
An autonomous vehicle in a connected

environment: case study of cyber-resilience

Guillaume Hutzler∗, Hanna Klaudel∗, Witold Klaudel†‡, Franck Pommereau∗ and Artur Rataj‡

∗ IBISC, Univ. Evry, Université Paris-Saclay, France

Email: {guillaume.hutzler, hanna.klaudel, franck.pommereau}@univ-evry.fr
† SafeTech Cybernetics, Palaiseau, France, Email: witold.klaudel@outlook.fr

‡ IRT SystemX, Palaiseau, France, Email: artur.rataj@irt-systemx.fr

Abstract—As the advancing autonomy of vehicles requires
increasing assistance from the surrounding infrastructure, it
becomes clear that the potential for cyberattacks necessitates a
sophisticated implementation of resilience, capable of detecting
and responding to both internal and external threats. Therefore,
threat analysis and risk assessment, including careful modelling
of resilience, are essential to prepare against cybersecurity risks.
In this context, we extend our method of an automatic discovery
of cost-ranked cyberattack scenarios by monitoring/fallback
mechanisms. We then demonstrate that this extension allows an
analysis of a realistic resilient model of cybersecurity aspects of
a level 2 autonomous vehicle in a connected environment.

Index Terms—security evaluation, formal modelling

I. INTRODUCTION

A
UTONOMOUS vehicles, still in the experimental stage,

are far, from a technical and legal point of view, from

established complex resilient systems such as e.g. energy

networks. However, recent progress demonstrates that an au-

tonomous vehicle will be part of large infrastructure systems,

including elements such as manufacturer’s diagnostic supervi-

sion, dealer authorisation, various services such as geospatial

or even road infrastructure. Obviously, this shapes resilience

goals. We reflect this by immersing, in our case study, an

autonomous vehicle into its environment and modelling attacks

that often cross the boundary between these two parties.

Technological advances have expanded the cyberattack

surface of distributed information systems, and specifically

critical ones such as autonomous vehicles, as they have

become more complex and also more connected with the

external world. This resulted in sophisticated implementations

of resilience understood as active defence, capable to detect

attacks and react to them [1]. Careful modelling of resilience

mechanism may be necessary, given that a number of new ap-

plications of complex distributed information systems concern

critical systems [2]. This is the case of the autonomous vehicle

studied in this paper.

In order to meet these new expectations, we extended our

framework, called SCORE [3], which is devoted to build a

suitable automata model of attack propagation in the system

and automatically discover complex cyberattack scenarios us-

ing abstract cost criteria. The new extension adds to SCORE a

complementary monitoring/fallback mechanism implementing

resilience on an abstraction level compatible with a Model-

Based Systems Engineering (MBSE) architectural diagram of

hardware and software. We then show that together with an

extraction of security traits from a heterogeneous non-security

oriented MBSE data, this allows analysing a realistic resilient

model of the cybersecurity aspect of an autonomous vehicle.

The automated security analysis of architectural traits provided

by SCORE greatly optimises an analyst’s work by allowing

her/him to focus less on engineering aspects and more on

purely cybersecurity related concepts like abstract costs of

unitary compromise of software components.

Identifying threats to distributed information systems is

challenging as they consist of many different entities exposed

to a wide range of cyberattacks. A cyberattack is understood

here as a sequence of unitary actions taken by an attacker

to take control over some components of the system. This

sequence starts with one or more entry points and ends with

the loss of integrity of some system components leading in turn

to a damage targeted by the attacker. Identifying cyberattacks

is crucial for optimising both an architecture and cybersecurity

features to meet an acceptable level of risk. It is necessary to

calculate likelihood of cyberattacks and thus contribute to the

estimation of the overall risk level.

When it comes to interpreting the concept of likelihood,

many national cybersecurity agencies (e.g., NIST [4], ANSSI

[5]) issue loosely defined recommendations and defer final

decisions for its rating scale and methods to experts. The

choice of scale and methods for assessing the strength of

cyber protections is still an open research problem, e.g. [6]. In

SCORE we lean towards the ANSSI approach translating the

likelihood into an inversely proportional cost. We compute the

cost of the entire attack as a sum of costs of all its unitary

attacks, assuming that experts can provide the scale and value

of costs associated with breaking the cyber protections of the

systems under analysis.

Paper structure: We first provide a related work and

a comparison between SCORE method and the existing ones

(Sec. II). Then, in Sec. III we remind the essential character-

istics of SCORE and Sec. IV extends it with resilience features

such as monitoring and fallback. In Section V we apply

SCORE to the cyber resilience risk assessment of a realistic

electronic onboard architecture of autonomous vehicle. We

develop a propagation model of this case study and discuss

the compliance of the chosen security protections wrt the

acceptable risk level.

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 363–373

DOI: 10.15439/2024F8797

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 363 Thematic Session: Resilience in Critical

Infrastructures and Systems

TABLE I
FEATURE AND MODEL SIZE COMPARISON.

Automatic calculation Case study

Method
Network
access

Coalition
Peer

position
MITM

position
Active
defence

Edges Nodes
Hard.
nodes

Static AT or ADT [7], [8] n.a.a + n.a.a n.a.a - <20 <20b n.a.c

Architecture to AG [9], [10] + + - - + <20 <20d n.a.c

Architecture to AT and AG [11] + + - - + <20 <20d n.a.c

Architecture/VDB to AG [12] + + - - - <100 <20d <20

Archit./Assert./VDB to AG [13] - - + - - <1000 <1000b n.a.c

Archit./VDB to AG/BDD [14] - - - - - >50k >50kd n.a.c

Our approach SCORE + + + + + <10k <100d <100

a Because of lack of architecture. b Attacker’s sub-goals [8]. c Architecture is not layered.
d Software nodes or de-facto software (a hardware node with no internal software structure given).

