX versions of

parameterized exercise lists. Although successful in their own

ways, the initial generation of the exercise components (more

on that on Section III) is done directly by the user.

Goliath aims to aid in the assignment of programming

exercises and their answering, but more importantly, it sup-

ports their actual construction with the use of two Large

Language Models (LLMs) and a DSL-based template system,

avoiding those typical mistakes and improving the possibility

of variations in already proven exercises.

III. STRUCTURE OF PROGRAMMING EXERCISES

Understanding how programming exercises are designed

and structured was paramount to automate parts of their

construction—which is, ultimately, Goliath’s central objective.

Generally speaking, these exercises were classified into differ-

ent types that are commonly found in tests, lists, websites, etc.

Furthermore, any of these types can be segmented into three

main components (the statement, the code, and the answer

area), each with its own responsibility in communicating the

exercise’s intent to the student.

A. Exercise Types

From many definitions of exercise types available in the

literature [11], [12], [13], Goliath relied on those published

in [14], given their resemblance to how it handles their

construction and which types it is capable of generating.

In total, seven types were collected:

1) Code from scratch: students must write down the com-

plete solution to a problem from scratch (as the name

implies). No support code (or template) is provided, only

a dedicated empty space for the answer;

2) Code completion: In order to solve this type of exercise,

students must fill blanks that have been strategically

positioned in a provided excerpt of code;

3) Code improvement: after being provided with a com-

plete snippet of code that solves a given problem,

students are asked to improve it. The modifications may

require improvements to the performance, reduction of

lines of code, use of specific constructs, etc.

4) Bug finding: as the name suggests, students must iden-

tify bugs (and their characteristics) in a excerpt of code,

without actually correcting them;

5) Debugging and fixing: consists in a mix of the last two

types, in which students are to write a correct version

of a source code that contains bugs;

6) Code interpretation: students are required to interpret a

given snippet of code and report on its behaviour, goals,

evolution of a variable’s value throughout execution, etc.

7) Output or state prediction: students are asked to find

out either the output of a source code’s execution, or the

value of a variable throughout its lifetime.

These types are commonplace in programming courses

and are implemented either physically (via printed paper, for

example), or digitally. Several adaptations are also possible,

including the option to transform the answer format from open

to multiple choices.

Given certain implementation requirements (which will be

presented and discussed later in the article), of all seven

types, three were chosen and adapted to be generated by

Goliath: code from scratch, code completion, and output or

state prediction.

B. Exercise Components

There are usually three main components to consider in

a typical exercise (of any of the seven types): the problem

statement, the accompanying code, and the answer area (see

Fig. 1).

The problem statement contains text that is presented to the

student explaining the context and parameters of the problem,

the type of answer that is expected, and other pertinent

details about the exercise. An excerpt of code usually follows,

containing entire programs, snippets with blanks to be filled,

or concurrent versions to be compared, analysed or fixed. It

supports the problem statement to establish a basis for solving

the exercise. Finally, the answer area contains wither a blank

space or the distribution of possible options for the student’s

answer.

The definition of these three components were required to

design the semi-automatic generation of exercises. Goliath

based its generative mechanisms on a divide-and-conquer

strategy: each component, albeit semantically connected, could

be created independently, as long as the reasoning behind

the problem was consistently maintained. The next step in

implementing Goliath’s semi-automatic generation mechanism
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Which of the options below completes the blank space

in the following code?

def divide by two(number):

return number

a) + 2

b) * 2

c) % 2

d) / 2

Statement

Code

Answer area

Fig. 1. Typical components of a programming exercise.

was to evaluate and choose AI models that could generate one

or more of these components.

IV. AI-SUPPORTED EXERCISE GENERATION

Commonly applied to create chat-bots, translators and sim-

ilar tools, Natural Language Generation (NLG) (a sub-field

of Natural Language Processing (NLP)) contains theories and

techniques that allow for the production of coherent and

useful text in multiple languages [15], [16], including complex

articles and stories [17]. The process involves taking input

data, such as keywords, a set of facts or a starting piece of

text, and transforming (or complementing) it into meaningful

output text.

