

�

Abstract—This paper addresses the issue of educating

software engineers in embedded systems development. With

the rapidly growing markets of embedded devices and their

interconnections due to the ubiquitous presence of the Internet,

leading to the emergence of cyberphysical systems, educating

software engineers and computer scientists on these subjects at

the college level is becoming essential. The paper presents an

approach to teaching software development for small

embedded devices with lab projects at the undergraduate level,

to match the fast pace of technological progress and challenges

of real-world applications.

I. INTRODUCTION

OFTWARE engineering is normally associated with

substantial size projects, where critical or, at least,

important decisions on requirements solicitation, software

design, development tools, project management, etc., have

to be made. This point of view is usually followed in

education of software engineers, since it is expected that

they would comply with the mainstream expectations and be

adequately prepared to join the workforce.

However, over the recent years, with unprecedented

development of computing technologies and systems, the

market has evolved to the point that what once has been a

niche, encountered mostly in military and scientific

applications, has now become the mainstream: a rather

chaotic conglomerate of devices, more and more often called

the Internet of Things [1-2]. Embedded devices and systems

dominate the market in quantities as well as in sales and

investments. As stated by the Chief Scientist of the U.S. Air

Force, by 2025 there will be 7 trillion IP enabled devices in

existence [3], all forming a humongous ecosystem that

would need a well educated workforce.

� This work was supported in part by grants from the National Science

Foundation (Award No. DUE-1129437 and Award No. DUE-0632729), and

NASA through University of Central Florida’s NASA-Florida Space Grant

Consortium (UCF-FSGC 66016015). Views expressed herein are not

necessarily those of the funding agencies. Additional support has been

provided by a grant SBAHQ-10-I-0250 from the U.S. Small Business

Administration (SBA). SBA’s funding should not be construed as an

endorsement of any products, opinions, or services.

Can we, as educators, honestly say that we are adequately

preparing the future workforce to meet respective challenges

of these new markets? In our opinion, the answer is not

necessarily affirmative. Among multiple challenges

software engineering educators are facing, such as keeping

up with rapid technological pace, following the seemingless

evolution of tools, increasing pressure on teaching computer

security and safety required for infrastructure protection,

etc., there is one particular issue not adequately addressed

yet: software development for embedded systems.

The objective of this work is to address the problem of

enhancig education of software engineers in embedded

systems development. While there are multiple facets of

this issue, the paper focuses on one particular aspect:

development of cheap lab stations that can be used in mid to

senior undergraduate software engineering projects.

The rest of the paper is structured as follows. Section II

outlines the pedagogy applied in approaching the subject

matter. Section III presents the devices and their selection

process and Section IV discusses the actual labs. Section V

ends the paper with Conclusion.

II. PEDAGOGY

While there is a clear need to improve and enhance

education of software engineers in embedded systems from

the engineering perspective, there are probably multiple

ways to address it. The authors of this paper believe that

one of the most effective but rarely pursued ways of dealing

with undergraduate software engineering education is to

start, before addressing any technical subjects, with

pedagogy. Pedagogy is a crucial factor in offering and use

of all engineering labs.

First, what must be made clear is that including the labs in

a course actually enhances the learning process. This has to

be considered in two aspects: (1) labs illustrate and speed up

the process of acquiring knowledge of concepts and

techniques, due to the interaction with the lab equipment,

and (2) labs broaden the horizons of knowledge in software

development, because the students are forced to include into

S

Small is Beautiful: Embedded Systems Projects in an

Undergraduate Software Engineering Program

Janusz Zalewski
Dept. of Software Engineering

Florida Gulf Coast University

Ft. Myers, FL 33965, USA

zalewski@fgcu.edu

Fernando Gonzalez
Dept. of Software Engineering

Florida Gulf Coast University

Ft. Myers, FL 33965, USA

fgonzalez@fgcu.edu

Robert Kenny
College of Education

Florida Gulf Coast University

Ft. Myers, FL 33965, USA

rkenny@fgcu.edu

Proceedings of the E2LP Workshop

Warsaw, 2014, pp. 35–41

DOI: 10.15439/2014F668

ACSIS, Vol. 4

c© 2014, PTI 35

the picture elements of interactions with multiple additional

components, such as networks and people; this prepares

them to face heterogeneity of actual implementations and to

identify the terms of system complexity, thus, enhancing

problem solving skills and application of critical thinking.