II. CONTRIBUTION AND RELATED WORK

The first non-trivial approaches to vulnerability models

were static Attack Trees (AT) [7], [15], [16], where nodes

represented logical operations like an AND gate showing the

necessity for several parallel breaches before an attack can

proceed — we call it a coalition. While static, these trees could

be created by various manual procedures [17] e.g. motivated

by a security property of interest. Later, ATs were extended

to include defence mechanisms to form Attack-Defence Trees

(ADT) [8].

Due to the increasing complexity of distributed systems’

architecture, the overhead of identifying attack propagation

paths between architectural components grew exponentially.

This posed a burden for security analysts and presented a

potential source of human error. The necessity of devising an

automated analysis of the topology of a complex distributed

system became obvious. [9] proposed a method of creating a

coincidence matrix between a number of architectural compo-

nents like servers or routers, producing thus a general Attack

Graph (AG) to be processed e.g. by a model checker in order

to find possible attack sequences. We see that method as one

of the first attempts at reusing a traditional MBSE architectural

data for cybersecurity, then extended in numerous ways [18],

[19], [20].

In SCORE, starting from hardware and software system

architectures annotated by cybersecurity protection features,

we build an attack propagation model in terms of a network

of automata, each automaton modelling a software module

of the system. Each automaton evolves according to a set

of attack propagation rules computing the cost for each state

change as a function of states of contributing neighbouring

software components. The automaton state represents the type

of software component compromise, called its status, and may

be:

• nominal, not yet compromised, thus unable to propagate;

• active malware, which has largest spectrum of possible

propagation,

• passive (called bad data), which may only send a cor-

rupted data through the network, or

• non-available, which represents a component completely

disabled by the attacker, so that even the attacker cannot

use it anymore.

We compare our framework to representatives of different

families of methods with respect to the attack structures and

the size of systems under analysis in Tab. I.

Here we present an overview of features allowed by SCORE:

• all software components are divided into three classes:

user, root and kernel, corresponding in our approach to

system processes;

• we employ functional interactions representing producer-

consumer relations between user software components;

• we consider system interactions allowing to model basic

operating system relations, like a cheap attack from a

kernel to a process it manages or an attack against a

kernel via a network interface controlled by that kernel;

• thanks to the automatic calculation of possible flow of

interactions through the hardware layer, attacks may take

advantage from the so called attacker’s position, which

can be Man-In-The-Middle (MITM) or Peer, depending

on the relationship between the attacking component with

the interaction it attacks;

• we also classify certain elements in order to decrease the

number of free security parameters like unitary attack

costs; this eases the work of a security analyst and

increases the manageability of a model; a unitary attack

cost consists of a protocol and a component breach;

• thanks to the modelling of the system as a network

of automata, we are able to model synchronous attacks

(coalition) in which an attacker possibly propagates in a

non-sequential way.

See that a component status and an attacker’s position,

combined with the class of a software component, can form

together a rich Cartesian product whose tuples (like malware

performing a MITM attack against a user component) can

be used in security properties, like for example arrays of

unitary costs. We see the abstract nature of such tuples,

as opposed to concrete attack descriptions (like a worm

X uses a vulnerability Y against a component version Z).

This high level of abstraction results from the motivation

behind the method: estimation of general resilience based

on architectural traits and not an identification of concrete

vulnerabilities/exploits as understood e.g. within the CVE

364 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

database [21]. This is a substantial difference to attack graph-

based vulnerability/exploit search tools [22], [10], [11] often

connected to popular vulnerability databases [23], [12], or

analysers of the source code of concrete IoT devices [24].

Functional and system interactions are a unique trait of our

approach. They are similar to the notion of trust in [13]. Each

interaction may be routed through the network or through the

kernel if located on the same hardware component. In our

approach, the routing possibilities of each interaction are pre-

calculated statically on the basis of all possible network trans-

mission paths between interaction partners. These paths may

be seen as a Boolean function of the interaction accessibility

for the attack propagation; it means that if it evaluates to false

the attack cannot propagate through the interaction.

As [9] already noticed, solving attack graphs can be much

more numerically intensive than solving attack trees. Thus

various methods combining trees and graphs [25], [26] or

assuming the criterion of monotonicity [27] i.e., that a unitary

attack may not decrease further attacking capabilities. Very

large networks have been analysed thanks to the latter property

[14] combined with binary decision diagrams [28]. However,

using the above mentioned abstract classification with a very

limited number of classes and a simple abstract model be-

haviour of a software component, a modern model checker

on a fast hardware was able to solve in a reasonable time

an involved MBSE model (Sec. V) without the monotonicity

assumption. We take advantage of the latter which allows more

realistic attack scenarios. For example, an attacker can disable

a router or trigger a monitoring system, both potentially

limiting the possibility of further propagation.

III. FORMAL DESCRIPTION

We shortly remind the basic elements of SCORE before

introducing its extension with monitoring and fallback. More

detailed description of the SCORE approach may be found in

[3].

The SCORE system specification starts with the definition

of the hardware and software architectures and the respective

mapping. Each software component exposes interfaces, which

are necessary for its normal functioning but can be abused

by an attacker to penetrate the system. Interface exposure

depends on functional complexity of the system but also on

hardware architecture constraints such as resource sharing

and network routing. It is assumed that an attacker can pass

through any interface but possibly with different abstract costs.

The definition of these costs is another part of the system

specification that is used to generate the propagation model.

Fig. 2 and 3 show an example of the hardware and software

layers. Hardware components are connected by undirected

network links while software components are connected by di-

rected functional interactions encapsulated in communication

protocols, e.g. HTTP for web applications. Software interac-

tion endpoints are attached to software components through

software ports called roles, e.g. client and server for HTTP

protocol. Software components are hosted by hardware ones

and functional interactions are routed through network links.

