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Abstract—Our lives were affected by the COVID-19 pandemic.
In order to face this crisis, we provided a novel ensemble learning
strategy to tackle the COVID-19 prediction and classification
problems. Because of their capacity to handle the complex and
varied nature of COVID-19 data, a range of shallow models,
including K-Nearest Neighbors, Decision Trees, Support Vector
Machines, Classification and Regression Trees, and Extreme
Gradient Boost, are included in our method. Using a COVID-19
dataset, each model is trained independently and then ensemble
learning techniques are used to integrate the predictions of the
models. We use strict model validation and hyperparameter
optimization to improve performance. Comparing our ensemble
method to a single model or traditional ensemble techniques,
our results show considerable improvements in classification
performance and prediction accuracy.

Index Terms–Ensemble Learning, Machine Learning, COVID-19,
Performance Metrics, Prediction and Classification.

I. INTRODUCTION

S
INCE its appearance in late 2019, the COVID-19 pan-
demic has had an influence on cultures, economy, and

healthcare systems across the globe [1]. Predictive modeling
has become an essential process for studying and project-
ing the trajectory of the virus as governments and health
organizations struggle to stop its spread [2]. In this paper,
we investigate the creation of models that forecast the total
number of COVID-19 cases worldwide. We used a dataset
that runs through September 2020. Additionally, we classify
nations into those with and without a higher risk of contracting
SARS-CoV-2. Due to the COVID-19 pandemic’s intricacy,
new methods of data analysis and forecasting have been
required.

Our primary focus lies in exploring the predictive potential
of historical data up to September 2020. We want to capture
critical phases of the pandemic’s evolution. Through retrospec-
tive analysis, we aim to elucidate patterns, trends, and under-
lying factors influencing the spread of COVID-19 across dif-
ferent regions and timeframes. Using statistical indicators and
machine learning techniques, we seek to construct predictive
models capable of discerning the complex interplay between
various epidemiological variables and forecasting the total
cases of COVID-19 with precision and reliability. Through
this interdisciplinary effort, we aim to contribute to ongoing
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global efforts to combat the COVID-19 pandemic. Our goal is
to provide stakeholders with the knowledge and resources they
need to effectively navigate the obstacles presented by this
unprecedented public health catastrophe by using the power
of prospective and retrospective predictive modeling and data-
driven insights.

We hope to provide a better understanding of the dynamics
of the pandemic and enable informed decision-making in the
face of uncertainty (Fig. I).

Developing shallow models

Ensemble learning model

Evaluating models’ performance

Fig. 1. Objectives for COVID-19 infection risk estimation.

Concretely, our main objectives are:

1) Developing and optimizing predictive shallow machine
learning models using historical worldwide COVID-19
data up to September 2020.

2) Building an ensemble learning model, called Renesansa,
for investigating the impact of epidemiological factors,
including active cases, total tests conducted, and popu-
lation demographics, on the total number of COVID-19
cases worldwide.

3) Evaluating performance of the predictive models devel-
oped through evaluation metrics and statistical indica-
tors.

We compare the models’ results with the observed data to
gauge the trustworthiness and effectiveness of the selected
forecasting and classification methodologies.

II. BACKGROUND INFORMATION AND RELATED WORKS

In this section, we will discuss the background information
and previous studies that have explored various methodologies,
from traditional statistical models to modern ensemble learn-
ing approaches. We want to accurately forecast transmission
trends and classify disease outcomes.
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A. COVID-19 Disease

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) is a new betacoronavirus that is a member of the Coro-
naviridae family and the source of COVID-19 [3]. SARS-CoV-
2 is a single-stranded, enveloped, positive-sense RNA virus
with spike (S), envelope, membrane and nucleocapsid proteins.
Viral entrance into host cells is mediated by the S protein,
which binds to the angiotensin converting enzyme 2 receptor
and promotes membrane fusion and viral multiplication.

A wide range of clinical signs are displayed by COVID-19,
from moderate or asymptomatic sickness to severe respiratory
failure [4]. Common symptoms include fever, cough, fatigue,
and gastrointestinal symptoms. Severe cases are characterized
by acute respiratory distress syndrome, multiorgan dysfunc-
tion, and thrombotic complications. Certain population groups,
such as older adults and immunocompromised individuals, are
at increased risk of severe disease and adverse outcomes.

