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Abstract—In the past two decades, computer vision and arti-
ficial intelligence (AI) have made significant strides in delivering
practical solutions to aid farmers directly in the fields, thereby
contributing to the integration of advanced technology in pre-
cision agriculture. However, extending these methods to diverse
crops and broader applications, including low-resource situations,
raises several concerns. Indeed, the adaptability of AI methods to
new cases and domains is not always straightforward. Moreover,
the dynamic global panorama requires a continuous adaptation
and refinement of artificial intelligence models. In this position
paper, we examine the current opportunities and challenges, and
propose a new approach to address these issues, currently in the
implementation phase at CNR-ISTI.

Index Terms—Sustainable Agriculture; Artificial Intelligence;
Deep Learning; Crowd-sensing; Citizen science

I. INTRODUCTION

IN RECENT years, the emergence of deep learning, com-

bined with the increasingly widespread use of visual mon-

itoring technologies for crops, has significantly contribut-

edto the advancement of precision agriculture [1]. Uncrewed

Aerial Vehicles (UAVs) equipped with colour or multispec-

tral/hyperspectral cameras, as well as other robotic platforms

designed for close-range operations with crops, have paved the

way for the introduction of AI-assisted, data-driven approaches

in agriculture [2]. This has permitted the implementation

of precise monitoring, treatment, and harvesting techniques.

However, these advancements have primarily impacted a nar-

row range of cultivated crops, particularly specialized ones

yielding high revenues, such as high-end wine production [3].

It is clear that Artificial Intelligence (AI) and Machine

Learning (ML), including Deep Learning (DL) methods, are

versatile methodologies capable of being applied to disparate

fields, including agriculture, where their potential impact has

yet to be fully realized. However, the transfer from specific do-

mains to new ones is not always feasible or cost-effective due

to the associated efforts required for designing and developing

new models.

Numerous research and academic initiatives focus on a wide

range of crops, encompassing intensive cultivation practices

that have a significant impact on the global food supply [4].

In these contexts, DL models have demonstrated unparalleled

performance on standardized datasets [5].

Concerning such topics, the state of research on AI appli-

cations in agriculture is wide. There is still no standardized

approach, but the literature encompasses a lot of strategies

that are all focused on improving crop quality and production.

While modern DL models excel in image analysis for product

quality enhancement, other critical agricultural domains, like

water control [6], soil management, and production chain

optimization, primarily rely on tabular data or emerging multi-

modal approaches. Real-time object detection is a prominent

AI application in agriculture, though classification algorithms

often demonstrate superior performance [7] in specific con-

texts.

Recent works, as [8], try to employ knowledge-distillation

techniques to improve weed mapping, adapting complex trans-

former architecture to the agricultural domain. At the same

time, other studies [9] analyse various detection algorithms

and design possible edge computing solutions for their real-

time applications in precision agriculture. Image acquisition

modality plays a pivotal role in plant analysis studies [10],

as shown by the advancements in multi-modal imaging tech-

niques that enhance the accuracy of trait estimation and

facilitate the analysis of plant morphology and development.

For instance, integrating visible light, fluorescence, and near-

infrared imaging allows for a comprehensive assessment of

plant structures, improving the segmentation and quantifica-

tion of traits critical for phenotyping. These diverse imaging

modalities not only provide complementary information. But

also address challenges related to variable illumination and
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plant colouration, ultimately leading to more robust phe-

notypic data extraction and analysis. Object detection and

segmentation algorithms are usually more complex than their

classification counterpart; therefore, translating these models

and approaches into practical use for corporate farmers of

all scales presents challenges, as real-world variability differs

from the conditions in static benchmark datasets. To date,

while there is a right to benchmarking agricultural datasets,

no foundational models have been trained in this domain,

making only possible transfer learning strategies and training

from scratch solutions. Non-technological factors, including

user acceptability, also hinder the widespread adoption of the

latest research findings [7].