Second, what is specific to this particular project is that

putting emphasis on the two later phases of the waterfall

model of the software development cycle, implementation

and testing, as opposed to studying requirements

specification and design methodologies, has a very desirable

effect on the acquisition of knowledge and skills. This is

due to the fact that because of the ease of prototyping the

learning process becomes much more attractive, since the

student has the opportunity to make actual observations in

real time how the developed software behaves.

Third, it is important to balance the theory with practice,

where theory is lectured and labs convey the importance and

viability of theoretical concepts by conducting practical

work. In case of embedded systems courses, the theory in a

mathematical and algorithmic sense is replaced by

engineering principles. The traditional waterfall model of

software development, with requirements, design,

implementation and testing, is further shortened and reduced

to the prototyping cycle that involves problem description,

solution, coding and debugging.

Fourth, the element of pedagogy, which worked for one

of the authors over the years in teaching real-time and

embedded systems [4], is the structuring of knowledge and

skills acquisition by dissecting the lab work into a sequence:

(a) demo, (b) exercise, and (c) assignment, and later into (d)

experiment and (e) project, possibly leading to (f)

supervised research. Associated with this structured

approach is an important pedagogical concept of thinking

about embedded systems development in terms of

hierarchical layers, from hardware architecture to real-time

kernel (RTOS) to a programming language to a design

methodology, whether applied top-down or bottom-up.

These four pedagogical concepts form the assumptions set

forth at the beginning of the course, and are critically

assessed after course completion, based on the

documentation developed by students in their respective

projects. It must be noted that, unlike typical projects in

software engineering courses, which focus on team work,

these specific projects are meant to be individual, assigned

to a specific student, with no shared responsibilities. It is

also important to note that contents and structure of the

project documentation is clearly defined and follows the

project workflow, with sections on (a) Problem Description,

(b) Solution, (c) Coding, (d) Experimentation, embraced by

Introduction and Conclusion, with References.

III. DEVICE SELECTION AND COURSE CONSIDERATIONS

The Software Engineering and Robotics Lab at FGCU has

been in operation for a number of years and has supported

multiple embedded devices forming a comprehensive

educational network used in upper level project courses and

respective electives. Its design and use have been described

in several previous publications [5]. Its most recent

emphasis is on web-based access to all devices and lab

stations [6-7], which bore it a name lab-by-wire.

What has been noticed in the process of using the lab is

that the complexity of devices and programming techniques

not necessarily facilitates knowledge acquisition processes

in lower level courses, and may even obstruct reaching

educational objectives by forcing students to focus more on

mastering the technology rather than on learning the

concepts. To alleviate these problems, an attempt was made

to depart in certain courses from the “heavy-weight” devices

existing in the lab, such as Time-Triggered Architecture,

SCADA, Coroware or NAO robots, etc., and let the students

choose the technologies, which they feel being more familiar

with, but still qualify as full-scale embedded systems. The

net result of this decision was the initial selection of

Arduino-based projects, in the first stage, and expanding this

later to move to more diversified but technically equivalent

platforms, at the second stage.

Related developments are outlined in the next two

subsections, and first experiences, benefits and pitfalls are

discussed in Section IV.

A. Arduino-based Projects

Technical Part: This part of the project had two phases.

In the first phase, the entire class taking a course on

Embedded Systems Programming was trained in using

Arduino boards with XBee wireless modules as an

application. The learning process essentially followed the

Lab Manual [8], with wireless communication application as

a learning vehicle. Multiple experiments were developed,

loosely correlated, from plain XBee communication to

remote temperature monitoring and control system, to

remote humidity and dew point measurement.

