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Abstract—Citizen science has emerged as a valuable resource
for scientific research, providing large volumes of data for
training deep learning models. However, the quality and accuracy
of crowd-sourced data pose significant challenges for supervised
learning tasks such as plant trait detection. This study investigates
the application of AI techniques to address these issues within
natural science. We explore the potential of multi-modal data
analysis and ensemble methods to improve the accuracy of plant
trait classification using citizen science data. Additionally, we
examine the effectiveness of transfer learning from authoritative
datasets like PlantVillage to enhance model performance on open-
access platforms such as iNaturalist. By analysing the strengths
and limitations of AI-driven approaches in this context, we aim to
contribute to developing robust and reliable methods for utilising
citizen science data in natural science.

I. INTRODUCTION

C
ITIZEN SCIENCE (CS) is a valuable approach involving
the public in scientific research activities [1], [2]. The

trade-offs of this approach are well known; while it generates
a vast amount of data and fosters public trust in science, data
quality may vary due to the different levels of expertise among
participants. The construction and maintenance of a CS dataset
are important topics that deserve to be treated separately. Still,
it is equally essential to analyse the collected data: the uncer-
tainty of these collections must be treated adequately. Modern
Machine Learning (ML) and Deep Learning (DL) models can
help since these algorithms are structured to automatically
process large amounts of data and show partial resilience to
the collected data’s precision problem. CS projects are mostly
related to natural sciences; in this domain, two of the most
active Websites and databases are eBird [3] for ornithology
and iNaturalist [4] for capturing images of the natural world.
Beyond these, several examples of online communities, like
those on Zooniverse [5], serve as significant, multifaceted
incubators for scientific discovery. A notable example of the
successful integration of DL and CS in natural science is
represented by the study by Schiller et al. [6] that demon-
strates the potential to automate plant traits predictions from
photographs. In the last few years, different other CS datasets
have influenced prominent work [7] with a focus on how to
interpret and use CS data correctly. Still, Schiller’s seminal

work has highly impacted DL and natural science, inspiring
subsequent study [8]. Schiller et al. exhibit the potential of
multi-modal DL models using a smart combination of picture
and tabular bioclimatic data with a multi-step pipeline that
encompasses and ensemble three baseline models to fit plant
traits, mainly a CNN network, a trait variability informed
network, and an ANN for the tabular data. They achieved
this result by integrating information from three key sources:
i.e. Citizen science iNaturalist image repositories, the TRY
dataset [9] that contains plant traits, and the WorldClim [10]
dataset for bioclimatic data. The brilliance of their approach
lies in leveraging the image labels (species and geolocation
data) of the iNaturalist dataset. These labels serve as unique
identifiers, allowing researchers to integrate plant image data
with trait and climate information stored in the two high-
level scientific repositories. Since its release in late 2021, their
article has directly inspired two worldwide AI competitions
sponsored by the Fine-Grained Visual Categorisation (FGVC)
workshop at the Conference on Computer Vision and Pattern
Recognition (CVPR), one of the most relevant conferences for
DL methods applied to images and signals. The competitions
available on the Kaggle Website are PlantTraits2023 [11]
and PlantTraits2024 [12]. This paper briefly explores how
AI can significantly enhance citizen science research. Starting
from the plant-traits related dataset and their objective, it
is evaluated how the performance of different ML and DL
algorithms change between these repositories. Inconsistencies
and similarities between the results can be used to assess
the relation between data quality, model and task to build a
starting guide for researchers to start or improve their work.
The three datasets are initially evaluated with standard tabular
data ML analysis (i.e. XGBoost and catboost) and then further
studied with DL solution to process image and other data types
together, starting from the PlantTraits2023 winner solution.
To this end, the reported study further expanded the studies of
plant automatic processing initiated in [13] and assessed how
winning strategies as efficient adaptive ensemble and transfer
learning for plant classification algorithms perform using these
three different datasets of similar domains (plants). It also
presented an adaptive ensemble of ConvNeXt-V2 [14] and a
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classification to regression transfer learning strategy to lay the
groundwork for developing robust AI tools in a natural science
framework. The study is presented in the following sections. In
Section II, materials and methods are introduced, detailing the
three datasets’ structure and analysis and describing the ML
and DL models used to process the contained data. Section III
presents results, introducing metrics and reporting the models’
performance to provide a comprehensive overview of the
outcomes. Section IV is dedicated to the discussion, delving
into the insights gained from the results and exploring the
implications and limitations of the findings. The study’s key
takeaways, potential highlights, and future work are presented
in the conclusions (Section V).