NLG is based on tasks [16] and architectures [15] that are

specifically designed to produce useful text. Their features and

functionalities are implemented into models that are trained to

perform text generation, realising the foundation on which AI-

supported systems are built.

A. Models

Models are pre-trained pieces of software that can recognise

patterns or generate expected outputs given a set of inputs.

Specifically in the case of text generation, AI models are

trained to generate text based on an input of some form

(keywords, sentences, questions etc.) [18].

The implementation techniques for AI models are varied,

and have been evolving in a fast pace. Artificial Neural

Networks (ANNs), a subset of Machine Learning (ML) tech-

nologies, are currently the de facto choice for implementing

models. Their structures have been inspired by the human

brain and operate in a similar fashion, offering results that

are human-like [19]. Architectures of ANN that have been

commonly and effectively used for text generation include:

• Recurrent Neural Network (RNN): suited for process-

ing sequential data, such as text, incorporates feedback

connections that take into account previous time steps and

observations [20]. Implementations include Long Short-

Term Memory (LSTM) networks [21], [22], and Seq2seq

models [23], [24];

• Transformers: a ANN architecture that is capable of

modelling long-range dependencies between words in

a piece of text. Includes self-attention mechanisms to

weight the relevance of words (or tokens) on the input.

Transformers are well suited for applications that involve

comprehension of context or semantics [25], [26]. Imple-

mentations include Generative Pre-training Transformer

(GPT) [27], [28], [29], [30], Bidirectional Encoder Rep-

resentations from Transformers (BERT) [31], [32], and

others;

• Generative Adversarial Network (GAN): consists of

two networks linked together (a generator and a discrimi-

nator) [33], but trained individually. The primer generates

text that is then verified by the later. TextGAN [34]

implements and improves a GAN to generate coherent

text samples;

• Variational Autoencoder (VAE): can be used to several

goals, including text generation. It consists of two net-

works (an encoder and a decoder) and a latent space [35].

These three components work by trying to minimise

differences between the input and a reconstructed coun-

terpart. Bowman et al [36] implemented a VAE-based

model to generate natural language sentences based on

comparisons in two different languages.

These architectures are implemented through several tech-

niques, languages and libraries. Examples include: OpenAI’s

libraries [37], TensorFlow [38], Keras [39], PyTorch [40],

Hugging Face [41] and TextGenrnn [42].

B. AI Models to Generate Exercises

In order to determine which AI models would be used for

the generation of the exercise components, four candidates

were tested and evaluated: GPT-3.51, GPT-2, KeyToText [43]

and CodeT5 [44]. The overall testing methodology, results

and conclusions have been published in greater detail in a

previous study [45]. Table I presents a resumed version of the

models’ features, as evaluated for the purposes of generating

full programming exercises (statement, code and answer).

OpenAI’s GPT-3.5 was the first model to be tested (see

Listing 1 for an example). Despite returning accurate results,

this version had a few shortcomings that made it less valuable

for use in Goliath:

• It was free to use only within a gracing period;

• The input prompt had to contain a complete description of

the exercise and how it should be generate, contradicting

one of Goliath’s main goals: to automate the generation

of the exercise’s statement;

• The output contained both the problem statement and

the answer, which would require some interpretation and

post-processing in order to establish an internal represen-

tation of the exercise’s components;

• Even if OpenAI released it publicly (which they don’t), it

would be unfeasible to use it locally given its size. This

means Goliath would be dependent on OpenAI’s servers

and consequent communication.

The second tested model was a previous version of Ope-

nAI’s offerings, GPT-2. Since it has a more manageable

size, the whole model was downloaded and fine-tuned with a

dataset of 300 basic Python exercises [46]. The prompt input

consisted in a formatted request for the code of a specific

exercise. It used Application Programming Interfaces (APIs)

1GPT-3.5 was the newest version at the time of the study.
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TABLE I
COMPARISON BETWEEN DIFFERENT AI MODELS AND THEIR FEATURES FOR PROGRAMMING EXERCISES GENERATION.

