
Forecasting Stock Trends with Feedforward Neural

Networks

Marcin Traskowski

University of Warsaw

Warsaw, Poland

Email: traskowski.marcin@gmail.com

Eyad Kannout

University of Warsaw

Warsaw, Poland

Email: eyad.kannout@mimuw.edu.pl

Abstract—Stock market prediction stands as a complex and
crucial task, pivotal for enhancing the overall stability and
efficiency of financial markets by offering essential insights into
market movements and trends. In this study, we introduce a
simple yet potent model based on feedforward neural networks
to tackle this challenge effectively. Our approach leverages
advancements in machine learning and deep learning to analyze
large datasets of financial statements, demonstrating promising
results in forecasting stock trends.

Index Terms—Stock Market Prediction, Neural Networks,
Deep Learning, Forecasting, Classification

I. INTRODUCTION

F
ORECASTING stock trends has long been an intriguing

and challenging problem for researchers and enthusiasts

in the fields of finance and data science. Accurate predictions

can lead to significant financial gains and help investors make

informed decisions. The factors and sources of information to

consider are numerous and diverse, making it very challenging

to foresee future stock market behavior accurately [1]. It is

clear that precise prediction of stock prices is elusive. Fama et

al. [2] introduced the efficient market hypothesis, which asserts

that an asset’s current price always reflects all available prior

information. Additionally, the random walk hypothesis, intro-

duced by Burton [3], proposes that a stock’s price movements

are independent of its past, implying that tomorrow’s price will

rely exclusively on tomorrow’s information, irrespective of to-

day’s price. Together, these hypotheses suggest that accurately

predicting stock prices is impossible. Nonetheless, extensive

research has been conducted to address this issue, proposing a

range of methodologies across multiple disciplines, including

economics, statistics, physics, and computer science [4].

Traditional methods of stock trend analysis often rely on sta-

tistical models, such as ARIMA [5], which may not effectively

capture the complex, non-linear, and often unstable patterns

present in financial data. In recent years, advancements in

machine learning and deep learning have opened new avenues

for analyzing and predicting stock trends [6]. Neural networks,

in particular, have shown promise due to their ability to learn

and generalize from large datasets. This paper presents a

simple yet effective neural network approach to predicting

stock trends, developed as part of the FedCSIS 2024 Data

Mining Challenge 1 [7] .

1https://knowledgepit.ai/fedcsis-2024-challenge/

The paper is organized as follows: the next part reviews

related work in stock predictions, followed by a description

of the competition data and preprocessing methods. Next, we

detail the model architecture, hyperparameters and evaluation

metrics. Subsequently, we present the experimental results.

The last part is reserved for final conclusions and observations.

II. RELATED WORKS

Recent advancements in machine learning and deep learning

have significantly enhanced the ability to predict stock market

trends. Numerous studies have explored different approaches

and models, showcasing varying degrees of success and inno-

vation.

Random Forest, an ensemble learning method, has been

widely used for its robustness and accuracy in stock market

prediction. By constructing multiple decision trees and aggre-

gating their results, Random Forest reduces overfitting and

improves generalization. Its ability to handle large datasets

with high dimensionality makes it particularly effective for

financial market predictions [8].

Other research endeavors have concentrated on employing

support vector machines (SVMs) to improve the accuracy of

stock market predictions through categorization of examples.

SVM models represent examples as points in a multidimen-

sional space, with the objective of maximizing the separation

between different categories. New examples are then classified

based on the category they are most likely to belong to [9]. Liu

et al. [10] developed a model using the RBF-SVM algorithm

to enhance stock price prediction, accurately assess short-term

stock price movements, and provide more reliable guidance for

stock market analysis and investor decision-making.

Another prominent method involves using Recurrent Neural

Networks (RNNs) and Long Short-Term Memory networks

(LSTMs) due to their ability to handle sequential data [11].

Research has shown that LSTMs can outperform traditional

machine learning models in predicting stock price movements

by capturing temporal dependencies in financial data [12].

The application of Convolutional Neural Networks (CNNs)

to extract spatial features from stock market data has also

shown promise. Research has utilized hybrid models com-

bining CNNs and LSTMs to predict stock prices, showing

improved performance over standalone models [13].