In this context, there is a growing need for developing

new methodologies to overcome the current limitations of

AI-assisted technologies. Specifically, these necessitate broad-

ening their application to new crops and different scales of

cultivation to support niche, small-scale, local, and organic

productions while preserving biodiversity and environments

through sustainable resource management. These demands

come from various stakeholders, including farmers and policy-

makers (such as the European Community [11]). At the same

time, they also originate from the Sustainable Development

Goals set by the United Nations [12], particularly Goal 2 “Zero

Hunger”. This goal includes targets such as doubling agri-

cultural productivity (Target 2.3), ensuring sustainable food

production systems, implementing resilient farming practices,

and improving land and soil quality (Target 2.4), as well as

maintaining genetic diversity through well-managed seed and

plant banks (Target 2.5).

This position paper intends to present prospective ideas

that might contribute to achieving the Sustainable Develop-

ment Goals and fulfilling the requirements for the widespread

adoption and implementation of practical artificial intelligence.

While AI has potential applications across various domains,

we focus specifically on using image-based intelligent sys-

tems to support farmers in their day-to-day operations. These

systems can act as effective assistants, enabling informed

decision-making and promoting the best practices for in-

creased yet sustainable production.

The paper is organized as follows. In Section II, we critically

review previous experiences, including ours, and highlight

their limitations. In Section III, we enumerate a set of chal-

lenges and research questions that should be addressed to reach

the scope described in this introduction. In Section IV, we

analyze the current opportunities provided by technological

advances and then explain the proposed approach rationale.

Section V concludes the paper with remarks for further anal-

ysis and prospective implementation.

II. PREVIOUS EXPERIENCES

In light of advancements in image processing, computer vi-

sion, and machine learning, considerable research efforts have

been directed toward developing intelligent systems to support

agriculture. These efforts include the creation of algorithms

for detecting, classifying, and quantifying crops and various

potential threats such as weeds, diseases, insects, and other

stressors that could impact successful harvesting. The focus

has been on analyzing remote sensing images captured by

UAVs and close-range photography obtained through handheld

devices or robot platforms.

The curation of benchmark datasets, particularly those re-

leased as open data, has played a pivotal role in enhancing the

reproducibility and extensibility of research across different

domains. Surveys on existing datasets, as documented in the

work by Lu et al. [13], have become readily available. For

instance, the PlantVillage dataset [14] has emerged as a de

facto benchmark for leaf disease classification even though

images, while numerous, may not fully represent the entirety

of natural variability. Consequently, the performance of deep

learning models on such datasets has been exceptional, with

approaches achieving maximal accuracy levels [15].

Significant endeavours have been put forth within the

AGROSAT+ project, sponsored by Barilla, to address detect-

ing and classifying weeds. Under this initiative, collaborative

efforts between CNR-ISTI and CNR-IBE have led to curating

a dataset specific to cereal crop weeds [16]. This dataset might

be valuable for weed detection and classification problems

through close-range imaging or high-resolution UAV surveys.

Additionally, its suitability for machine learning methods has

been demonstrated in [17], where again the top performance

was obtained. While intriguing and of great importance for

advancing research, the current approaches have limitations

regarding practical applications. The models’ ability to gener-

alize when processing uncontrolled, real-world images is un-

satisfactory, with a significant performance degradation of over

20%. This lack of reliability and inconsistent performance may

be unacceptable to users in real-world deployments, leading

to distrust in artificial intelligence and overall dissatisfaction,

ultimately resulting in the technology’s failure to be adopted.

In the context of the AGROSAT+ project, an additional

initiative was undertaken to address these challenges, leading

to the development of an app called “GranoScan”. This app is

designed to serve as an expert system that can be used directly

in the field to identify plant diseases and stress, as well as

detect weeds, insects, and other potential threats simply by

using pictures captured through the smartphone camera. The

app’s backend is driven by deep learning models that handle

various visual recognition tasks [18]. One notable aspect of

the app is its approach, which is somewhat independent of

the specific computational models employed. In more detail,

following an intensive period of initial data collection to train

the machine learning models, GranoScan has now entered the

production stage. Since then, a continuous stream of images

from diverse users has been processed, with user consent, and

stored to augment the dataset. This data has provided a wealth

of information that can be leveraged to enhance and refine the

models developed over the years using semi-assisted and semi-

supervised methods. The experience is still ongoing.
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III. CHALLENGES