Model Cost Hosting Input Output

GPT-3.5 Paid after gracing period OpenAI Servers Full request and definitions Statement, code and answer

GPT-2 Free Local Formatted text and statement Statement and code

KeysToText Free Local Keywords Statement

CodeT5 Free Local Function statement Code

Listing 1 Example of a programming exercise generation

using GPT-3.5.

Source:

prompt = "Create a programming exercise in Python

about string manipulation and write the answer."

exercise = openai.Completion.create(engine="text-

davinci-003", prompt=prompt, temperature=0.7,

max_tokens=500, top_p=1, frequency_penalty=0,

presence_penalty=0)

Output:

Write a program to print out the last three

characters of a string.

#Answer:

string = input("Enter a string: ")

length = len(string)

last_three_chars = string[length - 3:]

print(last_three_chars)

from aitextgen [47], a free library that interfaces with GPT-2

(see Listing 2). The output contained both the statement and

the code for the exercise. It resulted in less accurate output

than GPT-3.5, and some of the same shortcomings were also

present (necessity to provide most of the exercise as input, and

full length output that would require post-processing).

Finally, two other models were tested in tandem: KeyToText

and CodeT5. KeyToText is based on Text-to-Text Transfer

Transformer (T5) [48] and was fine-tuned with the Mostly

Basic Python Problems (MBPP) dataset from Google Re-

search [49], containing 1000 entry-level programming prob-

lems. The model, used with the support of the Natural Lan-

guage Toolkit (NLTK) [50] platform, was able to generate

accurate (albeit simple) exercise statements from a minimum

of three keywords (see Listing 3 for an example). This solution

was unique when compared to the GPT models, since it was

able to automate the generation of the exercise statement. This

statement, in turn, could be adapted and fed into the CodeT5

model to generate its accompanying source code (see Listing 4

for an example). CodeT5 also implements a T5 model, trained

with the CodeSearchNet [51] dataset collection. It was able

to accurately generate Python source code coherent with the

exercise statement.

After approximately 100 tests were conducted, 80% rate

of success was achieved in generating comprehensible and

coherent exercises via KeyToText and CodeT5. Goliath im-

plemented both models in a sequence of execution (further

Listing 2 Example of a programming exercise generation

using the fine-tuned GPT-2 model.

Source:

prompt = """Exercise

Instructions:

Write a Python program to reverse a string.

Code:"""

model.generate(prompt=prompt, max_length=500,

temperature=0.3, top_p=0.9)

Output:

Exercise

Instructions:

Write a Python program to reverse the binary

representation of a given integer.

Code:

def test(n):

return int(bin(n)[::-1][:-2], 2)

Listing 3 Example of an exercise statement generation using

the fine-tuned Keys-To-Text model.

Source:

model.predict(["remove", "list", "odd numbers"])

Output:

Write a function to remove odd numbers from a list.

Listing 4 Example of code generation using CodeT5.

Source:

p = "Function to remove odd numbers from a list."

ids = tokenizer(p, return_tensors="pt").input_ids

code = model.generate(ids, max_length=128)

tokenizer.decode(code[0], skip_special_tokens=True)

Output:

def remove_odd_numbers(nums):

return [n for n in nums if n % 2 == 0]
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Fig. 2. Goliath’s functionality and main features.

explained in Subsection V-B) to generate initial templates for

Python programming exercises. This resulted in the effective

use of the NLG models to aid in the construction of the whole

system.

V. GOLIATH

Goliath is an online application2 for semi-automatic genera-

tion of programming exercises3. It is based on two AI models

(KeyToText and CodeT5), a template system, a DSL, and

other supporting functionalities. It allows teachers to create a

repository of templates that are used to generate programming

exercises. These are then assigned to students to aid in their

programming practices.