SCORE assumes that each software component is assigned to

exactly one hardware component. A privileged software com-

ponent (kernel) may also manage its hardware host, including

subordinate software components within the same hardware

host and network or intra-system routing rules. The hardware

link types correspond to the communication link types such as

for example, Ethernet or CAN network; they connect compo-

nents through hardware ports. Hardware components are man-

aged by operating systems (kernels). Routing rules must ensure

a physical realisation of all specified functional interactions.

Often, due to technical and organisational constraints, routing

rules are more permissive than necessary, which can result in

the creation of additional attack opportunities.

The propagation model generation goes through an inter-

mediate construction, called the visibility graph, which results

from the synthesis of the architecture and focuses only on

the information flow allowing propagation of the attacker in

the system. The visibility graph is a directed graph indicating

which software component (node) can propagate its corrupted

status to its successors. Each interaction between two nodes

is directed and gives rise to an edge in the visibility graph

connecting a node to the role of its target node. Edges are

labelled by the attacker position relative to this interaction:

• peer if the attacking node is a functional peer within that

interaction or if the edge points to a system role;

• mitm (man in the middle) if the attacking node is on a

routing path taken by the interaction;

• side if the routing rules merely allow the attacking node

to see the target role but the node is not in peer or in

mitm positions.

In order for the interaction to be effective, at least one com-

munication routing path should be available, i.e., the statuses

of router nodes on this path should be different from non-

available. This is expressed statically by a Boolean formula

obtained from the architecture when generating the visibility

graph.

To obtain an analysable propagation model P with secrets,

the visibility graph is completed by some auxiliary information

such as thresholds, secrets and roles’ categories and the

abstract costs of unitary attacks, set by experts. P is essentially

composed of a network of automata {A1, . . . , A|N |} (one for

each node n ∈ N of the visibility graph), each of them being

in its current state in L = {F ,N ,B,M} meaning respectively

functional, not available, bad-data or malware, and secrets in

S refer to security keys protecting communication sessions,

which can be stolen from the nodes where they are stored.

All the automata in {A1, . . . , A|N |} have identical structure,

i.e., the same states and transitions, see Fig. 1, but different

transition firing conditions. The last may be complex and

depend on the type of the software component and on its

connectivity with other components in the visibility graph.

Detailed definitions of transition conditions are provided in [3].

A. Propagation model dynamics

A configuration of the propagation model P with secrets is

the state of the network of automata and the state of secrets,

GUILLAUME HUTZLER ET AL.: AN AUTONOMOUS VEHICLE IN A CONNECTED ENVIRONMENT: CASE STUDY OF CYBER-RESILIENCE 365

F BN

M t5

t1 t2

t6

t7

t3t4

t8

Fig. 1. General shape of the automaton An of node n ∈ N .

which is subject to evolve during the execution. More formally,

a configuration c is a pair (q⃗, s⃗), where q⃗ ∈ L|N | is the vector

of states of the automata and s⃗ ∈ B
|S| the current Boolean

value of secrets. For example, ([F ,F ,F ,M], [0, 0, 1]) is a

configuration of a model with four nodes (software compo-

nents) and three secrets; first three nodes are functional (F)

and the last one is corrupted (M), the third secret key is stolen

(globally known).

The firing of a transition from a configuration to another

corresponds to a transition in some automaton An in the

network; it computes the abstract cost for the attacker to

reach the target configuration. A transition resulting in a status

change of node n in automaton An has a unitary cost and

depends on the status of n itself and on the status of its inputs

(predecessors) p ∈ pre(n) in the visibility graph. The impact

in terms of cost of a predecessor p on n may vary depending

on the role r of n to which p is connected; it depends on the

category and type of r, and on the attacker position labelling

the edge from p to r in the visibility graph. Some transitions

in An may need a set of predecessors (a coalition) to have

particular statuses in order to be enabled. The theft of secrets

impacts the cost calculation of the transition by eliminating

the costs of breaking the communication protocols’ security

of the interactions that they protect. Stolen secrets are visible

globally; this corresponds to an omniscient attacker that has

a global knowledge of the system (or at least the parts that

they control). The overall cost of a transition in An is the sum

of the cost of breaking communication protocols and breaking

node’s role protections, or equals to the cost of stealing secrets

by the node itself when its status is already M (malware).

Given a configuration of the propagation model, several

transitions may potentially reach a successor configuration;

however, we assume in SCORE that only the transition of

minimal cost between a pair of configurations is considered

in the definition of the system dynamics. This choice greatly

improves performance while being consistent with SCORE’s

objective of discovering attacks with maximum likelihood, i.e.,

minimum cost. Formally, this gives the following definition of

the semantics:

Definition 3.1: The semantics of P with secrets S is a

transition system (ConfigP ,→, c0) where ConfigP is the set

of all configurations reachable from an initial configuration

c0 = (q⃗0, s⃗0) by executing transitions defined as follows:

A transition from (q⃗, s⃗) to (q⃗′, s⃗′) with cost κ, denoted by

(q⃗, s⃗)
κ
−→ (q⃗′, s⃗′), exists if there exists an enabled transition

tn = (η, η′) in some automaton An with minimal cost κ,

i.e., q⃗[n] = η, q⃗′[n] = η′, and for all i ∈ [1..|N |], i ̸= n,

q⃗′[i] = q⃗[i], which updates accordingly the secrets, i.e.,

s⃗′ = updaten(tn, s⃗). ♢

Attack discovery in the SCORE propagation model identifies

sequences of interface crossings that lead from the initial con-

figuration, with one or more attackers positioned in software

components, to an undesirable target configuration. Among

the huge number of possible attacks, SCORE selects, using

model checking queries, that having a minimal cost or a cost

under some fixed bound, representing the maximum likelihood

needed to maintain the acceptable level of risk.