II. MATERIALS AND METHODS

A. Dataset

The investigation has been conducted on three available
open-access datasets:

• the first one, named PlantTraits2021 (PT2021), is acces-
sible from the article repository [15], where it is explained
how to merge the different files to obtain the complete
dataset; to date, the link of each image is deprecated,
but the tabular data is still accessible to analyse their
distribution;

• the second PlantTraits2023 (PT2023) repository is avail-
able under the Kaggle competition having the same name:
both image and tabular data are available;

• the third PlantTraits2024 (PT2024) is also available
under the Kaggle competition having the same name:
both image and tabular data are available.

The three datasets were curated to predict the plant traits,
which are the target variables to obtain throughout a regression
approach: while PT2021 and PT2024 contain the same
six target traits, PT2023 contain 34 target traits. The three
datasets share common possible targets, enabling comparisons
between them. The six shared targets are some of the most
valuable plant traits [6]: stem specific density (SSD), leaf
area per leaf dry mass, plant height, seed dry mass, leaf
nitrogen (N) content per leaf area, and leaf area. As already
stated, the input information is composed of RGB images and
tabular data: the tabular ones are mainly numerical, except
for the species and geolocation variables; the species variable
is standard to the PT2021 and PT2024 versions, while the
geolocation attribute is present only in the PT2021 version
of the dataset. The three datasets share a baseline of four
bio-climatic information, noted in the literature as bioX. Bio-
climatic variables represent climatic data, such as temperature
and precipitation, with the perspective of their influence on the
biological sphere. The four variables and the six common plant
traits targets are used to build the three datasets reported in
the study as the minimal informed datasets. These datasets are
essentially the minor subsets of the original datasets obtained
by removing columns while containing the maximum number
of shared data Table I. Beyond this baseline, the PT2021 and
PT2023 datasets primarily contain bio-climatic variables. In

contrast, the PT2024 dataset expands the input variable space
by incorporating multi-temporal data from satellite sources,
including Moderate Resolution Imaging Spectroradiometer
(MODIS), which provides near-real-time Earth surface re-
flection information, radar data from the Vegetation Optical
Depth (VOD) dataset for measuring vegetation density, and
soil information indicating key components for plant growth,
such as nutrients or moisture content.

TABLE I
ANALYSED DATASETS: ORIGINAL AND SYNTHESISED WITH NUMBER OF

FEATURES [FEAT] AND TARGET [TGT]

Dataset Original Minimal Shared Max Size
PT2021 25 feat. | 6 tgt. 4 feat. | 6 tgt. 43,745,637
PT2023 18 feat. | 34 tgt. 4 feat. | 6 tgt. 1,921,780
PT2024 163 feat. | 6 tgt. 4 feat. | 6 tgt. 9,766,064

B. Methods

1) Preprocessing: The first analysis performed was an
evaluation of the percentage of missing data in each dataset;
after that, all data outside the 95% interquartile range were
removed. Further cleaning was then performed: specifically,
all data violating physical limits, such as negative absolute
percentages or extensive values (self-evidently, lengths unit
can not be negative), were removed from the remaining data.
Lastly, the target plant traits and shared tabular input are
evaluated to detect if data follow the same distribution and
value range; unit measure should be coherent between the
three datasets even if there are no explicit units for PT2023
and PT2024.