Objectives three and four, as outlined in Section 2, were

met in a sense that the required development sequence (as

per objective three), from problem description, through the

solution, to coding and debugging, has been followed and

mastered up to the experiment’s level (as per objective four),

with no real attempt to develop full scale projects, yet. On

real Arduino hardware, only elementary RTOS and

programming language concepts (learned earlier) were

applied without delving into engineering requirements or

designs.

Successful reaching these minimal objectives encouraged

the instructors to proceed with the second phase, in which a

more structured approach to developing Arduino based

projects was adhered to. This relied on adding an extra

essential component, such as additional computing

equipment, to play a more application oriented role, similar

to using XBee modules in the first phase. Four such projects

are briefly mentioned in this paper:

36 PROCEEDINGS OF THE E2LP WORKSHOP, WARSAW, 2014

 Arduino controlling a car with remote commands

(drive-by-wire);

 Arduino enhanced with Ethernet communication;

 Arduino controlled from an iPad/iOS application;

 Arduino equipped with Kinect sensing to control a

drawing robotic arm.

Details of these projects are discussed in Section IV, and are

documented in separate reports.

Teachers Workshop: As a side effect, after the course, a

teacher workshop on Arduino was offered for high-school

teachers, where students comfortably played a role of lab

assistants, which has additionally proven that they mastered

the essential concepts. This turned out to be especially

meaningful to the learning process, since once someone is

able to teach others, even only as a lab assistant, they gain

confidence that they have learned the material.

This activity, although unplanned for this course, turned

out to be important to the community of stakeholders, since

it connected high school teachers with the software

engineering program, so they could play a role of emissaries

in recruiting potential students to enter the program. On the

other hand, current students had a proof that what they

learned can be used by others, which has a very positive

psychological and motivational effect. Last but not least,

teachers themselves also enjoyed this workshop, since they

were offered tools they could use towards professional

teacher certification.

B. Diversified Platforms

All Arduino projects were highly praised by participating

students, as relatively simple, but still hands-on and

allowing to have fun. From the Instructor’s perspective,

they also met the higher-level learning objectives one and

two, as listed in Section 2, which is discussed fully in

Section 4. However, one issue discovered when projects

were coming to an end was that, although diversified

regarding applications, they were relatively monothematic

and not necessarily ground-breaking with respect to the use

of Arduino technology. In this view a number of

suggestions have been made to broaden the spectrum of

devices used and, thus, make the platforms employed more

diversified, which would additionally benefit the

participants.

 Several additional boards were suggested for use, with

functionality slightly or significantly higher than Arduino’s,

but still within an affordable price range. One immediate

suggestion was to add the Raspberry Pi board [9] as it is

based on industry standard ARM processor and is running

GNU Linux, with Internet connectivity.

A follow-up suggestion included BeagleBone [10], also

based on ARM processor, supported by Texas Instruments.

It can run multiple versions of Linux. The third board

included PandaBoard [11], with OMAP4430 system on a

chip (SoC) with ARM Cortex-A9 dual-core processor,

allowing the use of Linux Debian-based operating system.

For comparison with technologies previously available in

the lab, an Atmel Flash microcontroller board, AVR STK

500 [12], was also chosen, with its own vendor-specific

development environment.

The projects assigned for development with these four

technologies were selected by students, with Instructor’s

approval, and consisted of the following tasks;

 Raspberry Pi task – remote control of a rover;

 BeagleBone– minimal HTTP server application;

 PandaBoard – extended HTTP server application;

 Atmel microcontroller task – remote vehicle control.

In all applications, achieving remote connectivity was a key,

whether it’s been Internet or wireless based, or with both

features combined, which is more completely discussed in

the next section.

IV. DETAILS OF PROJECT WORK

In this section, all projects mentioned above are

discussed, with a goal in mind how they have contributed to

reaching the first two learning objectives with respect to

pedagogy as outlined in Section II.

 objective two, regarding the emphasis on

implementation and testing phases to increase

attractiveness of the course by allowing the

immediate observation how the device controlled by

software behaves;

 objective one, regarding how well the labs illustrate

the development concepts and speed up the learning

process to facilitate acquisition of problem solving

skills and critical thinking skills.