IV. EXTENSION WITH RESILIENCE

Resilience is the ability of a system to operate under

adverse conditions or stress, even if in a degraded mode,

while maintaining essential operational capabilities, and to

recover to a nominal operational mode. In the initial version

of SCORE [3] only the mechanisms of access control, isolation

and redundancy were proposed, which is not sufficient to cover

most of the resilience requirements. In particular we were not

able to model degraded mode nor recovery. As in distributed

information systems the recovery process is complex and

often includes human decision, in this paper we decided to

focus on rising degraded modes. This was also needed by the

application to the autonomous vehicle we had in mind.

In order to take into account a part of resilience require-

ments we introduce a monitoring concept, which considers for

each target configuration c ∈ ConfigP a possible fallback one.

More formally, we define a function fallback : ConfigP →
ConfigP indicating for each configuration a corresponding

fallback one, and an associated function µ : ConfigP → N

representing the cost of bypassing the monitoring in the target

configuration.

Intuitively, the semantics of a propagation model P with

resilience policy P ′ = (P, fallback, µ) is then obtained by

replacing each transition c1
κ
−→ c2 existing in the semantics

of P , by two transitions: one with cost κ leading from c1
to a fallback configuration fallback(c2) and another with

cost κ + µ(c2) from c1 to the initial target configuration c2.

This means that from c1 with cost κ we may only reach the

fallback configuration of c2, while c2 remains reachable up to

an additional cost µ(c2).

Definition 4.1: The semantics of a propagation model with

resilience policy P ′ = (P, fallback, µ) is a transition system

(ConfigP , ↪→, c0), where ConfigP is the set of all config-

urations reachable from c0 by executing transitions in ↪→,

defined as follows: if c1
κ
−→ c2 with some cost κ, then we

have c1
κ+µ(c2)
↪−−−−−→ c2 and c1

κ
↪−→ fallback(c2). ♢

Note that the set of all configurations of P ′ and P are

identical, ConfigP ′ = ConfigP . However, the accessibility

of certain configurations may be modified.

366 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

V. CASE STUDY

In this section, we introduce our case study representing

the on-board electronics of a Level 2 autonomous connected

vehicle, which means that the vehicle can control its speed

and direction in some specific situations but the human driver

must be able to regain full control of the vehicle at any time.

A. Presentation

As represented in Fig. 2 and 3, the use case architecture is

composed of two main parts: the Vehicle part comprising

• the three vehicle control domains:

– Power Train, which covers engine and gearbox con-

trol (if applicable);

– Body, which covers vehicle access control, cabin

lighting, headlights, windscreen wipers and air con-

ditioning;

– Chassis, which includes brakes, steering, ultrasound

and cluster.

• ADAS (Advanced Driver Assistance Systems), which

includes front camera, lidar, front and rear radars, and

assist mode switch;

• Communication;

• Multimedia, and

• Central Gateway, separating the critical parts of the

vehicle from the Internet connectivity and from the mul-

timedia, and allowing the navigation interacting with the

external world. The central gateway switch gateSwitch

filters the network connections and the central gateway

unit gateUnit contains software components in charge of

central diagnostics and software updates and the proxy-

ing activities between critical and exposed parts of the

vehicle,

and a simplified representation of the External Infrastructure

comprising

• Internet with a content provider and cellular network,

• Dealership with the capability of vehicle diagnostics and

vehicle software update,

• OEM (car maker) with the central management of vehicle

software and navigation map delivery,

• GNSS (Global Navigation Satellite System) responsible

of the vehicle geographical positioning.

Both, the Vehicle and the External Infrastructure, have

their hardware and software architectures, as shown in Fig. 2

and 3, respectively.

Concerning the hardware architecture of the vehicle, each of

the three vehicle domains: Power Train, Body and Chassis

have its own domain controller, which communicates with

the components inside the domain using a separate CAN

network. The ADAS domain is built around an Ethernet switch

adasSwitch allowing the exchange of a large volume of data

between the ADAS controller adasCtrl and all the domain

components. All these four domains mentioned above com-

municate through inter-domain CAN network interd. Three

complementary Ethernet links between ADAS, Power Train

and Chassis domains allow to exchange of a large data

necessary for advanced functionalities (ADAS); for example,

displaying the image from the rear camera rCamera on the

cluster cluster. The central gateway area Central Gateway

consists of two components: a switch gateSwitch in charge

of network traffic filtering and redirection, and a gate unit

gateUnit in charge of central management functions and

proxying activities necessary for supplementary information

flow verification and separation. The switch gateSwitch is

connected by Ethernet to gateUnit, adasSwitch, multime-

dia/navigation mMedia, the communication unit commUnit,

and to the dealer diagnostic devices dealer during the dealer

intervention. The communication unit commUnit connects the

vehicle to the Internet through the cellular network. The gate

unit gateUnit has also a supplementary link to the inter-

domain CAN network interd. The body controller bodyCtrl

communicates via radio link with the vehicle’s access card

card, and the multimedia and navigation unit mMedia com-

municates via Bluetooth with a smartphone phone, for exam-

ple to stream music to the vehicle. Of course, the smartphone

is connected to the Internet.

The above architecture may seem suboptimal, but it reflects

the current real-world situation of automakers who prefer

to reuse existing solutions to extend the functionality of

their products. These incremental transformations require a

very detailed analysis of the cyber risks generated by the

newly introduced interactions between initially independent

subsystems.

Concerning the software architecture, we distinguish the

following categories of components:

• kernels, shown with a dashed border,

• components with root privileges, shown in light pink with

a brown border,

• user space components, shown in light blue with a dark

border.

Each software component has a name starting with a capital

letter and its hosting hardware component indicated on a dark

background in the lower part. The interactions are indicated

using links and sometimes using pairs of labels having the

same colour, especially when it would be too complicate to

trace lines, but there is no semantic difference between these

two representations. A hardware component may host at most

one kernel. Kernels have no depicted explicit interactions but

implicitly, each kernel manages system interactions with all

software components hosted by the same hardware compo-

nent. Kernel-less hardware components can only host software

components having root privileges.