B. COVID-19 Pandemics’ Social Impact

One of the worst global health emergencies in recent
memory, the COVID-19 epidemic has had a tremendous
effect on civilizations all around the world. [5]. Since the
new coronavirus SARS-CoV-2 first appeared in late 2019,
the pandemic has quickly expanded throughout continents,
overcoming geographic barriers and igniting hitherto unheard-
of public health measures [6].

COVID-19 has challenged our understanding of infectious
diseases and highlighted the interconnectedness of our modern
world. From the outset, the pandemic has posed multifaceted
challenges, ranging from containment efforts and healthcare
delivery to social distancing measures and economic stability
[7]. The COVID-19 pandemic has underscored the importance
of rapid and coordinated responses from governments, health-
care institutions, and communities to mitigate transmission,
protect vulnerable populations, and minimize the burden on
healthcare infrastructure. Measures such as lockdowns, travel
restrictions, mass testing, contact tracing, and vaccination
campaigns have been implemented globally.

The pandemic has also exposed existing vulnerabilities
and inequalities within societies, disproportionately affecting
marginalized communities, low-income countries, and front-
line workers [8]. Disparities in access to healthcare and socioe-
conomic factors have exacerbated the impact of COVID-19 on
vulnerable populations. The rapid development of vaccines,
diagnostic tests, therapeutics, and public health interventions
has demonstrated the collective resilience and ingenuity of the
global scientific community in the face of adversity.

C. Shallow Models’ Results

In this section, we will analyze the results from the convex
literature for each shallow machine learning model.

K-Nearest Neighbors (KNN)

Ye and colleagues [9] implemented an intelligent system
for classifying the severity of COVID-19, to help clinicians

in their decisions. The authors trained the model HHO-
FKNN, based on KNN, considering the list of symptoms,
complications degree, already existing diseases, and the im-
mune system. They achieved an average accuracy of 94%,
the Matthews’ correlation coefficient of 88.91%, an average
sensitivity of 90%, and an average specificity of 96.67%.

In another article [10], Hamed and coauthors focused on
incomplete datasets to predict if a patient suffers from coron-
avirus or not, and to classify properly, using KNN bases, all the
patients. They used two distances: mahalanobis and euclidean.
For the mahalanobis distance, the authors obtained an average
accuracy of 84%, a sensitivity of 76%, a precision of 95%, and
an F1-score of 84%. For the euclidean distance, they achieved
an accuracy of 88%, a sensitivity of 87%, a precision of 91%,
and the F1-score of 88%.

Decision Trees (DT)

The authors of [11] calculated the performance evaluation
metrics for predicting retrospectively the coronavirus consider-
ing the blood gas parameter, by using decision trees methods.
They got an accuracy ratio of 65% for the correctly predicting
cases and 68.2% for correctly identifying people who indeed
suffer from coronavirus. When categorizing patients by cutoff
values (less than 1.0, between 1.0 and 1.6, and bigger than
1.6), the achieved an accuracy of 92.7%, the metric which
was the main target for the authors.

Support Vector Machines (SVM)

In the paper written by Singh and coauthors [12], the
scientists tried to predict coronavirus with SVM by treating
on time series data. They considered the active cases, total
number of deaths, and recovered ones from January and until
April 2020 with international data. They referenced to the
article [13], where an accuracy of 88% and an F1-score value
of 76% were achieved. The authors of [14] got an accuracy
of 88.76% by using the radial basis function in SVM when
classifying countries into those at risk and without risk.

Classification and Regression Trees (CART)

CART [15] have been utilized in COVID-19 prediction and
classification tasks owing to their simplicity and interpretabil-
ity. By recursively partitioning the data based on the most
informative features, CART constructs decision trees that can
effectively classify COVID-19 cases into different categories
or predict outcomes such as disease severity. CART’s ability
to handle both numerical and categorical data makes it well-
suited for analyzing heterogeneous COVID-19 datasets with
diverse epidemiological variables [16].

The authors of [17] built a predictive instruction for COVID-
19 pneumonia and classified pneumonia into the one provoked
by COVID-19 and not provoked by it. They obtained an area
under the ROC curve (ROC-AUC) of 86%, and an accuracy
of maximum 95%. On the other hand, Zimmerman and col-
leagues [16] obtained an ROC-AUC of 76%, a sensitivity of
69%, and specificity of 78%.