Based on the previous experiences reported in Section II, a

critical gap in the current AI technology for sustainable agri-

culture is the absence of a well-established methodology for

the rapid deployment of models, namely of trained deep learn-

ing architecture for solving visual tasks related to agronomical

problems. These AI models must satisfy various requirements,

including robustness, adaptability, and maintainability, while

being versatile enough to address various crops. Notably, the

methodology should also ensure that the models can be easily

transferred across different domains while maintaining their

effectiveness and accuracy. For example, the models should

be capable of adapting from one crop variety to another,

regardless of similarities or differences in cultivation practices

based on geographical location, climate, and other environ-

mental conditions such as soil quality, water availability, and

farming methods (e.g. organic, with biological or natural pest

control, traditional). Developing such a methodology involves

confronting several key challenges outlined below.

One of the primary challenges in deploying AI models in

agriculture is the limited availability of comprehensive and

high-quality datasets. Indeed, as shown in the survey [13],

agricultural datasets, particularly those related to specific crops

or regions, are often sparse, fragmented, or inconsistent (see,

for instance, the dataset proposed for the challenge [19]). As

we have seen, thanks to data augmentation strategies and the

definition of ad hoc architectures, such a scarcity has not

prevented the realization of performant AI models on static

benchmark datasets. However, the generalization capabilities

observed in practice have been, in our experience, somewhat

disappointing.

Additionally, the agricultural environment is highly dynamic

and is influenced by seasonal variations, pest outbreaks, and

other temporal factors. To ensure that AI models can ef-

fectively generalize, it is crucial to train them using data

collected over multiple growing seasons in order to capture

these variations accurately. Longitudinal studies that span

several agricultural cycles can provide valuable insights into

long-term trends and enhance the model’s ability to generalize

across different conditions and time periods. Such longitudinal

assessment is feasible when analyzing routine remote sensing

images captured by satellite-borne sensors. However, when

considering the smaller scale of details (e.g., airborne sensors

and close-range images), there are currently no relevant and

accessible datasets that span multiple harvest seasons.

Climate change introduces significant unpredictability into

agricultural systems, affecting crop yields, pest prevalence, and

overall farm productivity. For this reason, AI models need to

be capable of not only interpolating within the known data

but also extrapolating to predict the impact of unprecedented

climate scenarios. This is a feature that should be taken into

account when selecting the deep learning architecture or other

machine learning paradigm to be used in a classification or

regression task. Indeed, some methods are only suited to ana-

lyze data within the convex hull of the training set, producing

in output something within the convex hull of the labels in the

training data. Although most of the classification and object

detection tasks are not apparently conditioned by these issues,

in general, reasoning about crop status, these issues should be

taken into account. In particular, this might require integrating

climate models with agricultural data to create AI systems that

can adapt to changing climatic conditions and provide reliable

recommendations for farmers.

The ultimate objective of utilizing AI-based systems in

agriculture is to convert predictive insights into actionable

knowledge that farmers can easily put into practice. This

involves not only creating user-friendly interfaces and pro-

viding effective training for farmers but also ensuring that the

AI recommendations are reliable, practical, and economically

feasible. In addition, there is a need for processes that facilitate

continuous feedback from the field to refine and update the

models, ensuring that their relevance and accuracy in real-

world applications remain stable without being affected by

potential non-stationary conditions.

IV. PROPOSED APPROACH

Having discussed the challenges towards the implementa-

tion and actual deployment of robust, adaptable, and manage-

able AI models for tackling agronomic tasks, it is important

to note that several opportunities are linked to technological

advances that can ease the identification of possible solutions.

From one side, indeed, there has been a flourishing of

research towards identifying highly efficient and robust AI

models with improved insensitivity to data variability [20].

Secondly, methods have also been analyzed from the point

of view of carbon footprint, [21] taking into account not only

the training and inference costs but also the overhead linked,

for instance, to data transfer. This is an aspect in deciding

where to collocate computationally intensive tasks over the

computational continuum, determining whether to process

directly near the node where the data has been captured

(i.e. directly on the smartphone capturing the image or on

a robotic platform) with no transfer overhead or, conversely,

on the cloud (with variable transfer costs). In such a context,

progress in hardware also allows for more freedom in such

design choices, given the general availability of computational

resources, including GPU resources, along the computational

continuum.