Fig. 2 shows the general design of Goliath’s functionality

and its main features. There two basic workflows: the creation

of templates (top half of Fig. 2) and the generation of exercises

(bottom half).

The template creation is based on a sequence of operations:

1) The teacher provides Goliath with (at least three) key-

words to generate an exercise statement using KeyTo-

Text (left side of Fig. 3);

2) The statement, after reviewed by the teacher, is fed into

CodeT5 to generate its accompanying code (right side

of Fig. 3);

3) Both statement and code are presented to the teacher in

a Template Editor;

4) The teacher embeds parameters into the template using

commands from a DSL, specifying variations on the

exercise;

5) The template is stored in a repository, along with a few

other settings that the teacher can define (explained later

in the article).

Given that the teacher may not want to use the AI-supported

functionalities, both steps 1 and 2 can be skipped, as long as he

or she writes the statement and the code from scratch. Further

details about the template system and the DSL are presented

in Subsection V-A.

2Accessible at: https://goliath.epl.di.uminho.pt/
3Only Python is currently supported as the programming language for the

exercises. This technical limitation was implemented due to two reasons: the
AI models have been fine-tuned with datasets of Python source code, and
internal verification mechanisms also assume Python as the language of choice
for the exercises.

Fig. 3. AI-supported statement and code generation.

Creating a template does not generate an exercise in itself.

This only happens after a request is sent to the Exercise Gener-

ator by the student. The generation process is straightforward:

1) The student requests an exercise that was assigned by

the teacher;

2) The corresponding template is fetch from the repository;

3) A version of the exercise is automatically generated by

choosing randomly one of the pre-defined variations that

the template specifies;

4) The answer alternatives are created ad hoc, based on the

exercise version;

5) The exercise (statement, code and answer alternatives)

is presented to the student who can answer it;

6) The correct answer is shown as feedback.

This division of workflows is intentional: by delaying the

generation of the exercise, Goliath is able to add a layer of

controlled randomisation to the process. This fact contributes

to its replayability and provides a sense of discovery to the

students. Further explanations on the exercise generation are

given in Subsection V-B.

A. Goliath’s DSL and the Template System

Goliath’s template system allows educators to create re-

playability4, in which one template can automatically generate

different versions of an exercise.

Versions, in this context, represent variations of what is

requested from students. As an example, a simple exercise

statement could read “Write a function that removes all odd

numbers from a list of integers”. In order to change the request

from remove odd numbers to remove even numbers, this

statement needs only to be minutely changed. Furthermore,

the statement could also be modified to request the removal

of all positive numbers, all prime numbers, or any equiva-

lent variation. Thus, if given the possibility of automatically

generating these versions (odd, even, positive, prime, etc.)

from one template, students could practice multiple times,

while educators needed only to construct and parameterise the

template once.

The template consists in the statement, the code, and a few

added settings (explained in Subection V-C). The answer area

is the only component that is not directly included in the

template, as it is automatically created when the exercise is

generated. For demonstration purposes, consider Listing 5 as

a basis for a template that was suggested by the AI models.

4Replaybility indicates the possibility of using the system multiples with a
lower chance of encountering the same state with frequency.
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Listing 5 Basis for a template created from the keywords list,

remove, and numbers.

Statement:

Function that removes all odd numbers from a list of

integers.

Code:

def remove_odd_numbers(nums):

return [n for n in nums if n % 2 == 0]

Listing 6 Grammar for the DSL that allows templates to gen-

erate several versions of an exercise. Note that the commands

can not be recursively nested.

start : declaration* commands

declaration : ID "=" STRING ("," STRING)+

commands : (alternatives | conditional)*

alternatives: STRING ("," STRING)* fail?

conditional : "case" vars ":" actions else? fail?

vars : ID ("," ID)*
actions : action (";" action)*
action : STRING ("," STRING)* "=>" STRING

else : ";" "else" ":" STRING

fail : ";" "fail" ":" STRING ("," STRING)*

If left unchanged, this template would only generate one

version of the exercise (“Function that removes all odd

numbers from a list of integers”). In order to make it more

flexible, it is necessary to parameterise it. A DSL was designed

specifically for this purpose. Its grammar is presented in

Listing 6, which was used with Lark [52] to develop an

interpreter. This DSL is intended to be used in the same

fashion as a markup language, whose commands must be

interspersed into the text.