Fig. 1 Outline of the template architecture for Arduino based projects.

From the pedagogical perspective, meeting these specific

objectives is meant to positively affect two essential

components of knowledge acquisition, its depth and breadth,

correspondingly.

JANUSZ ZALEWSKI, FERNANDO GONZALEZ, ROBERT KENNY: SMALL IS BEAUTIFUL 37

A. Arduino-based Projects

All Arduino based projects have a common structure, as

illustrated in Figure 1. There are three general components

of each project: a device equipped with an Arduino board

equipped with sensors and actuators (shown on the left-hand

side of the diagram), a user computer (a client, shown on the

right side) making requests to control the device, and some

sort of a network connecting the two.

Students are given only this general schematic, as an

outline of system architecture, and are asked to fill it in with

their creativity and ingenuity. It is understood that the

Network is just a generic communication facility, so

students are free to choose the one best suited for their

specific projects.

Arduino Controlled Car with Remote Commands: The

essential objective of this project is to verify the

functionality of Arduino’s wireless connectivity with XBee,

and enable it to function as a remotely run controller

extending driver’s functions (drive-by-wire). The secondary

objective is to design an application for an off-the-shelf toy

car, just like the ones that can be purchased at the

supermarket. The development involved the following

activities:

 reverse engineering and rewiring the hardware

provided with the car to make it work with Arduino

and XBee wireless network;

 producing software responding to sensors, as well as

remote user/driver commands, and controlling the

DC motors, brakes, and lights;

 designing the human interface to control the car, and

enabling wireless connectivity;

 extensive testing of software operation, if it is

properly activating various car functions upon

remote driver’s requests.

Enhancing Arduino with Ethernet Communication: The

primary objective of this project is to enhance the

functionality of Arduino by adding the Internet connectivity

to it and enabling it to function as a web server. The

secondary objective is to have the Arduino board respond to

sensor information; in this particular case, it is the Passive

InfraRed (PIR) motion sensor, making the whole

arrangement work as a remote security device.

The development involves the following elements:

 setting up and wiring the hardware (Arduino, PIR

sensor and Ethernet shield);

 producing the code to program the communication

with the sensor and Ethernet;

 designing the minimal HTTP web server

functionality;

 testing the Internet accessibility of all server

functions.

Controlling Arduino from an iPad/iOS application: This

project’s major objective is to investigate what is involved

in building an iOS sensor application for Arduino, which is

not a very usual combination. The secondary objective is to

additionally check the working of connectivity between two

Arduino boards, comparing to previous phase where only a

single Arduino board was used. The development involves

the following elements:

 setting up, wiring and assembling the hardware

elements at both ends;

 developing an iOS application interfacing the iPad

with Arduino;

 developing the code for both Arduino components;

 thorough testing of the operation of both devices and

the integrated system.

Connecting Arduino with Kinect Sensing to Control a

Drawing Robot: In contrast to the previous projects, the

main objective of this one is not to focus on connectivity or

communication of Arduino, but on enabling the board to

receive commands from the user via Kinect sensing device.

The development involves the following elements:

 actually making the robotic arm and assembling it

with the Arduino board;

 setting up the Kinect graphical software at the server

side;

 producing the server code to work for the

communication with Arduino;

 extensive testing of the assembly by issuing finger

movement commands sensed by Kinect and passed

to Arduino to operate the drawing arm.

Problem Solving and Critical Thinking: How the problem

solving skills and critical thinking skills are being developed

in these types of projects is not a matter of general theory,

but more a matter of inspiration and providing to the student

an open-ended working environment. Students given only a

conceptual framework illustrated in Figure 1 were free to

choose their own project topics, devices used, preferred

tools, method of connectivity with a sensor, and project’s

scope, all with instructor’s approval. Then, several design

decisions had to be made on the project, in each individual

case, which forcibly made the students think in terms of

solving problems. Sample issues they needed to resolve

included:

 Drive-by-Wire (off-the-shelf toy car): How to

replace and expand a remotely controlled car’s

functionality, keeping its design simple and the least

expensive?