538 PROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Extreme Gradient Boost (XGBoost)

XGBoost [18], an ensemble learning technique, has been
widely applied in COVID-19 prediction and classification
tasks due to its exceptional performance and scalability. By
combining the predictions of multiple weak learners, such
as decision trees, XGBoost can effectively capture complex
patterns in COVID-19 data and improve predictive accuracy.
However, XGBoost may require careful tuning of hyperpa-
rameters and regularization techniques to prevent overfitting,
especially with large-scale COVID-19 datasets [19].

In the article [20], Carvalho and colleagues built an ap-
proach which can diagnose accurately and precisely the
COVID-19 for the patients with XGBoost layer added to a
convolutional neural network. They obtained an accuracy of
95.07%, a recall of 95.1%, precision of almost 95%, the F1-
score and the ROC-AUC of 95% both, while the Cohen’s
index was 90%. The second article [21] (Fang et al.) related to
XGBoost analyzed statistical indicators such as mean squared
errors, mean absolute errors and the R-squared coefficient to
improve the prediction of the number of patients who are
infected with SARS-CoV-2 only in the USA, providing an
excellent R-squared, no bigger than 4.1.

D. Ensemble Learning Framework

The predictions of many base models are combined in an
ensemble learning process to get a final prediction that is
more accurate and dependable [22]. The idea behind ensemble
learning is to leverage the diversity of individual models
to compensate for their weaknesses and improve overall
predictive performance. There are several ensemble learning
frameworks, including bagging, boosting, and stacking, each
with its advantages and disadvantages.

There are various benefits to bagging. By using diverse
subsets of the training data to train numerous base models,
it effectively lowers variance and overfitting. Additionally,
bagging can be parallelized. However, it comes with its own
set of disadvantages. As the number of base models increases,
computational complexity and memory requirements may be-
come prohibitive, particularly for large datasets [23]. Boosting,
on the other hand, offers distinct advantages. It builds a strong
learner iteratively by focusing on examples that are difficult
to classify or have high prediction errors. Also, it is sensitive
to noise and outliers, potentially leading to overfitting on
irrelevant examples during training [24]. Stacking integrates
predictions from multiple heterogeneous base models, lever-
aging the strengths of different modeling techniques. On the
other hand, stacking may suffer from information leakage or
overfitting if the meta-learner is trained on predictions from
the same data used to train the base models [25].

III. PROPOSED MODEL

Given the complexity and heterogeneity of COVID-19 data,
a diverse set of shallow models is selected to capture various
aspects of the pandemic. Models such as KNN, DT, SVM,
CART, and XGBoost (Fig. 2) are chosen based on their

KNN

DT

SVM

CART

XGBoost

Ensemble Model Classif./Predict.

Fig. 2. Hyperparameterized ensemble learning model for classifying
countries into those at risk and safe, and predicting the specific prospective

Total Cases value for a sample.

suitability for handling different types of COVID-19 data, in-
cluding epidemiological, clinical, genomic, and environmental
factors.

Each selected shallow model is trained on COVID-19 data
obtained from reliable source publicly available on Kaggle
[26]. The training process involves preprocessing the data,
selecting appropriate features, and tuning hyperparameters to
optimize model performance. For instance, KNN is trained
using historical COVID-19 case data to predict future trans-
mission trends, while SVM is trained to classify patients based
on clinical symptoms and demographic information. Ensemble
learning techniques, including bagging, boosting, and stacking,
are employed to combine the predictions of the individual
shallow models. Bagging is used to aggregate predictions from
multiple models to reduce variance and overfitting, boosting
adapts the models iteratively to improve performance over
time, and stacking integrates predictions from diverse models
to capture complex relationships in COVID-19 data. Hyperpa-
rameters for both individual models and the ensemble frame-
work are tuned using COVID-19-specific data and evaluation
metrics. Grid search or Bayesian optimization techniques are
applied to identify optimal hyperparameter configurations that
maximize predictive performance and classification accuracy
for COVID-19-related outcomes such as disease transmission,
severity, etc.

The performance of the ensemble model is validated using
cross-validation techniques on COVID-19 datasets. Special
attention is given to account for temporal and geographical
variations in COVID-19 data to ensure robustness and gen-
eralizability. Evaluation metrics such as accuracy, precision,
recall, F1-score, and ROC-AUC are used to assess predictive
performance and classification accuracy.