Proceedings of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 767–771

DOI: 10.15439/2024F885

ISSN 2300-5963 ACSIS, Vol. 39

IEEE Catalog Number: CFP2485N-ART ©2024, PTI 767 Thematic Session: Data Mining Competition

Attention mechanisms, particularly through Transformer

models, have demonstrated significant potential in stock trend

prediction. By effectively handling long-term dependencies

and integrating both technical indicators and sentiment anal-

ysis, Transformer-based models like StockFormer [14] have

shown superior predictive capabilities compared to traditional

RNN-based models. Furthermore, stock market prices are

significantly influenced by the sentiments of stakeholders,

which can be assessed through the analysis of news, social

media data, and other indicators. Kumar et al. [15] explored

the correlation between the sentiment polarity of news and a

company’s stock price. They employed the SVM-LSTM-GRU

Composite Model to predict a company’s stock price based on

news related to that company.

The research literature has documented numerous efforts to

develop recommendation systems [16], [17] that advise users

on whether to buy or sell stocks [18]. Additionally, Association

Rule Mining (ARM) is widely used to create recommender

systems [19]. In stock predictions, several systems exist for

monitoring and predicting stock prices, but they typically

focus on individual stocks and do not account for the inter-

relationships between stocks or their connections with the

stock market index. Paranjape-Voditel et al. [20] employed

various ARM techniques—such as fuzzy ARM, weighted

fuzzy ARM, ARM with time lags, fuzzy ARM with time

lags, and weighted fuzzy ARM with time lags—to predict

relationships between stocks. This approach forms the basis

for portfolio management and provides recommendations for

mutual funds.

These studies collectively indicate that leveraging advanced

deep learning architectures, ensemble methods, and attention

mechanisms can significantly enhance the predictive accuracy

of stock market models.

III. DATASETS

The competition included training and test sets, consisting

of 8,000 and 2,000 examples, respectively. Each example

represents a financial statement announcement for one of the

chosen 300 companies. Each record consists of 119 elements.

The first column is a categorical value that represents the

company’s sector. The next 58 columns contain values for key

financial indicators. The following 58 columns represent the

1-year (absolute) change for each of these previous financial

indicators. The last two columns are targets:

1) The target column "Class" can have three possible

values:

• -1: "sell" (do not invest)

• 0: "hold"

• 1: "buy (invest)

2) The target column "Perform" gives the value of risk-

return performance for a period after the announcement.

Those values ranges between -0.5 and 0.5. Small nega-

tive values correspond to the "sell" class, large positive

values correspond to the "buy" class, and values close

to 0 correspond to the "hold" class.

IV. DATA PREPROCESSING

Before starting the training, we needed to address a few

existing issues with the datasets.

A. Missing Values

There are two distinct types of missing values in the

provided datasets:

1) Non-available: To fill these empty spaces with values

that minimize the difference from actual unknown data,

we opted to use the mean of the column values.

2) Non-applicable: We set these values to 0. Using any

other value might suggest to our neural network model

that these components should be active.

These two types were marked differently. Non-available data

were represented as empty strings, while non-applicable data

were marked with the "NA" string. This distinction allowed

us to easily differentiate between the two cases.

B. Categorical Values

As mentioned earlier, the first column is a categorical

variable indicating the company’s sector, with eleven possible

values. To correctly process this data, we one-hot encoded this

column. This increased the number of columns in our datasets

by ten, resulting in a total of 129 columns.

C. Standardization

To improve the performance of our model, we decided to

normalize the datasets using z-score normalization [21], which

calculates the standard score for each feature. The standard

score, or z-score, of a feature x is calculated as:

z =
x− µ

σ

where µ is the mean of the feature values in the training

set, and σ is the standard deviation of the feature values in

the training set.

By applying z-score normalization, each feature will have

a mean of 0 and a standard deviation of 1 in the training

set. This transformation ensures that all features are on a

similar scale, which can help improve the convergence speed

of optimization algorithms and prevent features with larger

scales from dominating the learning process.