 Ethernet: How to resolve concurrent access to a

board from multiple clients requesting over the

Internet to turn the sensor off?

 iPad: How to comply with iOS restrictions and with

requirements on remote device to make the solution

the simplest possible but still practical?

 Kinect: Why Arduino would more efficiently control

the robot via firmware than by software? What

graphics libraries would work most effectively in

38 PROCEEDINGS OF THE E2LP WORKSHOP, WARSAW, 2014

capturing the dynamic images to control the drawing

arm?

These problem solving questions naturally overlap with

questions addressing the development of critical thinking

skills, which can be summarized as follows: What decision

is better? What criteria to use for deciding “what is better”?

How to develop these criteria, etc? One particular project-

wide problem may shed a light on addressing this issue from

the instructor’s perspective: selection of a Network element

from Figure 1, to meet project requirements.

It is interesting to note that students thought about the

network as a connectivity element, and selected the

following options: web connectivity for the Ethernet project,

XBee wireless network for both remote car control and

remote iPad/iOS communication, and – most interestingly –

USB connectivity for the Kinect project (between Kinect

server and Arduino).

B. Diversified Platforms Projects

Projects described in this section are meant to use more

powerful technologies to expand those Arduino based, by

considering the addition of two new enhancement features:

(a) remote software development and uploading to the target

device; (b) possible extension of the target’s functionality by

using on-site network (locally, in addition to the use of the

Internet). A general scheme to address the extensions is

shown in Figure 2. Consequently, students are required to

focus primarily on the server part of the project, whether it is

a physically separate unit (lower part of the figure) or an on-

board software solution (upper part of the figure).

Fig. 2 Outline of the template architecture for diversified platforms.

Raspberry Pi Task: The essential objective of this project

is to expand the Arduino project IV-A on remote vehicle

control, by a possibility of remote software development and

upload. The development involves the following elements:

 acquiring and applying knowledge of software

design issues for cyberphysical systems, including

selection of an appropriate design methodology and

design notation;

 studying respective networking protocols for

accomplishing the task (SSH and WebSockets);

 producing code for remote execution of an

application to control operation of a remote device;

 applying principles of remote implementation and

remote debugging and testing of an application.

BeagleBone Task: The main objective of this project is to

explore the possibility of setting up a web server on an

embedded device equivalent to or more powerful than that

of Raspberry Pi, with the purpose of handling remote

software development, upload and execution. The

additional goal is to study and summarize issues with

respective networking protocols. The development involves

the following crucial elements:

 expanding the assumptions of previous projects for

web connectivity with an embedded computer;

 investigating web technologies suitable for this task;

 designing the exact minimal but still useful

functionality of the server;

 producing code for file transfer and execution on a

remote host;

 configuring the server and testing its operation for

the required technologies: CGI, SSH, and HTTP.

PandaBoard Task: This project’s main objective is

expanding that of Section IV-A: use a more powerful

hardware to investigate the possibility of setting up a web

server on an embedded system board, with the purpose of

handling remote software development and execution. The

secondary objective is to expand the paths of remote

programming for server access and communication. The

development to meet the primary objective involves the

following elements:

 setting up the hardware, and installing and

configuring the Linux operating system;

 investigating the suitability of the networking

protocols to meet the objective;

 producing the code for network connectivity and file

transfer and execution;

 testing the operation of the entire system in the

Internet environment.