Once validated, the ensemble model is deployed into pro-
duction systems or applications for real-time COVID-19 pre-
diction and classification (Fig. 2). Integration into public health
surveillance systems, decision support tools, or epidemiolog-
ical models ensures that the ensemble model contributes to
informed decision-making and effective public health inter-
ventions in the fight against COVID-19.
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IV. RESULTS

In this chapter, we will present our results, through which
we get a possible solution for the specific total case value for
Romania and also for classifying nations into those at risk
and without risk. We offer some graphs and charts for results
visualization.

The calculations include the statistical indicators: Mean
Squared Error (MSE), Mean Absolute Error (MAE), and R-
squared coefficient, and correlation coefficient. We also calcu-
late the evaluation metrics: sensitivity, specificity, accuracy,
and precision. For the selected dataset, a strong Pearson
correlation is obtained between the column Total Recovered,
and the column for the dependent variable, Total Cases (0.9).
Between the column Active Cases and Total Cases, there is
a strong correlation, of 0.72. Other columns included in the
independent variable are Population, Serious or Critical, and
Total Tests.

A. Statistical Indicators for All Selected Models

We calculate the statistical indicators for 40 different values
of the selected parameters of each state-of-the-art model. The
k-neighbors parameter is the one that varies in the KNN
model. The value for MSE does not exceed 2.1 and MAE
is at most 1.1. For the 40 values, the R-squared coefficient is
between 0.75 and 0.98. The consistently low MSE and MAE
values across different k values suggest that the KNN model is
consistently accurate in its predictions for various levels of k-

neighbors parameter. This stability in accuracy is important
for identifying critical regions exactly. It is important to
select an appropriate value, to balance model complexity and
generalizability to ensure reliable predictions.

In the DT model, the parameter max-depth varies. An MSE
between 1 and 4 is obtained; the MAE is not greater than
1.7. The coefficient of determination for DT is between 0.55
and 0.95. The varying R-squared coefficients indicate that
certain depths might result in better explanations and stronger
relationships in the data, potentially leading to more accurate
predictions for critical geographic regions. The choice of an
appropriate tree depth involves considering a balance between
accuracy and model complexity to ensure reliable predictions.

The SVM model provides, through the regularization pa-
rameter C =

1

10
, an MSE of at most 7.25, and an MAE

of at most 2.3. The R-squared coefficient is around 0.7 for
most values. Although the explanatory strength of the model
might be moderate, the consistent accuracy at different levels
of regularization indicates that the model performs fairly well.
It is important to consider the specific context of the study, the
trade-offs between regularization and accuracy, and potential
avenues for model improvement.

The CART model, with the value for max-depth and min-

leaf varying, has an MSE between 5 and 11, and an MAE of
at most 2.6. The R-squared coefficient ranges between 0.88
and 0.98. It is important to select appropriate combinations of
max-depth and min-leaf for dependable forecasts, to strike a
balance between generalizability and model complexity.
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Fig. 3. The MSE indicator for the Renesansa ensemble model.
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Fig. 4. Mean Absolute Error (MAE) for Renesansa ensemble model.

XGBoost is an outstanding model, with an MSE no higher
than 1.8 and an MAE between 0.3 and 1. The coefficient of
determination is between 0.82 and 0.98, and the correlation
coefficient is between 0.91 and 0.99.

When it comes to important assessment measures such
asS MSE (Fig. 3), MAE (Fig. 4), and R-squared, Renesansa

performs admirably. Renesansa has an exceptionally low MSE
(between 0.001 and 1.19), indicating small squared discrep-
ancies between expected and actual values. This implies that
the model offers extremely precise evaluations of the risk of
COVID-19 in a nation, which is essential to inform public
health initiatives and policy choices. In a similar vein, the
model shows a low MAE, focusing on small changes between
the predicted values and the actual values. This demonstrates
how accurately Renesansa can estimate the risk variables for
COVID-19, allowing policymakers and health authorities to
make well-informed decisions. Renesansa also produces a high
R-squared value (between 0.975 and 0.9997), suggesting that
the model explains a substantial amount of the variability in
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Fig. 5. Worldometer [27] value for Romania on 18th April 2023.

Fig. 6. Total cases value obtained by model.