2) ML Model: Once the three sets of data are obtained,
ML and DL algorithms are fitted to them; in particular, ML
models are a vital ingredient for comparison since they can
be used as a baseline for the three datasets, as tabular data
is shared between datasets. Two different ML models were
trained over the three completed datasets and their minimal

informed datasets versions; the objective is to estimate the
plant traits. These are the models used: eXtreme Gradient
Boosting (XGBoost) [16] and CatBoost [17]. The general
workflow is shown in Figure II-B2. Each model was evaluated
using k-fold cross-validation, where the data is split into k

subsets. The model is trained k times, using k− 1 subsets for
training and the remaining subset for testing each iteration.
This study used k = 5, resulting in an 80/20 train-validation
split since, technically, the two other datasets can be used as a
separate test set. A comparison between a model operating on
the full input features and one on the minimal shared features

is computed.
3) DL Model: The second experiment was set to reproduce

the results of the winner of the PT2023 competition, firstly
on the same year dataset and then on the PT2024 one.
The PT2023 competition solution leveraged a large-scale
Fully Convolutional Masked Autoencoder (FCMAE) from the
ConvNeXt V2 family as the image processing backbone. A
novel approach to plant trait evaluation complemented this
state-of-the-art architecture. Rather than treating the 13 plant
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Fig. 1. Study design and execution

traits as regression targets, they were mapped to class labels,
transforming the problem into a classification task. Other than
standard data augmentation operation on the whole dataset
[Random Resized Crop, Transpose, Horizontal Flip, Vertical
Flip, Piece-wise Affine, Hue Saturation Value, Random Bright-
ness Contrast], while a CUT-MIX [18] data augmentation
operation is randomly applied on a portion of the training
set. As a feature fusion solution, the backbone’s output was
concatenated with a tensorized version of input metadata
before being fed into a fully connected layer to produce a
12512-dimensional output. Two models were trained using this
approach, differing in the application of CUT-MIX across a
percentage of the training set [90%-80%] and in the dropout
values applied after the stacking layer [0.50-0.68]; the outputs
of the models are then ensembled with a bagging technique
without voting. Following the approaches described in [19],
the minimal adaptive ensemble was estimated to train together
the two models to classify the target class. The operation has
then repeated for the PT2024. All other relevant information
can be found in the archive of the code repository1. The last
experiment was meant to work as a solution to the PT2024

competition. A pre-trained EfficientNet-b0 model was em-
ployed for transfer learning; pre-training was conducted on the
PlantVillage dataset [20] that was chosen because of domain
similarity. The fully connected (FC) layer of the EfficientNet-
b0 architecture was removed since the original network was
trained for plant classification and not for regression. The
best-obtained model is then combined in a minimal adaptive
ensemble, as previously explained, and the resulting model is
used to fit the six regression values(numerical target). This
process was repeated by training the EfficientNet-b0 model

1https://github.com/DuanChenL/FGVC10

TABLE II
NORMALISING VALUE USED IN THE DL EXPERIMENT

DATASET MEAN STD
2024 [0.3356, 0.4496, 0.4446] [0.2355, 0.2260, 0.2348]
2023 [0.3356, 0.4580, 0.4398] [0.2376, 0.2281, 0.2360]

ImageNet1k [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]
PLANTRAITS [0.5258, 0.5357, 0.5277] [0.1530 0.1249, 0.1142]

without freezing weights (full training). The resulting models
were then combined into an ensemble for comparison. The
best ensemble is then updated with the features of tabular data
with a feature fusion approach. The tabular data are inputted
inside an FC layer for processing and then concatenated to the
feature of the ensemble; an FC layer then processes the fused
features. A slight variation of this structure was also proposed
and consists of passing the tabular data to an FT-Transformer
[21]. In this case, features are passed to a numerical embed-
ding layer and then to the multi-head attention structure of
the transformer. Such structure outputs a high-dimensional
embedded vector fused with the ensemble model features
and processed following the already described procedure. In
summary, for the last experiment on the PT2024, the tested
architectures are i) the EfficientNet-b0 classic CNN structure,
ii) the minimal adaptive ensemble of the architecture, iii)
the informed ensemble architecture, and iv) the minimally
informed ensemble architecture. The number of epochs used
for training is variable since it is used as early-stopping
criteria to avoid overfitting. Other particular settings used to
train the network are an image size of 224x224 and a one-
cycle learning rate policy. Images were normalised using the
original dataset’s plant-trait values in the transfer learning
setting (Table II). In contrast, the values for the comparison
model were normalised using their original variance. All the
experiments were performed using Python and two devices: an
NVIDIA GeForce RTX 4060 and a pair of NVIDIA Quadro
RTX 5000.