The scaling parameters (mean and standard deviation) com-

puted on the training set are then used to transform the test

set, ensuring consistency in scaling across both datasets.

V. MODEL ARCHITECTURE

We will test three neural networks with varying depths to

see how well each of them manages the prediction task. All

models will share common hyperparameters:

• Activation function: Hyperbolic Tangent (Tanh)

• Number of epochs: 100

• Learning rate: 0.00005

• Batch size: 40

• Optimizer: AdamW

• Loss function: mean squared error (MSE)

768 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Fig. 1. Histogram of values from column "Perform" from Test Dataset

• Dropout probability: 20%

• Hidden layers size: 256

Each model accepts an input vector of 127 dimensions,

which is processed through multiple dense hidden layers

with dropout for regularization. To improve performance, we

employed Xavier Glorot initialization [22] for our models

weights. It works by initializing the weights using the formula:

W ∼ U

(

−

√

6

nin + nout

,

√

6

nin + nout

)

where nin and nout are the size of input and output units in

the layer.

Batch normalization [23] is applied after each layer to

stabilize training. As mentioned earlier, the models vary in

terms of the number of hidden layers. Specifically, the first

model consists of 2 hidden layers, the second model includes

6 hidden layers and the third model incorporates 10 hidden

layers. These configurations were chosen to explore how

increasing depth impacts the model’s ability to learn and

generalize from the data.

The final layer of each model predicts a single value

corresponding to the risk-return performance (target column

"Perform"). Given that these performance values typically

range between -0.5 and 0.5, we opted for the Hyperbolic

Tangent activation function because it confines outputs to the

range [-1, 1]. For a clearer visualization of these values, Fig

1 illustrates their distribution.

Our models are well-suited for the regression task of pre-

dicting risk-return performance. To adapt them for a classifi-

cation problem, where each input should be assigned to one of

the three classes described in previous sections, we implement

the following post-processing steps:

We identify the highest value of risk-return performance

from train dataset that still belongs to the class -1, marking this

value as low_limit. Similarly, we identify the smallest value

of risk-return performance from train dataset that corresponds

to the class 1, marking this value as upper_limit. The

classification proceeds as follows:

• if model predicts value that is less than low_limit, then

we classify this instance as class −1
• if it predicts value from range [low_limit, upper_limit],

then we classify it as class 0

• in case we get a value bigger than upper_limit, then we

classify it as class 1

The values of these boundaries rounded to five decimal places

are:
low_limit = −0.01504

upper_limit = 0.04008

VI. EXPERIMENTAL RESULTS

In this section, we present the results of our experiments.

The models are listed in the order they were introduced in the

previous sections (Model 1 has 2 hidden layers, Model 2 has

6 hidden layers and Model 3 has 10 hidden layers).

A. Evaluation metrics

Our model can be assessed using two metrics. The first

metric is the mean absolute error (MAE) [24] between the

predicted values of our model and the true values of risk-

return performance. We opt for MAE over mean squared error

(MSE) due to the small magnitude of values involved in our

predictions. While MSE could provide useful insights as well,

we prioritize MAE for its straightforward interpretation, espe-

cially when presenting results with fewer decimal points. The

MAE is calculated as the average of the absolute differences

between the true values yi and the predicted values ŷi:

MAE =
1

n

n
∑

i=1

|yi − ŷi|

The second metric, which we will call classification

weighted error, corresponds to the evaluation criterion used in

the FedCSIS 2024 Data Mining Challenge. After predicting

classes, a confusion matrix is constructed. The evaluation

involves calculating the average error cost using a predefined

error cost matrix 2:

-1 0 1

-1 0 1 2

0 1 0 1

1 2 1 0

The classification weighted error is determined using the

following formula:

1

length

∑

(cost matrix ◦ confusion matrix)

Here, ◦ denotes the Hadamard product (element-wise multi-

plication), the term "length" represents the total number of

predictions (2000 in our case) and the sum is over all the

elements of the resulting matrix.

This method imposes a higher penalty for misclassifications

between classes 1 and -1, specifically when predicting ’invest’

for a true class of ’do not invest’, and vice versa.