Finally, a third opportunity arises from the successful im-

plementation of crowd-sensing that can be attributed to two

key aspects: - the first aspect is technical, in which modern

accessible devices, such as smartphones, now offer enhanced

sensing capabilities, including LiDAR technology, multiple

camera lenses, and advanced geolocation features; - the second

aspect relates to the growing awareness and willingness of

individuals to participate in citizen science initiatives.

In this section, we propose the envisaged rationale and then

discuss in detail the three main points it leverages.

A. Rationale

The rationale of the approaches is based on the use of

three main levers that are considered to be able to effectively
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contribute to fast and efficient deployments, respecting the

requirements discussed in the previous section. The first aspect

is based on the provision, not only of statistic classification or

number produced by ML/DL models, but also on integrating

these methods with Decision Support Services (Section IV-B).

This is envisaged to respond to the need to translate insights

into actionable knowledge. Indeed, not only the output of the

image processing will be produced, but it is necessary to ac-

company this output with an explanation (in an explainability

effort) and suggestions on how this output may be used in

practice to optimize treatment, for instance, by devising an

adaptive treatment plan. Secondly, a better tradeoff between

performance and generalization capabilities should be sought

(Section IV-C). This attains research efforts in ML/DL where

new methods that have already proved promising, based on

ensembling, can achieve improved generalization capabilities

and allow for a faster domain transfer. A third ingredient is

represented by a more strategic approach to filtering crowd-

sensed information, considering uncertainty in their evaluation

since they originate from non-authoritative sources (Section

IV-D). In this case, new methodologies can be enlisted to

determine data quality and define the confidence level the new

data has to enter into the decisional processes.

In the current envisaged activities such rationale is going

to be validated (see Figure 1) in a variety of cases addressing

i) plant position detection, ii) plant count, iii) control of the

growing phase (e.g. pre/post-germination, developed, budding,

pre-flowering, pre-fruiting, ripening depending on the cultiva-

tion) and iv) anomaly detection (abnormal growth compared to

market standards, sufficient/insufficient gems,. . . ) and v) plant

threats (weeds, pests, and diseases). In addition, vi) time (of

budding, flowering, fruiting, ripening,. . . ) and vii) and volume

predictions (number of plants/flowers/fruits/biomass) as well

as viii) quality of the final product will be considered.

B. Integration with DSS

A DSS must consider several factors depending on the plant

species, including sprout number, flowering time, loss of first

flowering, and other variables.

The proposed model envisages the DSS’s intervention point

as at least twofold. Indeed, the DSS intervenes before and after

the AI models, (a) first to decide which ones to run based

on historical data, context conditions, seasons, situations, and

others, and (b) then to provide suggestions based on the results.

A hybrid DSS integrates different technologies and infor-

mation types in order to provide greater flexibility, scalability

and efficiency in helping make the right decision, the correct

application, and the proper treatment in the right place and

at the right time: knowledge-based modules allow a semantic

representation of data to extract and infer helpful informa-

tion and can include Data Mining and predictive analytics

to identify hidden patterns and relationships between data,

providing high quality and a clear explanation of decisions;

model-based modules allow optimizing the internal decision

processes by analyzing specific issues, such as the irrigation

scheduling or the crop prediction processing data, when the

target audience/stakeholder is not interested in understanding

the decision-making process but only in the results produced.

DSS can also be utilized to communicate and present

information as needed. For example, AI tools that predict

future outcomes based on historical data and trends (e.g.

forecasting flowering or fruiting times or spreading a disease)

can be activated proactively in response to specific events. The

resulting output can then be promptly presented to the user,

allowing for optimal treatment and harvesting planning.

C. Model adaptation, generalization capabilities and contin-

uous learning

A key factor is the ability of AI models to adapt to new

data, to generalize their knowledge, to apply them to new

contexts, to ensure that models are able to function properly

in different situations and to improve their accuracy over

time. At the same time, we need a model capable of learning

fast without relying on an extensive corpus of knowledge,

represented in this specific case by a dataset annotated with

ground truth. In DL, the capabilities of transfer learning are

well known: deep models trained on a dataset belonging to a

certain domain, often general purpose such as in the case of

ImageNet, are then capable of adapting more quickly and with

better performance to new domains with respect to the same

architectures initialized in a random way. In addition, zero-

shot and few-shot learning have been considered in several

contexts, achieving classification with minimal training data

[22].