The commands of parameterisation are placeholders delim-

ited by double curly brackets ({{ and }}). They are substi-

tuted by a value (generally speaking, a piece of text) when the

exercise is generated. There are three types of commands: key

declarations, conditional placements, and simple alternatives.

1) Key declaration: Multiple keys can be declared in

the exercise statement, representing variations on what is

requested from the student. Each key defines a list of possible

values. For example, in order to parameterise the template

of Listing 5 and allow the generation of both odd and even

versions of its exercise, the statement should be rewritten as:

Function that removes all {{ x = 'odd', 'even' }}

numbers from a list of integers.

The key x creates the variation for odd and even. When an

exercise is generated from this template, its statement will read

either “...function that removes odd numbers...” or “...function

that removes even numbers...”. Listing 7 shows the template

with the parameterised statement.

Although unnecessary for this example, there could be

multiple key declarations. The following statement would be

Listing 7 Template with a key declaration in the statement.

Statement:

Function that removes all {{ x = 'odd', 'even' }}

numbers from a list of integers.

Code:

def remove_odd_numbers(nums):

return [n for n in nums if n % 2 == 0]

able to generate four different versions of the exercise (remove

odd from a list, remove odd from an array, remove even from

a list, and remove even from an array):

Function that removes all {{ x = 'odd', 'even' }}

numbers from {{ y = 'a list', 'an array' }} of

integers.

Finally, key declarations must only occur in the statement,

as they establish variations on what the exercise will ask from

the student. They would not make sense in the code, given

that its logic is supposed to be derived from the statement,

not the other way around.

2) Conditional placements: Assuming that an exercise must

be entirely coherent, if there are possible variations on what is

asked from student (via key declarations in the statement), a

fixed code would probably be wrong. Conditional placements

allow the code to adapt to the variations of the keys when the

exercise is generated.

Conditional placements always start with the keyword

case, followed by the list of keys that should be considered.

For each combination of values, a result is specified using the

hash-rocket notation (=>). It is similar to a switch-case

in a conventional programming language.

Going back to the example in Listing 7, if the key x assumes

the value odd in the exercise, the second line of code must

read:

return [n for n in nums if n % 2 == 0]

This guarantees that only even numbers are left in the list,

effectively removing odd numbers. On the other hand, if even

is chosen for x, the line must change to:

return [n for n in nums if n % 2 == 1]

The template can be parameterised for this variation through

a conditional placement on x:

return [n for n in nums if n % 2 == {{ case x: 'odd'

=> '0'; 'even' => '1' }}]

This conditional placement results5 in 0 if x is odd, and

1 if x is even. Since x has only two possible values, the

command could also be written using an else clause:

return [n for n in nums if n % 2 == {{ case x: 'odd'

=> '0'; else: '1' }}]

5As previously explained, all commands from the DSL are placeholders.
The result of a command refers to the value that will substituted it in the
exercise.
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This clause acts as a complementary branch in the condi-

tional placement. It is similar to the default branch in a

switch-case.

Finally, the fail clause can be used to specify invalid

options for the placement:

return [n for n in nums if n % 2 == {{ case x: 'odd'

=> '0'; else: '1'; fail: '2', '3' }}]

The definition of invalid options using the fail clause is

important as Goliath is unable to automatically come up with

wrong answers (further explanations in Subsection V-B).

