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Abstract—The allocation of healthcare resources on ships
is crucial for safety and well-being due to limited access to
external aid. Proficient medical staff on board provide a mobile
healthcare facility, offering a range of services from first aid
to complex procedures. This paper presents a system model
utilizing Reinforcement Learning (RL) to optimize doctor-patient
assignments and resource allocation in maritime settings. The RL
approach focuses on dynamic, sequential decision-making, em-
ploying Q-learning to adapt to changing conditions and maximize
cumulative rewards. Our experimental setup involves a simulated
healthcare environment with variable patient conditions and
doctor availability, operating within a 24-hour cycle. The Q-
learning algorithm iteratively learns optimal strategies to enhance
resource utilization and patient outcomes, prioritizing emergency
cases while balancing the availability of medical staff. The results
highlight the potential of RL in improving healthcare delivery
on ships, demonstrating the system’s effectiveness in dynamic,
time-constrained scenarios and contributing to overall maritime
safety and operational resilience.

I. INTRODUCTION

T
HE allocation of healthcare resources is an important
and critical task for provision of quality health services

[1]. This task in the restricted and often isolated setting of
ship is not simply a matter of convenience; rather, it is an
essential requirement that directly influences the safety and
well-being of all individuals on board[2]. Unlike on land,
where medical facilities are usually easily accessible, ships
operate in environments where the availability of external
aid can be significantly limited or delayed. Consequently,
the distribution of healthcare resources becomes not just
significant but paramount for mitigating risks and ensuring
the uninterrupted continuation of maritime activities.

In maritime settings, the presence of proficient medical
staff on board is comparable to having a mobile healthcare
facility[3]. Physicians, nurses, and paramedics have crucial
roles, accountable not only for immediate treatment during
crises but also for preserving overall health and wellness
throughout journeys. Their expertise, coupled with a variety
of medical services ranging from basic first aid to complex

procedures, establishes the foundation of a ship’s healthcare
framework[4].

Maritime healthcare encounters challenges beyond the pro-
vision of services. Efficient resource allocation requires on-
going monitoring of the deployment of medical personnel[5].
This includes ensuring sufficient staff numbers strategically
located to promptly respond to emergencies anywhere on the
ship. It also involves forecasting changes in demand based on
the duration of the voyage, the nature of the cargo, and the
demographics of the crew and passengers[6].

Furthermore, the distribution of healthcare resources sur-
passes mere logistics; it entails incentivizing effective
decision-making. Immediate incentives and delayed penalties
act as stimulants for proactive resource management, culti-
vating a culture of safety and accountability[7]. By acknowl-
edging and reinforcing positive actions, ship operators ensure
effective resource utilization, enhancing the overall resilience
of the healthcare system[8].

Fundamentally, the allocation of healthcare resources in
maritime settings demands careful planning, constant moni-
toring, and proactive decision-making[9]. It demonstrates the
flexibility and resourcefulness of maritime experts navigating
intricate connections among personnel, services, data, and
measures to safeguard health and well-being.

Moreover, onboard medical facilities serve broader objec-
tives of safety, security, and operational effectiveness[10].
They function as crucial support systems during crises, miti-
gating the impacts of adverse events. Nevertheless, the distinc-
tive maritime environment presents challenges such as limited
space, harsh weather conditions, and isolation, which magnify
medical risks. Therefore, resource allocation must address
these challenges, ensuring the preparedness of personnel to
deliver efficient care[11].

Additionally, the distribution of healthcare resources on
ships intertwines with risk management and compliance with
regulations[12]. Maritime authorities impose stringent criteria
on medical care provision and facility upkeep. The failure to
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meet requirements may result in severe outcomes, compelling
operators to comply with regulatory standards and industry
best practices, thereby safeguarding the health and safety of
individuals aboard.

The paper organized as follows: Section 2 provides the
Related Works. In Section 3, the problem definition and
background of the healthcare system on ships are described.
The system model and experimental setup, including the Q-
learning algorithm, are presented in Section 4. Computational
results based on simulated scenarios are provided in Section 5.
Finally, Section 6 concludes the paper.

II. RELATED WORKS

This section presents some state of the art on the use of
AI-empowered solutions for healthcare problems.

A machine learning method upper confidence bound is
utilized in [13] to assist patients during their medication pro-
cess at home. Authors considered the cognitive and physical
impairments of the patients in the training of the machine
learning model. A similar work is also done in [14] but
with the help of Thompson sampling method. However, these
solutions are applicable to certain scenarios during medication
at home.