In our view, we aim to address these elements by exploiting

adaptive ensembling and continuous learning.

More specifically, in adaptive ensembling [5], a few weak

models are trained in parallel, resulting in a set of specialized

modules. Such weak models are based on DL models and,

specifically, in architectures belonging to the EfficientNet

family [23]. As such, they comprise a first set of layers,

performing feature extraction and a final layer-producing clas-

sification. In our approach, such weak models are combined

together to produce a strong classifier at the deep feature level.

Namely, the original classification layer of each weak model

is neglected, and a new global classification layer, taking into

input the concatenation of the feature vectors provided by

all the weak models, is introduced and trained to obtain the

desired ensemble. Such an approach has been proven to give

promising results in domain adaptation, as in the case of olive

diseases [7], but extended analysis and diverse dataset partition

methodology should be studied to assess the added value in

robustness.

Ensembling is also suitable to support continuous learning.

As already introduced based on the yearly campaign or on a

steady stream of data coming from the field, the concept of a

static dataset has to be surpassed. The data flow indeed offers

the opportunity to update models based on deep learning to

provide increasingly accurate answers by taking advantage of

the expansion of the available case studies. To this end, it

is neither practical nor convenient to retrain the models from
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Fig. 1. Key steps diagram of a possible chain of activities as a rationale for plant monitoring and analysis

scratch at each update, but it is advisable to use a continuous

learning approach.

The possibility of shifting toward a continual learning

paradigm has significant potential: beyond providing constant

retraining, it also enables enhanced models through continuous

updates, making the system more resilient to unseen threats.

This approach is more accurate and trustworthy than consider-

ing all boundary conditions simultaneously. While classical su-

pervised deep learning algorithms can detect seasonal patterns,

they often fail to accurately predict anomalous conditions.

Moreover, they often fail to detect points of instability, which

can adversely impact the evolution of the studied environment

and potentially lead to catastrophic consequences.

From a technical perspective outside of research contexts,

the use of ensemble methods is often not aligned with com-

pany objectives and means because it requires continuous

resources. Other strategies, such as using state-of-the-art ma-

chine learning models with a priori studies of data distribu-

tion, can effectively produce one-shot models with an initial

better performance. Ultimately, the support from advanced

techniques demonstrates that moving beyond conventional

methods can lead to developing more effective models, such

as those achieved through ensemble approaches.

In the main studies of the AGROSAT+ project, it has

become clear that transferring technology and know-how from

the public to the private sector plays an important role. Even

though large companies have the possibility and the means

to sustain the production of high levels, in AGROSAT+, the

resources employed in the developed DL model are far lower

than the computational necessity of Large Language Models

(LLMs). Indeed, the training of a state-of-the-art model [15]

required only a mid-range workstation (equipped with two

RTX QUADRO 5000 GPUs, which have now become an

example of affordable accelerators), and the inference of the

trained model worked on the CPU of this machine. This API

solution lets users control their production directly with their

phone (basic technologies approach). The proposed ensemble

model was also used successfully in other scientific fields [24],

showing the potential of open-access research.

Accuracy, Precision, Recall, F1 & R1 score and any other

method largely treated in the statistical literature are the main

methods to evaluate the goodness of a DL model. Still, the

black-box nature of these algorithms hinders trust in their

performance. The public is sceptical of their benefits since it

is impossible to fully understand their inner working. For the

same reason, the scientific community, with their government

counterparts, is questioning the danger, limits, and rightfulness

of the DL models. Good practices, such as strict control

of no train-test data contamination, augmentation strategies,

and eXplainable Artificial Intelligence (XAI), are common

methods to ensure that the systems are accurate but also

trustworthy and plausible. Knowledge-based DL algorithms

are other possible solutions; in genomic and molecular biology,

AlphaFold [25] is a good example of how to evaluate the

quality of a model. AlphaFold architecture combines the

transformer attention mechanism in pairs with the Evoformer
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module; this processes correctly evaluate the data of the