III. RESULTS

The percentage of missing data among the three datasets is
coherent at around 1% in PT2021 and PT2024, while no
missing entries are present in the PT2023 dataset. In both
cases, missing data is associated with the column containing
the traits’ standard deviation values, with an average of 30%
missing data per column. These six datasets (three original
and three minimal) are then analysed to identify outliers
(data points significantly different from the rest) and ensure
the remaining data is physically coherent (meaningful and
consistent). This operation removes around 15% of the data in
each case. The last check on tabular data dimension is on the
distribution of the standard input features and the outcome.
Regarding input features, the distribution along the dataset is
similar, with a slight difference in the range. The distribution
of plant traits, referring to the six shared columns, appears
that the PT2024 and PT2023 datasets follow the same
distribution, while PT2021 seems to contain more sparse data
FigIIIIII. The image training set normalisation values are very

GIACOMO IGNESTI ET AL.: PLANT-TRAITS: HOW CITIZEN SCIENCE AND ARTIFICIAL INTELLIGENCE CAN IMPACT NATURAL SCIENCE 627



Fig. 2. Distribution “Delta of the precipitation of wettest and dryest months”,
a common feature across all the three datasets, no unit measure used since
the lack in two of the three datasets

Fig. 3. Distribution “Stem-specific density”, a common feature across all the
three datasets, no unit measure used since the lack in two of the three datasets

similar among the PT2023 and PT2024 datasets.

A. ML Results

The performance of catboost and xgboost algorithms along
the three datasets is similar. Indeed, the mean square error
magnitude and the mean absolute error magnitude maintain the
same order between the three original datasets and the minimal
composed dataset. Training the algorithms over the whole
dataset tends to output higher performances in all analysed
cases. The PT2024 dataset seems to contain the most difficult

task per number of elements while training with all the feature
boost accuracy in the PT2023 and PT2021 case

B. DL Results

Using the 2023 competition winner solution gives mixed
results. The R2 score of the reproduced model [69%] on the
same-year repository test set is similar to that reported by the
winner [72%]. The adaptive ensemble tested shows overall
the same accuracy, obtaining [68%] accuracy improving from
the base original two models by [2%] and [6%]. Extensive
experiment was conducted to reproduce these results on the
PT2024 with no success. The network shows an accuracy of
classification of [84%] during training, but a negative score on
the R2 was achieved on the test set. The successive experiment
adopted to solve the PT2024 challenge with transfer learning
also does not seem to perform well, even achieving better
performance than the 2023 model solution. The maximum
accuracy on the related minimum weak is around the R2
SCORE value of 0.1 on the validation set and less than
0.1 on the separate test set; the ensemble of the pre-trained
weak learner does not boost the overall accuracy. Training the
network from scratch using the minimal adaptive ensemble
generates slightly better results, moving the R2 score towards
0.15 on the separate test set and around 0.45 on the validation
set. The feature fusion approach is the one that obtains the
higher accuracy, both on the validation set and on the separated
test set. The performance of the model trained on the original
2024 dataset is slightly superior, 0.3 higher, concerning the
model trained on the minimal shared data TableVI. In the
two experiments using feature fusion with tabular data, there
are only minimal differences between the approaches using
classical ANN architectures for the TF-Transformer approach.
Lastly, since the minimal informed dataset was trained with
the compatible set of features and image types of the 2023
dataset, this is used as input to assert the inference. Still, the
R2 metric is negative, so the model trained on the 2024 dataset
seems inefficient in predicting traits using the information in
the 2023 dataset.