Dynamic Treatment Regime (DTR) is has an importance in
healthcare as well as for medical research. DTR are considered
as sequence of alternative treatment paths and any of these
treatments can be adapted depending on the patient’s condi-
tions [15]. Therefore, the authors in [16] apply a cooperative
imitation learning approach to utilize information from both
negative and positive trajectories to learn the optimal DTR.
The given framework minimizes the chance of choosing any
treatment that results in a negative outcome during the medical
examination. However, the proposed work is not suitable to
employ for the medication emergency on ships.

The works in [17] and [18] use AI techniques for risk
management in nuclear medication department. The later will
is the extension of former one and discuss the risk cases during
examination at such departments. Although, the proposed
systems are useful to avoid possible risk at nuclear medication
departments but are not useful for healthcare solutions at ships.

Moreover, there are some AI based solutions for the con-
tinuous and remote monitoring of unpredictable health issues.
Such a failure mode and effect analysis is given in [19], [20]
and [21] for a specific mobile health monitoring system. Both
of these systems were designed to provide remote healthcare
solutions but these are for certain cases and environments and
cannot be generalised for other cases.

The proposed work examines managing healthcare re-
sources on ships for safety. It tackles challenges with planning,
monitoring, and decision-making. Using reinforcement learn-
ing, the system optimizes doctor-patient assignments in real-
time. Patient urgency and doctor availability impact the alloca-
tion process[10]. By employing Q-learning, the system learns
optimal strategies for maximizing rewards in urgent situations.
Simulations show improved resource use and patient care. It
highlights the importance of efficient resource allocation and

decision-making in maritime healthcare for enhancing safety
and well-being on ships.

III. BACKGROUND

Our ship’s healthcare system utilizes reinforcement learning
(RL) to optimize doctor-patient assignments and resource
allocation, a branch of machine learning focusing on decision-
making through environment interaction[22]. RL is beneficial
for dynamic, uncertain healthcare settings requiring sequen-
tial actions to achieve long-term goals [23]. At the core of
RL is the agent concept, learning decision-making through
environment feedback [24]. The agent in our scenario assigns
doctors to patients within the ship’s healthcare infrastruc-
ture, influenced by factors like patient urgency and treatment
outcomes[25]. A key RL component is the reward signal,
offering feedback on action desirability based on factors like
patient conditions and treatment efficiency[26]. The RL agent
maintains a policy for actions in each environment state,
aiming to learn an optimal policy for maximizing cumulative
rewards over time using algorithms like Q-learning, popular
for discrete state and action spaces.

Q-learning iteratively updates action value estimates (Q-
values) based on observed rewards and state transitions,
enabling the agent to improve decision-making and reach
an optimal policy [27]. In our ship’s healthcare scenario,
Q-learning assists in adapting to changing conditions and
making informed decisions about doctor-patient assignments.
By learning from experiences and exploring strategies, the
system can identify effective healthcare delivery patterns
and policies[28]. Reinforcement learning provides a frame-
work for optimizing decision-making in dynamic healthcare
environments[29], enhancing efficiency, patient outcomes, and
resource utilization.

IV. SYSTEM MODEL

The objective of the proposed is to tackle the complex
challenge of efficiently allocating physicians to patients within
a time-critical framework during a medical emergency on
ships[30]. The system functions dynamically throughout a 24-
hour cycle, where the availability of medical staff and the
influx of patients exhibit significant variability[31]. At any
specific moment, the system has the maximum capacity of
10 patients and a team of 5 doctors.

Upon arrival at the medical facility, patients present a
range of medical conditions, classified into emergency and
general categories as also demonstrated in the Figure 1. The
urgency level for treatment varies between these categories,
with emergency situations like abrupt illnesses or injuries
necessitating immediate action, while general cases encompass
issues such as seasickness, infections, dehydration, and fever.
Each patient category is linked to specific rewards, reflecting
the importance of timely treatment and the resources allocated
to address their needs[32].

To replicate the patterns of patient arrivals and doctor
availability, we use simulated data through a sequence of
scenarios. Each scenario shows a situation where patients
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come to the facility in need of medical care. The scenario
begins by setting the current time in the 24-hour cycle and
determining the size of the patient queue, which fluctuates
based on temporal elements. During daylight hours, when
patient influx is typically higher, the queue tends to be more
extensive compared to quieter periods.