B. Attacker entry points

Potential attacker entry points to the system are also indi-

cated in the architecture definition. They appear in orange in

Fig. 2 with a Trojan icon. We consider the following entry

points for attackers:

• intHacker is located on the Internet;

• dealHacker is located in the dealership;

• oemHacker is located in the intranet of the carmaker

(OEM);

GUILLAUME HUTZLER ET AL.: AN AUTONOMOUS VEHICLE IN A CONNECTED ENVIRONMENT: CASE STUDY OF CYBER-RESILIENCE 367

Fig. 2. Hardware architecture.

• gnssHack can attack the GNSS radio transmission;

• btHacker can attack the Bluetooth connectivity of the

vehicle;

• canHacker can attack through the physical access to the

vehicle CAN network;

• cardHacker can attack via the radio link used by the

vehicle’s access card.

Each of the above hackers has a corresponding software

component in Fig. 3 which is a kernel surrounded by a red

box.

C. Model of propagation

Our tool implementing the SCORE method generates the

propagation model for UPPAAL model checker [29] from the

above description of architectures and a pattern encoding

the automata with the related unitary costs. In our case the

obtained output is composed of a large data structure and a

set of 59 automata of the form of that in Fig. 1, one for each

software component (including hackers), each of them having

four states (one for each possible status of a component in

{F ,M,B,N}). For each of the following properties we need

to specify the initial and target configuration. The initial one

368 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Fig. 3. Software architecture.

GUILLAUME HUTZLER ET AL.: AN AUTONOMOUS VEHICLE IN A CONNECTED ENVIRONMENT: CASE STUDY OF CYBER-RESILIENCE 369

consists in defining at least one active hacker, i.e., such that

its status is different from functional F ; usually we set it to

malware M. The target configuration consists in indicating

which components have to be compromised, i.e., the status of

one or more of them should be different from F .

D. Analysis

Our study is a part of the risk analysis process such as

defined in standards like ISO 21434 [30] or EBIOS Risk

Manager [31]. It starts from the definition of so called feared

events associated here with vehicle functionalities and reveals

a harmful breach of them. Each feared event is given a severity

degree and an accepted level of risk. Both together allow to

estimate for each feared event the maximal accepted likelihood

of attacks, which can trigger this event.

In this paper, we assume that the above stage is already

provided and the list of feared events is known along with

the related likelihood, represented by its inverse, i.e., the

acceptable cost, as shown in Tab. II. We also assume that the

unitary costs are already defined for all protocols and all the

types of software components used in our architectures, taken

from libraries provided by experts. Intuitively, the costs may

be divided in three categories: weak (under 16), intermediate

(between 15 and 25) and strong (between 26 and 50). Our

contribution consists then in looking for potentially dangerous

attacks capable to trigger the mentioned feared events, com-

puting their costs in order to either confirm that the level of

risk remains acceptable, or to propose modifications leading to

better protections. The analysis we present in the following is

developed in order to illustrate the method. It is of course

partial and provides only a small subset of attacks, which

should be included in a complete industrial cybersecurity risk

assessment.

TABLE II
FEARED EVENTS AND ACCEPTABLE COSTS VS COMPANY RISK

MANAGEMENT POLICY

feared event acceptable cost

1 vehicle theft 80
2 ADAS sabotage 80
3 driver disturbance 40

Our analysis will proceed as follows: For each feared event

feared, we will look for possibly several attacks depending

on the initial and target configurations. More precisely, we

choose a set of meaningful attacker entry points and a set

of target software components to be compromised in order to

trigger feared. This leads to several cases represented in Tab.

III and IV together with their calculated minimal costs and the

corresponding shortest path.

In order to compute these attack paths of minimal costs we

set for each case the initial configuration in the propagation

model expressed in UPPAAL and use the model checker. It

is worth to mention that the UPPAAL formula allowing to

find the minimal cost of an attack of a given target may be

prohibitively long to compute due to the size of the model

and the combinatorial explosion of the number of reachable

configurations. Actually, using the "brute force" is not efficient

(we stopped the computation after a few hours) and we need

to use hints to make this computation feasible. The method

consists in first assuming that such an attack exists and use

the model checker to confirm that it is under a given estimated

cost. The difference is that such a restricted request is generally

much faster. It’s even faster as this estimated cost gets closer

to the searched minimum cost. Usually, we start from largest

estimations and refine them by dichotomy until obtaining an

acceptable computation time, usually under 30m. Then, still

under the constraint of the estimated cost, we search the attack

of the minimum cost, which take usually a few minutes.

For example, in the case 1a in Tab. III we set first the status

of IntHacker to M and that of all the other components to F
in the initial configuration. The UPPAAL formula

inf{DoorLock.B}: costs (1)

looks for the minimal value of variable costs of an attack

path reaching the target configuration where the component

DoorLock has status B. However, as mentioned above, it is not

efficient without constraining the cost under some estimated

bound. To find such a bound, we check under different cost

constraints the UPPAAL CTL formula

E<>(DoorLock.B) (2)

saying that there is a path reaching eventually the configuration

where the component DoorLock has status B. If the cost

constraint is close to the minimum, the formula (1) becomes

efficient and it allows to find the attack of the minimal cost

quite fast (in few minutes, under 10m). The minimal calculated

cost is 100 and the obtained path is shown in Tab. III together

with the cost of each step.

We consider six cases for the vehicle theft depicted in Tab.

III. In the first three, the attacker comes from the Internet,

and looks for compromising the functionality of the access to

the vehicle and its start, which are managed by the software

component BodyMngt. In all these cases the attack path passes

through the update functionality. The second case shows that if

BodyMngt is compromised, the opening of the doors becomes

almost costless. The third case shows a malware installation

on BodyMngt, which results in a persistent access to the

vehicle, but at the price of a higher cost. In the fourth case

the objective is as in the previous ones but when the vehicle

is connected to the dealer diagnostic tool via DiagPlug so

that the attack passes through the dealership. In the fifth case,

the attacker enters through Bluetooth interface. This attack is

costly because in our setting Bluetooth does not allow any

vehicle opening functionalities. In the sixth case, the attacker

is initially located in the dealership, attacks first the diagnostic

device, then the body management in order to install a malware

to be used when the vehicle is outside the dealership.