biological sequence and the pair representation to output a

new possible structure. Another possible solution is Physic-

Informed Neural Networks (PiNNs) [26] that guide the sys-

tems’ output towards valid output thanks to the incorporation

of the boundary conditions of the described problem. The

listed procedures suggest that leveraging information from

crop traits could provide an intrinsic validation method for

the model, as the proposed approach aligns with natural

observations. Last, it is worth mentioning the possible benefits

of incorporating continual learning strategies to validate the

model over time. Continual learning enhances the adaptability

of DL algorithms by enabling them to incrementally acquire

information from new data while retaining the old ones used

for the previous state. This approach not only mitigates the risk

of catastrophic forgetting but also allows for dynamic updates,

thereby outputting an unbiased overall accuracy of real-world

phenomena. Consequently, the ability to control and fine-tune

the model’s performance across diverse tasks and datasets is

significantly enhanced, ensuring that the model remains robust

and effective over time.

D. Filtering and analysis of crowd-sensed data

In our previous experience with the AGROSAT+ project,

researchers dealt with the quality of data collected from

voluntary users. While the information provided, including

new images to enhance the datasets, was effective in meeting

the need for more varied spatial and temporal data, it is

essential to implement suitable filtering to avoid errors or

biases due to the non-authoritative nature of the information.

To this end, one of the first elements integrated into the

GranoScan app is a deep learning method, achieved through

supervised learning, to differentiate relevant images from those

that may not be suitable for a specific computer vision task.

However, this approach can be improved and expanded by: a)

incorporating blind general-purpose image quality assessment

methods, such as those based on deep learning (e.g., [27],

[28]), and b) developing appropriate object detectors to verify

that the image is relevant to the computer vision task (for

example, if the visual task involves identifying leaf diseases,

there should be at least one leaf in the picture, and it should

occupy a significant area). After passing through the specified

filters and if the user provides feedback, the processed image

can be stored in an expanded version of the datasets suitable

for potential model updates and fine-tuning, also according

to online procedures and to the continuous learning approach

described in Section IV-C. Furthermore, additional filtering

should be conducted to analyze the cross-correlation between

contextual and image data. This is primarily focused on iden-

tifying potential anomalies within the data, such as a disease

reported in a region of the world or during a time of year when

the disease is not expected. While such anomalies may indicate

the nonstationarity of the observed global situation (also as an

outcome of climate change), they should be carefully reviewed

by additional AI agents and, ultimately, by human observers.

This is somewhat related to the continuous monitoring of

the expert system in the operational phase to prevent biases

and drifts and contribute to the overall maintainability of the

system.

V. CONCLUSIONS

In this position paper, we have revised and enumerated

challenges and opportunities for developing AI models that

can tackle visual tasks relevant to agronomy. These mod-

els must exhibit high levels of robustness, adaptability, and

maintainability to be considered trustworthy for deployment

across various scenarios. Our proposed approach focuses on

three key elements: developing technologies for model domain

adaptation, utilizing crowd-sensing with awareness of uncer-

tainty, and integrating with reasoning and recommendation

systems to transform computational intelligence outputs into

actionable knowledge. The synergy among these three points

is also inspired by the general principles of responsibility,

accountability, explainability, and trustworthiness, which col-

lectively enhance the acceptability of our proposed solutions

by addressing both technical and non-technical requirements.

Work is currently underway as part of the STRIVE project,

and it will continue over the next two years. During this time,

experiments will be conducted to test the proposed approach,

evaluate its effectiveness, and understand its limitations. Ad-

ditional measures will involve working with the community

of farmers to raise awareness and encourage engagement.

The additional benefits of engaging the farming community

in this precision approach to agricultural practices include

building trust and improving perceptions of this tool.

An active community can guarantee a steady flow of data,

allowing the continual learning implementation part of our

solution, and communicate additional information, enabling

real-time adjustments to the predictive component of the

employed algorithm, which would otherwise not be possible.