Fig. 1. System Model

The assignment of physicians to patients is influenced by
various factors, including the urgency of patient conditions
and the availability of medical staff[33]. Emergency situations
are prioritized to ensure that patients with critical conditions
receive immediate medical attention[34]. Doctor availability
fluctuates throughout the day, with a higher probability of
doctors being available during standard working hours. Hence,
the allocation process seeks to strike a balance between
the urgency of patient needs and the availability of medical
personnel, aiming to enhance the number of patients treated
while optimizing resource utilization[35].

To support decision-making processes within the system,
we employ a Q-learning algorithm, which is a RL technique
that progressively acquires optimal strategies through trial
and error [36]. The state space comprises patient indices,

representing the order of patients in the queue, while the action
space includes potential doctor assignments. The Q-learning
algorithm adjusts Q values based on the rewards gained from
treating patients, with the aim of acquiring an optimal policy
that maximizes the accumulation of overall rewards.

The system’s performance is assessed using various met-
rics, such as the total rewards accumulated across multiple
scenarios and the average reward per scenario. By examining
the acquired Q-values and doctor-patient allocations, valuable
insights can be derived on effective approaches to enhance
healthcare delivery in time-constrained scenarios. Ultimately,
the system model acts as a foundation for investigating and
enhancing strategies to improve patient care and resource
distribution in healthcare environments.

Experimental Setup The experimental setup involves the
utilization of Q-learning, a reinforcement learning technique,
to optimize the allocation of doctors to patients on board[37].
The primary goal is to enhance the overall rewards obtained
by efficiently managing the treatment of different patient
categories within specified constraints. This experimental ar-
rangement encompasses the establishment of the environment,
initialization of parameters, preprocessing of the dataset, and
execution of the Q-learning algorithm to acquire the optimal
policy for doctor assignments.

Environment: The environment comprises patients and
doctors with specific conditions and availability, respectively,
where the maximum number of patients and doctors is lim-
ited to 10 and 5, respectively, operating within a 24-hour
window. Patients are categorized into emergency conditions
(e.g., sudden illnesses, injuries) and general conditions (e.g.,
seasickness, infections, dehydration, fever), each associated
with a predefined reward indicating the priority of treating that
condition, with emergency conditions offering higher rewards.

Q-learning Parameters

To train the Q-learning model, we define several parameters:

• Alpha (α): The learning rate, set to 0.1, determining the
significance of new information over old information.

• Gamma (γ): The discount factor, set to 0.9, reflects the
importance of future rewards.

• Epsilon (ε): The epsilon-greedy parameter, set to 0.1,
balances exploration (choosing random actions) and ex-
ploitation (choosing the best-known actions).

Q-learning Algorithm The Q-learning algorithm is em-
ployed to iteratively learn the optimal doctor-patient assign-
ment policy. The key steps in the algorithm include:

1) State Initialization: For each episode (a single simu-
lation run), a random initial state representing a patient
index is selected.

2) Action Selection: The epsilon-greedy policy is used
to choose an action (doctor assignment) based on the
current state. With a probability of ε, a random action is
selected; otherwise, the action with the highest Q-value
is chosen.

3) Reward Observation: The reward for the chosen action
is determined based on the patient type.
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4) Next State Calculation: The next state is determined
by checking doctor availability. If the selected doctor
is available, they become busy, and the state progresses
to the next patient. If no doctor is available, the state
remains unchanged.

5) Q-value Update: The Q-value is updated using the
Bellman equation, incorporating the observed reward
and the maximum expected future reward.

Update rule for Q-learning

The basic update rule for Q-learning is as follows:
Q[state, action] = Q[state, action] + lr * (reward +

gamma * np.max(Q[new_state, :]) — Q[state, action])

• alpha is the learning rate.
• reward is the reward received for taking the action in the

current state.
• gamma is the discount factor.
• np.max(Q[next_state, :]) computes the maximum Q-

value for the next state over all possible actions.
• Q[state, action] is the current Q-value

Episode Termination: The episode ends when all patients
have been assigned or a maximum iteration limit is reached.

Fig. 2. Q Learning Algorithm

This experiment demonstrates the application of Q-learning
in a simulated healthcare environment on a ship. By learning
from multiple episodes of patient-doctor interactions, the algo-
rithm aims to maximize the total reward, ensuring efficient and
effective medical care. The results showcase the potential of
reinforcement learning in optimizing resource allocation and
decision-making in real-world scenarios.

V. RESULTS

The graph shows the cumulative average reward per episode
during the Q-learning process. The average reward per episode
increases steadily as the agent learns and improves its policy,
indicating that the Q-learning algorithm is effectively optimiz-
ing the agent’s behavior.