Concerning ADAS sabotage, see Tab. IV, we consider two

cases with the same attacker entry point from the Internet. In

the first case the target is the break control BreakCtrl and the

second the ADAS decision function AdasDec.

370 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

TABLE III
ATTACKS, COSTS AND PATHS FOR FEARED EVENT 1.

entry/status target/status cost path (comp/status:cost)

1a IntHacker/M DoorLock/B 100 IntHacker/M
→ DuProxy/B:50
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/B:20
→ DoorLock/B:5

1b IntHacker/M BodyMngt/B 95 IntHacker/M
→ DuProxy/B:50
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/B:20

1c IntHacker/M BodyMngt/M 105 IntHacker/M
→ DuProxy/B:50
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/M:30

1d IntHacker/M BodyMngt/M 105 IntHacker/M
→ DealDiag/B:55
→ DiagPlug/B:5
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/M:30

1e BtHacker/M BodyMngt/B 120 BtHacker/M
→ MmPlayer/M:25
→ Navig/B:10
→ NavigPr/B:20
→ AdasDec/B:15
→ BodyMngt/M:50

1f DealHack/M BodyMngt/M 90 DealHack/M
→ DealDiag/B:30
→ DiagPlug/B:5
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/B:30

TABLE IV
ATTACKS, COSTS AND PATHS FOR FEARED EVENTS 2 AND 3.

entry/status target/status cost path (comp/status:cost)

2a IntHacker/M BreakCtrl/B 80 IntHacker/M
→ DuProxy/B:50
→ VehMonit/B:20
→ ChassisDu/B:5
→ BreakCtrl/B:5

2b IntHacker/M AdasDec/B 85 IntHacker/M
→ MapProxy/B:50
→ NavigPr/B:20
→ AdasDec/B:15

3a IntHacker/M MmPlayer/B 45 IntHacker/M
→ PhoneMM/B:40
→ MmPlayer/B:5

3b IntHacker/M MmPlayer/B 45 IntHacker/M
→ ExtProxy/M:40
→ MmPlayer/B:5

For the possibility of driver disturbance, see also Tab. IV, we

consider two attacks starting from the Internet and targeting

the multimedia player MmPlayer, for example to force the

maximal speaker volume. The first attacks through the phone

connected to the vehicle, while the second through the HTTP

proxy; both have the same cost.

The calculated minimal costs of all the above attacks are

acceptable from the risk assessment point of view, however

one may observe a high dependability on the resistance of the

proxy functionalities. As a consequence, a further reinforcing

could be useful. A possible solution could be provided by a

monitoring with a reaction such as a fallback. This will be

illustrated in the next section.

E. Monitoring and fallback

In this section we provide the system with monitoring and

fallback of three proxies: ExtProxy, DuProxy and MapProxy.

Each of them may of course be lured but at the price of a

supplementary cost.

We assume that an attempt to attack ExtProxy may lead to

switch it off (i.e., force its status to non-available N) meaning

that the vehicle looses the access to the Internet multimedia

content, we call this fallback action Fb1. The remaining two

proxies are more critical, so we assume that the fallback

action Fb2 cuts off the whole communication between the

vehicle and the external world, i.e., the whole Central gateway

part is forced to switch off. In the propagation model this is

represented by forcing GateK and GateSw to status N .

TABLE V
ATTACKS, COSTS AND PATHS WITH MONITORING AND FALLBACK FOR

FEARED EVENT 1.

entry/status target/status cost path (comp/status:cost)

1a IntHacker/M DoorLock/B 130 IntHacker/M
→ DuProxy/B:80
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/B:20
→ DoorLock/B:5

1b IntHacker/M BodyMngt/B 125 IntHacker/M
→ DuProxy/B:80
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/B:20

1c IntHacker/M BodyMngt/M 135 IntHacker/M
→ DuProxy/B:80
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/M:30

1d IntHacker/M BodyMngt/M 105 IntHacker/M
→ DealDiag/B:55
→ DiagPlug/B:5
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/M:30

1e BtHacker/M BodyMngt/B 120 BtHacker/M
→ MmPlayer/M:25
→ Navig/B:10
→ NavigPr/B:20
→ AdasDec/B:15
→ BodyMngt/M:50

1f DealHack/M BodyMngt/M 90 DealHack/M
→ DealDiag/B:30
→ DiagPlug/B:5
→ VehMonit/B:20
→ BodyDu/B:5
→ BodyMngt/B:30

In Tab. V and VI we show the same combinations of entry

points and targets for the three mentioned above feared events.

As expected, the costs of attacks which are able to avoid

GUILLAUME HUTZLER ET AL.: AN AUTONOMOUS VEHICLE IN A CONNECTED ENVIRONMENT: CASE STUDY OF CYBER-RESILIENCE 371

proxies are unchanged. All the attack paths passing through

the proxies are more expensive. However, new paths having

lower costs appear, like those of cases 2a’ and 2b’, which pass

through the dealership.

In order to find the attacks luring the monitoring and

calculate their costs, we need to assume that either the

vehicle is not plugged on the dealer diagnostic tool (cases

1a, 1b, 1c, 1e, 2a and 2b), or that it is not connected to the

phone (case 3b). It may be obtained using the UPPAAL for-

mula, for example inf{MmPlayer.B and Android.F

and PhoneMM.F}: costs for the case 3b.