B. Achieved Scores

The table I displays the scores achieved for the two afore-

mentioned metrics.

2https://knowledgepit.ai/fedcsis-2024-challenge/

MARCIN TRASKOWSKI, EYAD KANNOUT: FORECASTING STOCK TRENDS WITH FEEDFORWARD NEURAL NETWORKS 769

Fig. 2. Histograms of differences between true values of risk-return performance and predicted values

Fig. 3. Confusion matrices for all three models

TABLE I
ACHIEVED SCORES ROUNDED TO FOURTH DECIMAL POINT

Model MAE Classification Weighted Error

Model 1 0.1174 0.861
Model 2 0.1158 0.839
Model 3 0.1197 0.885

Fig 2 presents histograms of differences between true values

and predicted values. Although the distributions appear quite

similar, these slight variances lead to marginally different

outcomes in those two aforementioned metrics.

In Fig 3, the confusion matrices for each model are pre-

sented. We observe consistent patterns across all three models,

such as managing to correctly classify a large number of

’1’s while also frequently misclassifying classes -1 and 1

as 0. Although adjusting the values of previously mentioned

low_limit and upper_limit might seem like a logical step

to reduce the frequency of classifying instances as 0, this

adjustment, most of the times, does not significantly improve

the weighted classification error. This is because the error

metric penalizes misclassifications between classes -1 and 1

more severely. Therefore, by allowing the model to maintain

such a buffer of class "0", we are empirically able to achieve

better results in terms of weighted classification error.

Although our models achieved comparable results, it is

evident that hyperparameter selection is a crucial aspect of our

method. Analyzing the outcomes, we observed that the small-

est model slightly underfitted while the largest one overfitted.

Therefore, despite each model achieving a fairly good level of

performance, fine-tuning them requires a thorough grid search.

VII. CONCLUSIONS

In this study, we proposed a robust framework for predict-

ing stock market trends using feedforward neural networks.

We aimed to enhance the accuracy of forecasting models

by leveraging advancements in deep learning and extensive

preprocessing techniques. Our approach involved tackling

challenges such as handling large datasets of financial state-

ments, managing missing data, and preprocessing categorical

variables and numerical features. We explored three neural

network architectures with varying numbers of hidden layers,

evaluating their performance based on both regression (mean

absolute error) and classification (weighted error) metrics. This

approach achieved best cumulative performance in terms of the

risk-return aspect in FedCSIS 2024 Data Mining Challenge.

REFERENCES

[1] P. Tran, P. Anh, P. Tam, and C. Nguyen, “Applying machine learning
algorithms to predict the stock price trend in the stock market – the case

770 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

of vietnam,” Humanities and Social Sciences Communications, vol. 11,
03 2024.

[2] E. F. Fama, “Efficient capital markets: A review of theory and empirical
work,” The Journal of Finance, vol. 25, no. 2, pp. 383–417, 1970.

[3] N. Burton, An Analysis of Burton G. Malkiel’s A Random Walk Down

Wall Street. Macat Library, 01 2018.

[4] M. Agrawal, A. Khan, and P. Shukla, “Stock price prediction using
technical indicators: A predictive model using optimal deep learning,”
International Journal of Recent Technology and Engineering, vol. 8,
pp. 2297–2305, 07 2019.

[5] W. R. Kinney, “Arima and regression in analytical review: An empirical
test,” The Accounting Review, vol. 53, no. 1, pp. 48–60, 1978.

[6] G. Sonkavde, D. S. Dharrao, A. M. Bongale, S. T. Deokate,
D. Doreswamy, and S. K. Bhat, “Forecasting stock market prices using
machine learning and deep learning models: A systematic review, per-
formance analysis and discussion of implications,” International Journal

of Financial Studies, vol. 11, no. 3, 2023.

[7] A. M. Rakicevic, P. D. Milosevic, I. T. Dragovic, A. M. Poledica, M. M.
Zukanovic, A. Janusz, and D. Slezak, “Predicting stock trends using
common financial indicators: A summary of fedcsis 2024 data science
challenge held on knowledgepit.ai platform,” in Proceedings of FedCSIS

2024, 2024.