COVID-19 risk variables.
This highlights the model’s capacity to identify underlying

trends and patterns in COVID-19 data, which is crucial for
formulating workable plans to stop the virus’s spread and
handle public health emergencies. Renesansa’s notable per-
formance in evaluating the risk of COVID-19 for nations is
highlighted by its remarkable results in MSE, MAE, and R-
squared. While a high R-squared value indicates a great power
of explanations, low MSE and MAE values indicate accurate
predictions and minimum mistakes. These findings highlight
the significance of sophisticated ensemble models such as
Renesansa in directing evidence-based global responses to the
COVID-19 epidemic.

The Total Cases value for Romania on 18 April 2023 on
Worldometer [27] was 3,382,756. We can observe the result
for Romania, obtained by model’s prediction, which is very

similar to the one from Worldometer (3,382,872). There is
an extremely high performance of this model in the set of
independent variable columns (compare the results of Fig. 5
and Fig. 6).

B. Binary Classification Considering the Proportion Between

Total Cases and Population

The results obtained for the performance evaluation metrics
of the models are strong (Fig. I). Performance evaluation
metrics provide insight into the strengths and weaknesses of
each model in the context of detecting critical geographic
regions in the COVID-19 dataset. These metrics provide a
comprehensive view of each model’s performance. The best
model for a specific use case might depend on the priorities:
whether it is achieving high accuracy, minimizing false posi-
tives, maximizing sensitivity, or maintaining a balance between
different metrics.

TABLE I
PERFORMANCE EVALUATION METRICS FOR MODELS IN TERMS OF

COUNTRY’S COVID-19 RISK CLASSIFICATION.

Sensitivity Specificity Accuracy Precision

KNN 0.9286 0.9741 0.9606 0.9381
DT 0.8730 0.8427 0.8485 0.5670

SVM 0.9950 0.7614 0.7788 0.2474
CART 0.8846 0.8889 0.8879 0.7113

XGBoost 0.9970 0.9549 0.9667 0.8866
Renesansa 0.9975 0.9749 0.9818 0.9381

Important information is revealed by the evaluation results
(see Table I) of several machine learning models used to group
nations into COVID-19 risk categories. Countries, whose ratio
between Total Cases and Population is above 0.003 (0.3%),
are seen as areas at risk of infection. This value is calculated
with Youden J Index technique. To determine a cutoff using the
Youden’s J Index, sensitivity and specificity of the diagnostic
test are initially assessed. Subsequently, Youden’s J Index is
computed by summing the sensitivity and specificity, then
subtracting one. Ultimately, the threshold value that yields the
highest Youden’s J Index is chosen as the cutoff, signifying the
most favorable equilibrium between sensitivity and specificity
in the diagnostic evaluation [28]. All metrics show that the
ensemble learning model has the highest performance (99.75%
sensitivity, 97.49% specificity, 98.18% accuracy, and 93.81%
precision) demonstrating its reliability in differentiating be-
tween nations that are at risk and those that are not. This
shows that the accuracy and dependability of the predictions
can be improved by integrating various models. Notably,
XGBoost also performs admirably, especially when it comes
to sensitivity and specificity (99.7% and 95.49%), which are
crucial for accurately identifying nations that are actually at
danger while reducing false positives. SVM and decision tree
models, on the other hand, show less accuracy (76.14% and
84.27%), suggesting a higher false alarm rate. In order to
properly identify at-risk and non-at-risk nations, sensitivity and
specificity are essential. These findings highlight how crucial
trustworthy prediction models are in directing appropriate
actions.
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V. CONCLUSIONS

We find interesting paths to enhance classification accuracy
and prediction performance by using ensemble learning ap-
proaches for COVID-19 prediction and classification tasks.
Through the combination of a wide range of shallow models,
such as DT, SVM, CART, KNN, and XGBoost, we have
shown the ability to improve performance and mitigate the
shortcomings of individual models on a variety of COVID-
19-related datasets.

Our results highlight how crucial ensemble learning frame-
works—like bagging, boosting, and stacking—are for effi-
ciently combining predictions from several models to identify
the intricate patterns and correlations present in COVID-19
data. We have demonstrated by thorough hyperparameter tun-
ing, model validation, and interpretation analysis that ensemble
learning models provide reliable solutions for this topic.

Our technique makes it easier to comprehend and evaluate
model outputs by offering insights into the variables influ-
encing COVID-19 predictions and classifications. We may
improve real-time tracking, forecasting, and reaction efforts
in the ongoing fight against the COVID-19 pandemic by
integrating the ensemble model into decision support systems.
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