TABLE VI
ATTACKS, COSTS AND PATHS WITH MONITORING AND FALLBACK FOR

FEARED EVENTS 2 AND 3.

entry/status target/status cost path (comp/status:cost)

2a IntHacker/M BreakCtrl/B 110 IntHacker/M
→ DuProxy/B:80
→ VehMonit/B:20
→ ChassisDu/B:5
→ BreakCtrl/B:5

2a’ IntHacker/M BreakCtrl/M 105 IntHacker/M
→ DealDiag/B:55
→ DiagPlug/B:5
→ VehMonit/B:20
→ ChassisDu/B:5
→ BreakCtrl/M:15

2b IntHacker/M AdasDec/B 115 IntHacker/M
→ MapProxy/B:80
→ NavigPr/B:20
→ AdasDec/B:15

2b’ IntHacker/M AdasDec/B 105 IntHacker/M
→ DealDiag/B:55
→ DiagPlug/B:5
→ VehMonit/B:20
→ AdasDu/B:5
→ AdasDec/B:15

3a IntHacker/M MmPlayer/B 45 IntHacker/M
→ PhoneMM/B:40
→ MmPlayer/B:5

3b IntHacker/M MmPlayer/B 95 IntHacker/M
→ ExtProxy/M:70
→ MmPlayer/B:5

As shown above, adding monitoring and fallback improves

system protection. However, because this introduces a new

cyber attack surface, triggering fallback mode may constitute

a new target for the attacker. This is visible in our case study

as an attack from the Internet taking as the objective to rise

fallback Fb2 is possible for a rather low cost. The UPPAAL

formula

inf{(GateK.N and GateSw.N)}: costs

returns the minimum cost of 50.

F. Redundancy

In this section we illustrate a situation where the attacker is

able to pass through the routing restrictions on the switches

of Central Gateway and ADAS, i.e.,GateSw and AdasSw,

for example if it succeeded to get the network access key.

This allows it to attack communication protocols between

perception (AdasPerc) and various sensors such as lidar, radar

or camera, in order to force perception to create a fake scene,

i.e., a false image of the road situation. Usually, these protocols

are weakly protected.

As these sensors are redundant in the sense that they provide

partly the same information, in our case the attacker has to

compromise at least two of them, which makes it more costly.

Concerning the network access key, we consider that the

attacker steals it from the OEM Diagnostic and Update Center

(OemDU).

We are able to detect such an attack by placing the attacker

in the Internet, i.e., in IntHacker and by looking for paths

compromising ADAS perception with the following formula:

inf{(AdasPerc.B and DiagPlug.F)}: costs

The condition DiagPlug.F is added to confirm that the vehicle

is not connected to the dealer diagnostic tool. The correspond-

ing path and cost is given in Tab. VII.

TABLE VII
ATTACK, COST AND PATH FOR SENSOR COMPROMISE.

entry/status target/status cost path (comp/status:cost)

IntHacker/M AdasPerc/B 110 IntHacker/M
→ OemDU/key-theft:35
→ ExtProxy/M:55
→ AdasPerc/B:20

The first step in the path consists in stealing remotely the

protection key without changing the status of the OEM Diag-

nostic and Update Center. Then, the attacker installs malware

on the External Proxy luring its monitoring but taking profit

from the stolen access key. Finally, the attacker compromises

synchronously two interactions between the Perception and

two of its sensors to produce fake data. This is costly but less

expensive than the installation of a malware on the Perception.

VI. CONCLUSION AND PERSPECTIVES

We show how this method can be used for cybersecurity

risk assessment of large critical systems. It can also suggest

directions for optimising both passive architectural and active

cyber protections in order to achieve an acceptable level of

risk. We expect that such mechanisms will eventually become

compulsory for resilient critical systems, and in particular for

autonomous vehicles.

We notice, that certain threat scenarios depend on the

functionality of software components which is unrelated to

security and is thus not covered by our security–focused

approach. For example, in the case of a vehicle, it may

be interesting to know whether the vehicle is stationary or

running, whether the navigation system is connected to the

Internet or not, or whether only certain ADAS functionalities,

such as the autopilot, is active or not. These extensions are

of course possible, but may degrade computational efficiency.

The challenge for our future work will be to find an acceptable

trade-off between these aspects.

We see two improvements related to unitary attack costs:

their automatic synchronisation with the CVE database [32]

372 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

and and an enhanced method of their cumulation into the total

scenario expense. The former would improve on resilience

thanks to timely dissemination of vulnerability information.

The latter would take into accounts elements such as partial

observability of the system from the perspectives of different

actors.

ACKNOWLEGMENT

This work was supported by the French government as part

of the “France 2030” program, within the framework of the

SystemX Technological Research Institute.

REFERENCES

[1] A. Clark and S. Zonouz, “Cyber-physical resilience: Definition and
assessment metric,” IEEE Transactions on Smart Grid, vol. 10, no. 2,
pp. 1671–1684, 2017. doi: 10.1109/TSG.2017.2776279

[2] N. Leveson, N. Dulac, D. Zipkin, J. Cutcher-Gershenfeld, J. Carroll, and
B. Barrett, “Engineering resilience into safety-critical systems,” in Re-

silience engineering. CRC Press, 2017. doi: 10.1201/9781315605685-
12 pp. 95–123.

[3] G. Hutzler, H. Klaudel, W. Klaudel, F. Pommereau, and A. Rataj,
“Automatic discovery of cyberattacks,” in IEEE CSR, 2024, to appear.

[4] S. Quinn, N. Ivy, M. Barrett, L. Feldman, G. Witte, and R. Gardner,
“Identifying and estimating cybersecurity risk for enterprise risk man-
agement,” 2021. doi: 10.6028/NIST.IR.8286A https://nvlpubs.nist.gov/
nistpubs/ir/2021/NIST.IR.8286A.pdf.

[5] “Digital risk management,” French Cybersecurity Agency, 2024, https:
//cyber.gouv.fr/en/digital-risk-management.