IV. DISCUSSION

Analysing these CS datasets through missing value counts,
value distribution, and quartile ranges reveals their underlying
relationships. The low percentage of missing data is related to
the dataset construction criteria and the iNaturalist repository.
iNaturalist boasts a 95% trust rating for Research-grade data;
human error or inconsistencies in data collection can still
occur, but replicating the criteria of Schiller et al., research
should grant a coherent CS dataset. The estimated percentage
of outlier quantity should not be accounted as an inconsistency
but should be seen as a lack of total domain compression; some
values as negative extensive measure unit or out of scale plant
dimension Fig.IV are easy to detect, but outlier born from
statistical anomaly is usually hard to detect. These findings
justify the choice of a 95% interquartile range threshold;
without extensive knowledge of data domain and source,
this operation ensures a more controlled dataset concerning
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TABLE III
CATBOOST TRAINING PERFORMANCE ON THE THREE DATASETS IN THE FIVE-FOLD CV SPLITS

Metric catboost-MSE catboost-MAE catboost-R2score
Original 2024 dataset [347374, 348317, 323868, 349014, 348052] [162, 164, 159, 165, 163] [0.19, 0.19, 0.18, 0.19, 0.20]
Minimal 2024 dataset [3518134, 3461288, 3517697, 3495179, 3501414 [568, 565, 568, 568, 567] [0.10, 0.09, 0.09, 0.09, 0.10]
Original 2023 dataset [327861, 240540, 231010, 365676, 234271] [130, 116, 112, 131, 114]] [0.54, 0.64, 0.66, 0.53, 0.65]
Minimal 2023 dataset [813215, 760145, 804344, 839923, 799965] [239, 233, 235, 243, 237] [0.15, 0.15, 0.15, 0.16, 0.1]
Original 2021 dataset [85042, 78318, 81224, 137029, 78496] [51, 49, 50, 54, 51] [0.97, 0.97, 0.97, 0.97, 0.970]
Minimal 2021 dataset [474667, 489234, 497001, 469697, 464775] [187,192,189, 186,185] [0.16, 0.15, 0.16, 0.15, 0.17]

TABLE IV
XGBOOST PERFORMANCE ON THE THREE DATASETS IN THE FIVE-FOLD CV SPLITS

Metric XGBboost-MSE XGBboost-MAE XGBboost-R2score
Original 2024 dataset [386514, 386673, 364084, 383395, 380447] [168, 168, 163, 169, 166]] [0.09, 0.10, 0.07, 0.08, 0.10]
Minimal 2024 dataset [813215, 760145, 804344, 839923, 799965] [557, 554, 557, 557, 55] [0.13, 0.13, 0.13, 0.13 0.13]
Original 2023 dataset [167278, 174812, 169189, 208440, 16210] [48, 47, 50, 52, 49] [0.75, 0.76, 0.73, 0.70, 0.75]
Minimal 2023 dataset [920563, 870225, 926290, 919225, 910894] [246, 240, 244, 246, 246] [0.05, 0.05, 0.04, 0.07, 0.05]
Original 2021 dataset [85042, 78318, 81224, 137029, 78496] [1662, 59, 57, 80, 23] [0.99, 0.99, 0.99, 0.99, 0.99]
Minimal 2021 dataset [524289, 525170, 553655, 524170, 505197] [192, 193, 193, 190, 189]] [0.1, 0.1, 0.1, 0.08, 0.1]

TABLE V
DL MODEL RESULTS, THE R2 METRIC FOR PERFORMANCE EVALUATION

DL MODEL RESULTS OF THE 2023 WINNING MODEL AND ITS

ADJUSTMENT FOR THE PT2024 CHALLENGE AND THE ADAPTIVE

ENSEMBLE

Model Classification Accuracy [%] Test R2 Metric
2023 Model 1 0.81 0.66
2023 Model 2 0.81 0.62
2023 Model Bagging E 0.83 0.69
2023 Model Adaptive E 0.83 0.68
2024 Model 1 0.81 -39