In the future, we may consider utilizing Generative AI

and LLMs to enhance communication and interaction with

end users. However, we will proceed cautiously, as these

technologies are not yet fully mature, language support is

not consistent, and the portability and sustainability of the

technology still need to be assessed. Therefore, we may

need to postpone their application in scenarios where actual

deployment is being pursued.

ACKNOWLEDGMENTS

This work has been partially supported by the CNR FOE

Project DIT.AD022.207 “La Scienza per le TRansizioni

Industriale, Verde, Energetica - STRIVE” (Science for

Industrial, Green and Energy Research).

This work is part of a project that has received funding

from the European Union’s Horizon Europe - Topic:

DIGITAL-2022-SKILLS-03-SPECIALISED-EDU – Project

ID: 101123258 - Project name: Digital agriculture for

sustainable development(AGRITECH EU).

38 POSITION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



REFERENCES

[1] T. Saranya, C. Deisy, S. Sridevi, and K. S. M. Anbananthen, “A
comparative study of deep learning and internet of things for precision
agriculture,” Engineering Applications of Artificial Intelligence, 2023.
doi: 10.1016/j.engappai.2023.106034

[2] I. Zualkernan, D. A. Abuhani, M. H. Hussain, J. Khan, and M. El-
Mohandes, “Machine learning for precision agriculture using imagery
from unmanned aerial vehicles (uavs): A survey,” Drones, 2023. doi:
10.1016/j.compag.2020.105760

[3] S. Koul, “Machine learning and deep learning in agriculture,” Smart

Agriculture: Emerging Pedagogies of Deep Learning, Machine Learning

and Internet of Things, 2021. doi: 10.1201/b22627-1
[4] R. Priya and D. Ramesh, “Ml based sustainable precision agriculture: A

future generation perspective,” Sustainable Computing: Informatics and

Systems, 2020. doi: 10.1016/j.suscom.2020.100439
[5] B. Antonio, D. Moroni, and M. Martinelli, “Efficient adaptive

ensembling for image classification,” Expert Systems, 2022. doi:
10.1111/exsy.13424

[6] Ł. Błaszczyk, M. Mizura, A. Płocharski, and J. Porter-Sobieraj, “Simu-
lating large-scale topographic terrain features with reservoirs and flowing
water,” in 2023 18th Conference on Computer Science and Intelligence

Systems (FedCSIS), 2023. doi: 10.15439/2023F2137
[7] A. Bruno, D. Moroni, and M. Martinelli, “Efficient deep learning

approach for olive disease classification,” in 2023 18th Conference

on Computer Science and Intelligence Systems (FedCSIS), 2023. doi:
10.15439/2023F4794

[8] G. Castellano, P. De Marinis, and G. Vessio, “Applying knowledge
distillation to improve weed mapping with drones,” in 2023 18th

Conference on Computer Science and Intelligence Systems (FedCSIS),
2023. doi: 10.15439/2023F960

[9] N. Iqbal, C. Manss, C. Scholz, D. König, M. Igelbrink, and A. Ruck-
elshausen, “Ai-based maize and weeds detection on the edge with
cornweed dataset,” in 2023 18th Conference on Computer Science and

Intelligence Systems (FedCSIS), 2023. doi: 10.15439/2023F2125
[10] S. Kolhar and J. Jagtap, “Plant trait estimation and classification studies

in plant phenotyping using machine vision–a review,” Information

Processing in Agriculture, vol. 10, no. 1, pp. 114–135, 2023.
[11] European Commission, “Work programme 2023-2025 – 9. food,

bioeconomy, natural resources, agriculture and environment,” 2024.
[Online]. Available: https://ec.europa.eu/info/funding-tenders/
opportunities/docs/2021-2027/horizon/wp-call/2023-2024/
wp-9-food-bioeconomy-natural-resources-agriculture-and-environment
horizon-2023-2024 en.pdf

[12] “THE 17 GOALS,” https://sdgs.un.org/goals, 2015, [Online; accessed
11-June-2024].

[13] Y. Lu and S. Young, “A survey of public datasets for computer
vision tasks in precision agriculture,” Computers and Electronics in

Agriculture, 2020. doi: 10.1016/j.compag.2020.105760
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