[8] J. Zheng, D. Xin, Q. Cheng, M. Tian, and L. Yang, “The random forest
model for analyzing and forecasting the us stock market in the context
of smart finance,” 2024.

[9] T. Strader, J. Rozycki, T. Root, and Y.-H. Huang, “Machine learning
stock market prediction studies: Review and research directions,” Jour-

nal of International Technology and Information Management, vol. 28,
pp. 63–83, 01 2020.

[10] Z. Liu, Z. Dang, and J. Yu, “Stock price prediction model based on
rbf-svm algorithm,” in 2020 International Conference on Computer

Engineering and Intelligent Control (ICCEIC), pp. 124–127, 2020.

[11] S. Mehtab, J. Sen, and A. Dutta, “Stock price prediction using machine
learning and lstm-based deep learning models,” in Machine Learn-

ing and Metaheuristics Algorithms, and Applications (S. M. Thampi,
S. Piramuthu, K.-C. Li, S. Berretti, M. Wozniak, and D. Singh, eds.),
(Singapore), pp. 88–106, Springer Singapore, 2021.

[12] T. Fischer and C. Krauss, “Deep learning with long short-term memory
networks for financial market predictions,” European Journal of Oper-

ational Research, vol. 270, no. 2, pp. 654–669, 2018.

[13] J. Eapen, D. Bein, and A. Verma, “Novel deep learning model with cnn

and bi-directional lstm for improved stock market index prediction,” in
2019 IEEE 9th Annual Computing and Communication Workshop and

Conference (CCWC), pp. 0264–0270, 2019.
[14] H. Kaeley, Y. Qiao, and N. Bagherzadeh, “Support for stock trend

prediction using transformers and sentiment analysis,” 2023.
[15] R. Kumar, C. M. Sharma, V. M. Chariar, S. Hooda, and R. Beri,

“Emotion analysis of news and social media text for stock price
prediction using svm-lstm-gru composite model,” in 2022 International

Conference on Computational Intelligence and Sustainable Engineering

Solutions (CISES), pp. 329–333, 2022.
[16] E. Kannout, M. Grzegorowski, and H. Son Nguyen, Toward Recom-

mender Systems Scalability and Efficacy, pp. 91–121. Cham: Springer
International Publishing, 2023.

[17] E. Kannout, M. Grzegorowski, M. Grodzki, and H. S. Nguyen,
“Clustering-based frequent pattern mining framework for solving
cold-start problem in recommender systems,” IEEE Access, vol. 12,
pp. 13678–13698, 2024.

[18] Sharma, Vikram, Rakhra, Manik, and Mathur, Gauri, “Hybrid ap-
proaches for stocks prediction and recommendation system,” E3S Web

Conf., vol. 453, p. 01047, 2023.
[19] E. Kannout, H. S. Nguyen, and M. Grzegorowski, “Speeding up recom-

mender systems using association rules,” in Intelligent Information and

Database Systems (N. T. Nguyen, T. K. Tran, U. Tukayev, T.-P. Hong,
B. Trawiński, and E. Szczerbicki, eds.), (Cham), pp. 167–179, Springer
Nature Switzerland, 2022.

[20] P. Paranjape-Voditel and U. Deshpande, “An association rule mining
based stock market recommender system,” in 2011 Second Interna-

tional Conference on Emerging Applications of Information Technology,
pp. 21–24, 2011.

[21] N. Fei, Y. Gao, Z. Lu, and T. Xiang, “Z-score normalization, hubness,
and few-shot learning,” in 2021 IEEE/CVF International Conference on

Computer Vision (ICCV), pp. 142–151, 2021.
[22] Y. Bengio and X. Glorot, “Understanding the difficulty of training deep

feed forward neural networks,” International Conference on Artificial

Intelligence and Statistics, pp. 249–256, 01 2010.
[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” 2015.
[24] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical

learning: data mining, inference, and prediction, vol. 2. Springer, 2009.

MARCIN TRASKOWSKI, EYAD KANNOUT: FORECASTING STOCK TRENDS WITH FEEDFORWARD NEURAL NETWORKS 771