Atmel Microcontroller Task: The objective of this project

is to investigate adding an additional networking component

to a remote car control application. The path chosen for this

project, in contrast to all previous ones, is to host the server

program on a separate machine and make it communicate

with a car via a WiFi technology, as opposed to Zigbee used

in other projects. The development involves:

JANUSZ ZALEWSKI, FERNANDO GONZALEZ, ROBERT KENNY: SMALL IS BEAUTIFUL 39

 designing and engineering the basic car electronics;

 choosing the right connection media between the

Atmel board and the server;

 designing a handshake method for communication

between the GUI and the board;

 producing code for the GUI component of the server

communication;

 extensive testing of all individual components and

the integrity of the entire system.

Problem Solving and Critical Thinking: Projects in this

setting were more involved than the Arduino group projects

and required thinking more in terms of software engineering

than just programming or simple coding. While the Arduino

based projects could be qualified, to a large extent, as closer

to turnkey systems development than full-scale designs, the

diversified projects require from the students significantly

more systematic design skills. As a result, problem solving

at this level more resembles a real life experience, where

interaction with multiple stakeholders reveals questions that

need to be addressed. This is evident from the following

sample issues that emerged during the projects:

 Raspberry Pi: The minimal life cycle of application

development for a remote target device, with

software design, cross-compilation and remote

debugging, blended into a indistinguishable

sequence and required paying close attention to the

tool selection and detailed mapping of development

activities to the tool’s features.

 BeagleBone: Unpredictably, the reliability of a

server built on an embedded target board had to be

addressed, in particular, to prevent server crashing in

case non-compliant code has been uploaded for

execution. This situation required relating the

testing activities to previous phases of software

development, in subsequent iterations.

 PandaBoard: Unexpected difficulties in meeting full-

scale requirements caused the need for downsizing

the project and providing limited functionality with

open ended features, which had a retrofitting effect

on phases preceding implementation.

 Atmel microcontroller: Resolving major networking

issues with wireless protocol selection, UDP

protocol limitations, and firewall settings

adjustment, consumed most of the project’s

resources, leaving less than desired amount of time

for true development activities and planned

comparison with newer technologies;

Developing critical thinking skills by asking respective

decision related questions evolved around specific

development phases for each project. Corresponding

examples include:

 Requirements Specification phase: Is the suggested

technology right to address anticipated user needs?

Does the technology provide sufficient security

during device operation?

 Design phase: Is the design tools selection adequate

from the perspective of the project requirements and

individual tasks? Will the tools facilitate

development without a steep learning curve?

 Coding phase: What is the efficiency of the code, in

terms of size and execution speed? What are the

remote debugging capabilities versus local

development and upload? Why are these questions

important for a particular project?

 Testing phase: Involved a plethora of questions

related to critical thinking, since all projects were

subject to an independent verification by Instructor.

Most importantly, as most of the students were

considering testing to be just showing a demo, the

fundamental question to generate critical thoughts

turned out to be: “How the software features meet

the user requirements (if there were any)?”

Overall, asking these questions revealed a number of

issues in the learning process and taught some major lessons

on the mismatch between technologies selected and tasks

assigned (in a broader sense, on the requirements). In

several cases, inadequate prior preparation regarding

software engineering principles was revealed, but it must be

noticed that taking a course on Software Engineering

Fundamentals was not a prerequisite, although several

students were taking it concurrently with the projects.

V. CONCLUSION

This paper described the approach to and specific

activities in teaching small, but appealing to students,

embedded systems projects in undergraduate software

engineering courses. The claim that “small is beautiful” has

been verified in a number of individual projects that focused

on implementation and testing phases of the waterfall model

for small devices with increasing complexity of

requirements. Meeting four pedagogical objectives were

analyzed, of which the most important one, developing

concepts leading to the acquisition of problem solving and

critical thinking skills, was verified in more detail.

In this view, it is worth noting that the Embedded

Systems Programming course, where the devices are used, is

just a part of the full Software Engineering degree program,

and precedes courses on Requirements Specification and

Software Design. Even a course on Data Structures and

Algorithms is offered in a later year. Even though the main

goal of the simple lab projects, getting the students sufficient

hands-on experience to attract their interest in the program,

has been achieved, it must be honestly stated that from the

perspective of pedagogy the approach used is still

experimental and its effectiveness has been only partially

validated.