Algorithm 1 Q-learning Algorithm

1: Initialize Q(s, a) arbitrarily
2: Set learning rate α, discount factor γ, and exploration rate

ϵ

3: for each episode do

4: Initialize state s

5: while state s is not terminal do

6: if a random number < ϵ then

7: Choose random action a

8: else

9: Choose action a = argmaxa′ Q(s, a′)
10: end if

11: Take action a, observe reward r and next state s′

12: Update Q(s, a):
13: Q(s, a) ← Q(s, a) + α[r + γmaxa′ Q(s′, a′) −

Q(s, a)]
14: s← s′

15: end while

16: end for

Fig. 3. Q Learning performance

Epsilon-Greedy Training vs. Greedy Evaluation

The graph compares the cumulative average rewards per
episode for Q-learning with epsilon-greedy (training) and
greedy (evaluation) policies over episodes. The orange line,
representing epsilon-greedy, shows a steady increase in av-
erage rewards, indicating effective learning and exploration.
The blue dashed line for greedy policy shows consistent but
lower average rewards, highlighting the impact of exploration
on learning performance.
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Fig. 4. Average Reward vs 100 episodes

The graph presents the cumulative rewards achieved by the
Q-learning algorithm with an epsilon-greedy policy (epsilon
= 0.1) over 100 episodes. It demonstrates the algorithm’s
convergence in optimizing patient assignment to available
doctors, balancing exploration and exploitation to effectively
utilize medical resources.

Fig. 5. Average Reward vs 1000 episodes.

The plot visualizes Q-learning performance with epsilon-
greedy policy across 100 episodes, revealing cumulative re-
wards per episode. It demonstrates stable learning convergence
in medical resource allocation tasks, reflecting effective policy
optimization and resource management.

VI. CHALLENGES OF PROPOSED MODEL

The current model’s limitations include its reliance on
Q-learning, which may not handle large state and action
spaces efficiently, potentially leading to slow learning and
suboptimal performance in complex, real-world scenarios[38].
Furthermore, the model assumes static conditions for medical
emergencies and staff availability, which may not accurately
reflect the dynamic nature of healthcare needs on ships.

Deep Q-learning techniques could enhance the model by
leveraging deep neural networks to approximate the Q-value

function, enabling it to manage more complex and high-
dimensional state spaces. This approach could improve the
system’s ability to generalize from past experiences and make
more informed decisions in varied and unpredictable environ-
ments.

However, practical deployment of this model in the shipping
industry faces several challenges. Firstly, ensuring real-time
data collection and processing for accurate decision making
could be difficult due to potential connectivity issues and
limited computational resources on ships. Secondly, inte-
grating the system with existing healthcare frameworks and
protocols requires careful coordination and regulatory compli-
ance. Additionally, the variability in medical emergencies and
staff expertise may introduce further complexity, necessitating
continuous training and adaptation of the model to maintain
optimal performance. Lastly, gaining trust and acceptance
from maritime healthcare professionals and stakeholders is
crucial for successful implementation, requiring demonstrable
reliability and effectiveness of the proposed system in real-
world conditions.

VII. CONCLUSION AND FUTURE WORK

In conclusion, our study demonstrates the potential of Q-
learning within reinforcement learning to optimize healthcare
resource allocation on ships. By dynamically assigning doctors
based on the urgency of patient conditions and their avail-
ability, we can significantly enhance patient care and overall
resource utilization. The experimental results and simulations
validate the effectiveness of this approach, showcasing im-
proved decision-making capabilities in healthcare manage-
ment.

The application of Q-learning in maritime healthcare en-
vironments addresses the unique challenges posed by limited
medical resources, fluctuating patient inflow, and the critical
nature of onboard medical emergencies. This methodology
provides a robust framework for optimizing resource distribu-
tion, ensuring that medical personnel can respond effectively
to both routine and urgent healthcare needs.

Future developments in this field could explore the inte-
gration of more advanced reinforcement learning techniques,
such as deep Q-learning or actor-critic methods, to further
enhance the system’s performance. Additionally, incorporating
real-time data from onboard health monitoring systems could
improve the accuracy and responsiveness of the resource allo-
cation process. Expanding this research to include other critical
aspects of maritime operations, such as disaster response and
long-term health monitoring, could further enhance the safety,
security, and operational effectiveness of ships, ultimately
ensuring the well-being of all individuals on board.
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