[6] S. Gupta Bhol, J. Mohanty, and P. Kumar Pattnaik, “Taxonomy
of cyber security metrics to measure strength of cyber security,”
Materials Today: Proceedings, vol. 80, pp. 2274–2279, 2023. doi:
10.1016/j.matpr.2021.06.228 SI:5 NANO 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214785321046009

[7] S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Infor-

mation Security and Cryptology-ICISC 2005. Springer, 2006. doi:
10.1007/11734 pp. 186–198.

[8] J. Arias, C. E. Budde, W. Penczek, L. Petrucci, T. Sidoruk, and
M. Stoelinga, “Hackers vs. security: attack-defence trees as asyn-
chronous multi-agent systems,” in International Conference on Formal

Engineering Methods. Springer, 2020. doi: 10.1007/978-3-030-63406-
3_1 pp. 3–19.

[9] R. Ritchey and P. Ammann, “Using model checking to analyze network
vulnerabilities,” in IEEE Symposium on Security and Privacy, 2000. doi:
10.1109/SECPRI.2000.848453 pp. 156–165.

[10] S. Jajodia, S. Noel, and B. O’berry, “Topological analysis of network
attack vulnerability,” Managing Cyber Threats: Issues, Approaches, and

Challenges, pp. 247–266, 2005. doi: 10.1145/1229285.1229288

[11] M. Ge, J. B. Hong, W. Guttmann, and D. S. Kim, “A framework
for automating security analysis of the internet of things,” Journal of

Network and Computer Applications, vol. 83, pp. 12–27, 2017. doi:
10.1016/j.jnca.2017.01.033

[12] C. Hankin, P. Malacaria et al., “Attack dynamics: an automatic attack
graph generation framework based on system topology, capec, cwe, and
cve databases,” Computers & Security, vol. 123, p. 102938, 2022. doi:
10.1016/j.cose.2022.102938

[13] O. Sheyner and J. Wing, “Tools for generating and analyzing attack
graphs,” in International symposium on formal methods for components

and objects. Springer, 2003. doi: 10.1007/978-3-540-30101-1_17 pp.
344–371.

[14] K. Piwowarski, K. Ingols, and R. Lippmann, “Practical attack
graph generation for network defense,” in Computer Security

Applications Conference. IEEE Computer Society, 2006. doi:
10.1109/ACSAC.2006.39. ISSN 1063-9527 pp. 121–130. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/ACSAC.2006.39

[15] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp.
21–29, 1999.

[16] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, “Attack–defense
trees,” Journal of Logic and Computation, vol. 24, no. 1, pp.
55–87, 06 2012. doi: 10.1093/logcom/exs029. [Online]. Available:
https://doi.org/10.1093/logcom/exs029

[17] D. M. Kienzle and W. A. Wulf, “A practical approach to security
assessment,” in Proceedings of the 1997 workshop on New security

paradigms, 1998. doi: 10.1145/283699.283731, pp. 5–16.
[18] M. S. Barik, A. Sengupta, and C. Mazumdar, “Attack graph generation

and analysis techniques,” Defence Science Journal, vol. 66, no. 6, p.
559, 2016. doi: 10.14429/dsj.66.10795

[19] H. S. Lallie, K. Debattista, and J. Bal, “A review of attack graph
and attack tree visual syntax in cyber security,” Computer Science

Review, vol. 35, p. 100219, 2020. doi: 10.1016/j.cosrev.2019.100219.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1574013719300772

[20] K. Kaynar, “A taxonomy for attack graph generation and
usage in network security,” Journal of Information Security and

Applications, vol. 29, pp. 27–56, 2016. doi: 10.1016/j.jisa.2016.02.001.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2214212616300011

[21] MITRE, “Common weakness enumeration,” 2023, https://cwe.mitre.org/
data/index.html.

[22] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated
generation and analysis of attack graphs,” in IEEE Symposium on

Security and Privacy, 2002. doi: 10.1109/SECPRI.2002.1004377, pp.
273–284.

[23] I. Chokshi, N. Ghosh, and S. K. Ghosh, “Efficient generation
of exploit dependency graph by customized attack modeling
technique,” in Advanced Computing and Communications. IEEE
Computer Society, 2012. doi: 10.1109/ADCOM.2012.6563582, pp.
39–45. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
ADCOM.2012.6563582

[24] Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated {IoT} safety
and security analysis,” in USENIX Annual Technical Conference, 2018.
doi: 10.48550/arXiv.1805.08876, pp. 147–158.

[25] J. Hong and D.-S. Kim, “Harms: Hierarchical attack representation mod-
els for network security analysis,” 2012. doi: 10.4225/75/57b559a3cd8da

[26] J. B. Hong and D. S. Kim, “Towards scalable security analysis using
multi-layered security models,” Journal of Network and Computer Ap-

plications, vol. 75, pp. 156–168, 2016. doi: 10.1016/j.jnca.2016.08.024,
[27] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based

network vulnerability analysis,” in Proceedings of the 9th ACM

Conference on Computer and Communications Security, 2002. doi:
10.1145/586110.586140, pp. 217–224.

[28] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677–691,
1986. doi: 10.1109/TC.1986.1676819

[29] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on UPPAAL,” in
LNCS, vol. 3185. Springer, 2004. doi: 10.1007/978-3-540-30080-9_7,
pp. 200–236.

[30] “Road vehicles, Cybersecurity engineering,” International Organization
for Standardization, Geneva, CH, Standard, 2021.

[31] “Ebios risk manager,” French Cybersecurity Agency, 2024,
https://www.ssi.gouv.fr/uploads/2019/11/anssi-guide-ebios_risk_
manager-en-v1.0.pdf.

[32] “Common vulnerabilities and exposures,” MITRE, 2024. [Online].
Available: http://cve.mitre.org

GUILLAUME HUTZLER ET AL.: AN AUTONOMOUS VEHICLE IN A CONNECTED ENVIRONMENT: CASE STUDY OF CYBER-RESILIENCE 373