The major conclusion is that developing a lab on this

scale poses a tremendous number of challenges. Among the

40 PROCEEDINGS OF THE E2LP WORKSHOP, WARSAW, 2014

most critical ones are: Instructor’s preparation to face the

diversity of projects, the need to have a full time technician

to respond timely to technical problems that look minor but

are critical for project continuation, cooperation with

network administrators for port access, time consuming

development of readable documentation, and others.

Among the positive aspects were the following: use of

diverse technologies (iPad, Kinect, drive-by-wire, Ethernet)

drives student innovativeness; networking increased

awareness of security protocols (SSH, SSL, IPsec); forcing

the interaction with multiple components of the development

process helps in overall broadening the professional

horizons.

Probably the most important observation is that this type

of projects and a lab unquestionably help in the acquisition

of specific problem solving skills for embedded software

development, as well as in the application of critical

thinking. Nevertheless, a more targeted educational, or even

psychological, research would be needed to lead to more

specific conclusions. This, however, was outside the scope

of this work but is a valuable goal to be addressed in the

future. So is tracking student performance in upper level

project based courses.

ACKNOWLEDGMENT

The authors would like to thank the following students of

the FGCU’s Computer Science and Software Engineering

programs, who were instrumental in developing the lab: J.

Carroll, C. Farrell, J. Ferreiro, M. Grojean, N. Hart, R. Ho,

N. Nguyen, J. Royal, and J. Serrano.

Anonymous reviewers are gratefully acknowledged for

their insightful comments to help improve paper quality.

REFERENCES

[1] D. Uckelmann, Architecting the Internet of Things, Berlin:

Springer-Verlag, 2011.

[2] C. Doukas, Building Internet of Things with the Arduino.

CreateSpace, 2012.

[3] M.Y. Maybury, “Air Force Cyber Vision 2025,” Invited Talk,

CSIIRW-8, 8th Cyber Security and Information Intelligence

Research Workshop, Oak Ridge, Tenn., January 8-10, 2013.

[4] J. Zalewski, “A Real-Time Systems Course Based on Ada.”

Proc. ASEET 7th Annual Ada Software Engineering

Education and Training Symposium, Monterey, Calif.,

January 12–14, 1993, pp. 25–49.

[5] J. Zalewski, “A Comprehensive Embedded Systems Lab for

Teaching Remote Software Development,” Proc. CSEET

2010, 23rd Annual IEEE-CS Conference on Software

Engineering Education and Training, March 9-12, 2010,

Pittsburgh, Penn., pp. 113-120.

[6] J. Zalewski, “Lab-by-Wire: Fully Web-based Hands-on

Embedded Systems Laboratory,” Proc. EDUCON2013, IEEE

Global Engineering Education Conference, Berlin, Germany,

March 13-15, 2013, pp. 928-933.

[7] J. Zalewski, “Web-based Labs for Cyberphysical Systems: A

Disruptive Technology,” Proc. WCCE2013, 10th IFIP World

Conference on Computers in Education, Torun, Poland, July

2-5, 2013, pp. 89-97.

[8] J. Titus, The Hands-on XBee Lab Manual: Experiments that

Teach you XBee Wireless Communications. Oxford, UK:

Elsevier/Newnes, 2012.

[9] Raspberry Pi Starter Kit. Raspberry Pi Foundation, Caldecote,

Cambridgeshire, UK. URL: http://www.raspberrypi.org

[10] What Is Beaglebone? The BeagleBoard.org Foundation,

Richardson, TX. http://beagleboard.org/Products/BeagleBone

[11] PandaBoard Getting Started. PandaBoarsd Volunteers

Website. URL: http://pandaboard.org/

[12] AVR STK500 User Guide. Atmel, San Jose, Calif., URL:

http://www.atmel.com/Images/doc1925.pdf

JANUSZ ZALEWSKI, FERNANDO GONZALEZ, ROBERT KENNY: SMALL IS BEAUTIFUL 41