Finally, a conditional placement can take multiple keys into

consideration:

{{ case x, y: 'odd', 'a list' => '0';

'even', 'an array' => '1';

else: '-1';

fail: '2','3' }}

3) Simple alternatives: Unlike conditional placements, sim-

ple alternatives do not take keys into consideration. They sim-

ply create variations, with the added possibility of specifying

invalid options:

return [n for n in nums if n {{ '% 2'; fail: '/ 2',

'* 2', '+ 2' }} == 0]

The correct option for that portion of code is % 2, while

the others (defined by the fail clause) are invalid and will

generate incorrect alternatives for the answer in the exercise.

Simple alternatives can also be used to create equivalent

variations in the code:

h = {{ 'n / 2.0', 'n * 0.5' }}

Both variations of the code above are equivalent in their

objective (assigning the half of n to h) and would result in

two different, albeit valid, versions.

4) Final remarks on the DSL: The three types of com-

mands (key declarations, conditional placements and simple

alternatives) allow for the definition of both valid and invalid

variations. Both are equally important for the generation of

the exercise, given that Goliath is not able to self-determine

which changes in the code would result in correct answers and

which would not. In order to that, Goliath would be required

to not only perceive what is asked by the statement—meaning,

the actual problem that the exercise entails—but also to check

if the code’s logic is coherent with it. The Halting Problem

guarantees this impossibility.

Typical error checking is done during the interpretation of

the DSL commands, including the use of undeclared keys,

syntactic mistakes and invalid commands. After all commands

have been successfully interpreted, an internal JSON-like

representation of the keys and their variations is created, and

stored with the template (see Listing 8).

Listing 9 shows the complete version of the exercise tem-

plate, including all three types of commands.

B. Exercise Generation

As previously mentioned, a template acts as a blueprint that

generates different versions of an exercise. The generative

Listing 8 Internal representation of a template’s keys and

variations.

"keys": {

"x": ["odd", "even"]

},

"variables": {

"alt1": {

"correct": [

{ "value": "% 2" }

],

"wrong": ["/ 2", "* 2", "+ 2"]

},

"alt2": {

"correct": [

{

"value": "0",

"conditions": [

{ "key": "x", "index": 0 }

]

},

{

"value": "1",

"conditions": [

{ "key": "x", "index": 1 }

]

}

],

"wrong": ["2", "3"]

}

}

process begins with a request from a student, when he or

she accesses an assignment created by the teacher6. In this

context, the real exercise can be considered an instantiation of

the assignment’s template.

A few important considerations must be made in order to

understand the exercise generation:

• There are three types of exercises available in Goliath:

code selection (adapted from code from scratch), in-

put/output, and code completion (also adapted)7. This

limitation was imposed by the mechanisms implemented

in the exercise generation. Additional types would require

more commands in the DSL and more settings in the tem-

plate, which was unfeasible for this version of Goliath;

• Answers are presented in multiple choice format for the

code selection and code completion types8. Implementing

an open answer format for these types would either negate

the immediate feedback to students, as they waited for the

teacher to correct the answers, or require the implemen-

tation of an extremely accurate NLP model. input/output,

on the other hand, is presented in open answer format,

since it can be trivially verified by executing the code of

the exercise itself;

• Both the statement and the code in the template need

to follow specific discourses. Statements must start with

6Teachers may create an assignment at any time, as long as the template
has already been created and stored in the repository.

7See Subsection III-A for the description of each type.
8This is the reason Goliath implements adapted versions of the original

exercise types.
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Listing 9 Template containing all three constructs.

Statement:

Function that removes all {{ x = 'odd', 'even' }} numbers from a list of integers.

Code:

def remove_{{ x }}_numbers(nums):

return [n for n in nums if n {{ '% 2'; fail: '/ 2', '* 2', '+ 2' }} == {{ case x: 'odd' => '0';

else: '1';

fail: '2', '3' }}]

“Function to...”, “Function that...”, etc. while the code

should always contain a single function definition. This

requirement exists because Goliath needs to adapt them

to the exercise type when the generation occurs, which

requires complementing the statement text and running

the code’s function.