TABLE VI
DL MODEL RESULTS, THE R2 METRIC FOR PERFORMANCE EVALUATION

Model Validation R2 Metric Test R2 Metric
TF weak 0.10 0.08
TF Ensemble 0.15 0.10
Trained Weak 0.40 0.15
Trained Ensemble 0.53 0.18
I-Ensemble ANN 0.56 0.247
I-Ensemble ANN (2023) // -0.08
I-Ensemble FT-Transformer 0.56 0.248
Minimal I-Ensemble ANN 0.45 0.21

similar threshold values like 98% IQR. Nevertheless, the
overall quality of these CS datasets is high, but a double
check from a professional should always be done [22]. For
future CS-based projects, it should be considered to implement
data input controls at the point of entry. These controls can
define plausible ranges for each data point and notify users of
potential anomalies (out-of-range values) requiring validation.
For this reason, the value distribution difference between the
2021 dataset and its counterpart is easily explicable. PT2021
contains more data, which is reflected in the fact that there
are more plant species; some plants can be very different
from each other Fig.III, so a much dense sample should result
in a wider statistical distribution of the traits. Knowing that
can help us detect what part of the dataset should be used in
future work. The analysis of the 2024 dataset shows that the

Fig. 4. Example of an image of a plant with a presumed out-of-bound value:
the leaf area is over two thousand squared meters

problem posed in this version of the competition appears more
complex. The low percentage accuracy in training and separate
testing sets lets us understand that the proposed ML model
works correctly but fails to learn. In contrast, the accuracy
obtained with the same article on the other two datasets is
higher. The fact that the results between the 2024 minimal
shared data information and the complete 2024 counterpart are
very similar confirms the complexity of the task. It teaches us
the possibility of using low-dimensional datasets for complex
problems. In the 2021 and 2023 related datasets instead, the
performance of the algorithm on the full dataset seems higher
in the validation set of the model trained on the complete data
index, which confirms that the more informed and curated
dataset outperforms the less curated one and still let us ask
what it can be done to use this more informed model to
guide or infer on low dimension model or data setting as the
vast majority of CS data repository before heavy data pre-
processing. The results of the 2023 solution show the benefits
and the downfall of DL; while the model seems to perform
remarkably in the original context, it fails to generalise to
another task of the same instance dataset. Overall, DL models
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can accurately analyse a citizen science repository, but their
performance is too connected to the task since no model satis-
fies the requirements of all three challenges. The classification
tactic used in the 2023 dataset is worth studying since it
reveals a connection between mean traits and plant species;
while the model does not perform well on the PT2024

settings, the winner of this competition further investigates
this connection with a multi-head model that mixes regression
and classification2. The low performance of transfer learning
from the high accuracy model [13] indicates a significant task
shift; features learned over classification seem incompatible
with features for plant disease, at least in the PT2024 setting
since both adapted classification solution as shown fail to
give a good performance. The overall structure of a minimal
adaptive ensemble appears to perform in scale; the fully trained
network with reference architectures outperforms the weak
model and the fine-tuned model; even more promising is
the increased accuracy of both the informed model and the
minimal informed model; underlying the possibility of feature
fusion of different data type for adaptive ensembling more
complex architecture. The similar performance of the feature
extraction model in a complex structure as FT-Transformer and
ANN highlights the well-known fact that DL models struggle
to process tabular input data. The exciting part is that the
catboost algorithm has similar accuracy to the informed FT
ensemble as stated in the FT-transformer paper [21].

V. CONCLUSION

This research investigates potential weaknesses in citizen
science (CS) datasets while exploring the feasibility of domain
adaptation within similar domains (plant images) for tasks
like regression and classification. Interestingly, the CS col-
lection methods for the three datasets resulted in remarkably
consistent outlier percentages, data distributions, and image
training set characteristics; this study lays the groundwork for
subsequent investigations.

However, domain adaptation appeared unable to learn the
new problem even within the same plant image domain.
In inductive transfer learning [23], the source task should
influence the target task. The low accuracy suggests that plant
diseases might not directly relate to plant traits, requiring
further investigation of this relationship.

The most intriguing finding might be the possibility and
coherence of a minimally concatenated dataset. With ongoing
research on mixture-of-experts [24] concatenation, a model
trained on various assembled datasets with diverse input
dimensions is a promising avenue for exploration, especially
in settings such as federated learning.
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