Goliath follows a simple routine to generate an exercise:

1) The type of the exercise is randomly picked within the

range of possible options;

2) The value for each key in the statement is randomly

chosen;

3) The code is adjusted to the values of the keys;

4) The answer alternatives are calculated;

5) The exercise is constructed from the three components

(statement, code and answer alternatives).

The calculation of the answer alternatives demands further

explanation. The template carries more than just the statement

and the code. It also contains other settings that are used to

determine the possible exercise types, the answer alternatives,

its correctness, difficulty and category (more on this in Sub-

section V-C). One of these settings is a list of valid inputs for

the function defined in the code. This list is used to generate

exercises of the input/output type, which read “What is the

output of the following function when the input is ...?”. It is

also used to check the student’s answer by comparing it to the

output of the function when fed with the valid input.

The incorrect alternatives for the other two types of exer-

cises are constructed using the values of the fail clauses

in the code. In the end, the presence or absence of valid

inputs and fail clauses determine which exercise types can

be generated. Listing 10 shows one example for each type of

exercise based on the template of Listing 9. In these examples,

even was chosen for the key x of the statement.

C. Goliath’s Interface

Goliath was implemented as an online application using a

mix of technologies and languages (a Programming Cocktail)

containing Python, Flask, Lark and MongoDB. Its interface

follows the general workflows presented in Fig. 2, with a few

added pages to manage users, control access to the several

parts of the application, define assignments, and manage

templates and exercises.

Listing 10 Three exercise types generated from the same

template.

Code selection:

Which of these options is a function that removes

all even numbers from a list of integers.

a) def remove_even_numbers(nums):

return [n for n in nums if n % 2 == 0]

b) def remove_even_numbers(nums):

return [n for n in nums if n % 2 == 1]

c) def remove_even_numbers(nums):

return [n for n in nums if n * 2 == 0]

d) def remove_even_numbers(nums):x

return [n for n in nums if n % 2 == 3]

Input/output:

What is the output of the following function when

the input is [1, 2, 3, 4, 5].

def remove_even_numbers(nums):

return [n for n in nums if n % 2 == 1]

Answer: _______

Code completion:

Which of these options complete the following

function that removes all even numbers from a

list of integers.

def remove_even_numbers(nums):

return [n for n in nums if n % 2 == ___]

a) 1

b) 0

c) 2

d) 3

The main pages of the application are the AI suggestion

page, the template edit form, the exercises management page

and the exercise page.

The AI suggestion page (Fig. 4) is the starting point to

the creation of a new template in which the teacher inputs

keywords for the KeyToText model to process and suggest an

statement. After review (the lower input field), the teacher can

send this statement for the CodeT5 to generate the associated

code and fill the next page, the template edit form.

The template edit form (Fig. 5) allows the teacher to edit
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Fig. 4. Keyword input for the AI model.

Fig. 5. Template edit form.

Fig. 6. Exercises management page.

Fig. 7. Exercise page.

the statement, the code and the other settings for the template.

It comes after the AI models have made their suggestions (or

if they were skipped entirely). The settings for the template

are:

• Difficulty: a difficulty level from easy to hard designed

to guide students in approaching the easier exercises first.

Defined entirely by the teacher;

• Tags: a form of categorization for the template. Specifies

the general programming concepts that the exercises of

this template will tackle;

• Inputs: a list of valid inputs for the function defined in

the code. As explained at the end of Subsection V-B, these

inputs will be used to generate and verify the answer to

exercises of the input/output type.

The exercises management page (Fig. 6) has two points-of-

view: the teacher has access to the right table and the Generate

New Exercise button, while the student only sees and interacts

with the left table.

The right table lists exercises that have been assigned to

students and it is only visible to teachers. Each entry in

the table represents one assignment and its background color

indicates if the student was correct (green), incorrect (red) or

still have not answered (white). The button labeled Generate

New Exercises is used to create the assignments.

The left table is only visible for users with the student role,

as they represent exercises that have been assigned to them

by the teachers. In fact, the exercise requests explained in

Subsection V-B effectively occurs when a student first opens

entries from this table.

Finally, the exercise page (Fig. 7) allows the student to

answer an exercise and obtain immediate feedback of his

or her response. The image shows an exercise of type code

completion begin answered.

VI. TESTS AND FEEDBACK

In order to evaluate Goliath’s functionality, a survey was

conducted with teachers from Computer Programming back-
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ground. The survey consisted in ten questions: two for es-

tablishing the respondent’s background, seven to evaluate

Goliath’s features and usability—in a scale from 1 (terrible) to

5 (excellent)—and a final open question for additional remarks

and feedback.

The questions, in order of appearance, were:

1) Programming experience (in years).

2) Experience in programming teaching (in years).

3) Regarding general usability, how do you rate the ease

of navigation and interaction with the application?

4) How do you rate the ease of generating text (instructions

and code) from the AI models?

5) How do you rate the quality of the text generation results

(instructions and code) of the AI models?

6) How do you rate the way the templates are structured?

7) How do you rate the influence of the DSL in generating

different exercises from the same template?

8) How do you rate the ease of using the DSL?

9) How do you rate the quality of the generated exercises?

10) In this section, you are asked to comment on any aspects

not covered by the questions and to report errors/bugs

that have appeared while using the application.

The survey was answered by 10 people and the results

produced the charts in Fig. 8.

The first two questions revealed that the survey was an-

swered by people with different levels of experience, includ-

ing those that have never taught programming. This result

indicates that the evaluation for the next seven questions are

not skewed towards teachers, but a general overview of the

application.

The results were mostly positive, especially in usability and

ease of use of the main functionalities. The question with

the lowest rating is the fifth (Quality of the text generated

by the AI models), which indicates that the AI models have

not been completely effective. Although, some respondents

also indicated that the lower grades where due to instability

of the models. The processes that run the models hung up the

application a few times when the server was under heavier load

from other sources. Nevertheless, the evaluations show that,

despite a few inefficiencies, their preparation and the detailed

processing of the input and output texts, resulted in average

to good results.

The feedback obtained from the last question mainly cen-

tered around suggestions of features that would complement

the application, such as the possibility to create entire tests

inside the application, and even a layout suitable for printing.

Small bugs were also reported, which were addressed, making

the application as consistent as possible.

VII. CONCLUSION

This paper presented Goliath, an online application aimed at

supporting teachers and students in the practice of Computer

Programming. It is based on two AI models to kickstart the

construction of programming exercise templates. The tem-

plates are parameterised to generate different versions of an

exercise. This is done through commands of a DSL that was

developed specifically for Goliath. Exercises are generated ad

hoc when a students request them via assignments created by

their teachers. Also, the exercises may be requested by the

teachers and used indirectly in their classes or to compose

offline lists.

Through a testing period and a survey, results showed that

Goliath is already in a working state, capable of supporting

teachers in their educational endeavours. A few facets of

the User Experience can be improved in order to allow for

more efficiency and efficacy in the resulting exercises. Overall,

Goliath fulfilled its foundational goal of using AI models in a

supportive way, while also providing teachers with high level

flexibility and control in the entire process.

Suggestions for future works include both new features

and improvements to the existing ones. Among the new

features, new modules to apply Goliath to tests and other

practice-oriented situations would be beneficial for teachers,

supervisors and tutors. Also, some mechanisms to provide

greater independence to students would be of great value,

such as the automatic generation of complete lists of exercises

based on their history and background. This features would

also free teachers from the assignment task, which could

stimulate Goliath’s adoption in the educational setting. On the

improvement side, the quality of both the statement and the

code generated by the AI models should be improved, in order

to obtain more variety and complexity in their suggestions. Fi-

nally, reliability and efficiency in the communication between

Goliath’s internal parts and the models could also be improved.
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