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Abstract—Attribute-Based Encryption (ABE) and Asymmetric
Searchable Encryption (ASE) are two highly useful Public-
Key Encryption (PKE) technologies in today’s cloud computing
landscape.

By leveraging the idea that the attributes from ABE can
serve as keywords for ASE, we propose an efficient technique
to translate any ABE schemes into ASE schemes. We address
both the case of Ciphertext-Policy Attribute-Based Searchable
Encryption (CP-ABSE) and Key-Policy Attribute-Based Search-
able Encryption (KP-ABSE) schemes.

Our main goal with these schemes is to maintain the security
properties of ABE while introducing efficient search capabilities,
thereby facilitating further advancements in ASE development.
To validate our theoretical proposals, we have analyzed their
practical applicability using existing ABE implementations.

I. INTRODUCTION

S
EARCHABLE Encryption (SE) is a cryptographic tech-

nique that allows users to search over encrypted data

without decrypting it, preserving data confidentiality while

enabling search functionality. SE can be broadly categorized

into two types: Symmetric Searchable Encryption (SSE) [1]

and Asymmetric Searchable Encryption (ASE) [2].

Symmetric Searchable Encryption schemes utilize a single

secret key that is shared between the data owner and the

authorized users. This approach offers several advantages:

efficiency in terms of computational overhead and search

speed, making them suitable for scenarios where performance

is critical; and simplicity, as the key management in SSE

is straightforward since it involves only one key for both

encryption and decryption. However, SSE also has notable

drawbacks, such as limited access control with all the users

with the secret key being able to access all the data, which

may not be desirable in many applications; and scalability

issues, as securely distributing and managing the single secret

key becomes challenging with the number of system users

increasing.

In contrast, Asymmetric Searchable Encryption employs a

pair of cryptographic keys: a public key for encryption and

a private key for decryption. This approach addresses some

of the limitations of SSE by enabling more granular access

control, allowing the data owner to specify which users can

access which data. This is particularly useful in multi-user

environments with varying access privileges. Moreover, ASE

offers better scalability, each user having their own key pair,

simplifying key distribution and management as the system

scales up. Despite these advantages, ASE comes with its

own set of challenges, as the use of public and private keys

introduces additional complexity in terms of key management

and the overall cryptographic operations. ASE schemes often

incur higher computational costs and longer search times

compared to SSE, which can be a major drawback in resource-

constrained environments.

Given the trade-offs between SSE and ASE, there is a sig-

nificant interest in developing more efficient ASE schemes that

can leverage the strengths of existing cryptographic methods,

as seen with the recently proposed [7], [3], [4], [5] and [6]. One

promising approach is to derive ASE schemes from Attribute-

Based Encryption (ABE). By treating attributes in ABE as

keywords in ASE, it is possible to create systems that offer

both efficient search capabilities and robust access control.

Recently, the idea of treating attributes as keywords was also

used by Long Meng, Liqun Chen and Yangguang Tian as a

trivial assumption behind a new proposal of an efficient ASE

scheme extended from an A-KP-ABE scheme [7].

This paper aims to propose a new class of efficient ASE

schemes derived from ABE. Specifically, we present theo-

retical formalizations for Ciphertext-Policy Attribute-Based

Searchable Encryption (CP-ABSE) and Key-Policy Attribute-

Based Searchable Encryption (KP-ABSE), showing that any

ABE scheme can become an ASE scheme. Our objective is to

utilize the inherent advantages of ABE, such as fine-grained

access control and scalability, to develop ASE schemes that

offer efficient, secure, and flexible search functionality.

II. GENERAL TRANSFORMATION OF ABE IN ASE

In ABE, attributes can be viewed as keywords. By treating

these attributes as keywords in ASE, we can introduce search

functionalities without compromising the existing access con-

trol mechanisms. This allows for the creation of searchable

indexes based on attributes or access policies, enabling ef-

ficient retrieval of encrypted data based on specified search

criteria.

Building on this concept of treating ABE attributes as

keywords for ASE, having as basis the general schemes from

[8], we will be further presenting the formalization for the
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extension of both ABE forms to ASE. The notations of

general functions needed in the formalization are subsequently

explained in “Table 1”.

A. CP-ABSE formalization

Algorithm 1 CP-ABSE GlobalInit

index← [ ][ ]; H ← HashFunction();

Algorithm 2 CP-ABSE Setup

Require: Security parameter 1λ;

Ensure: Public parameters PK, master key msk;

(PK,msk)← Setup(1λ);
2: return (PK,msk);

For Ciphertext Attribute-Based Encryption schemes, the

setup algorithm of the system, Setup(1λ), takes as input

a security parameter, 1λ and outputs the public parameters,

PK, and a master key, msk, which is known only to the

private key generator (PKG). Aside from the CP-ABE setup

related initialisation, we are also adding to the system 2

new global parameters: index, which will store the encrypted

documents/messages at a given index, and H , a hash function

which will be further used in the index creation and query

generation steps.

Algorithm 3 CP-ABSE KeyGen

Require: Public parameters PK, master key msk, set of

attributes γ = {a1, a2, . . . , an};
Ensure: Private key Dγ ;

Dγ ← KeyGen(PK,msk, γ);
2: return Dγ ;

Next, onto the key generation algorithm, there are no

changes from the regular behaviour expected of a CP-ABE

scheme: KeyGen(PK,msk, γ) algorithm takes as input the

public parameters, PK, the master key, msk, both gener-

ated during the setup phase, and a set of attributes, γ =
{a1, a2, . . . , an}, for which the secret key is to be generated.

It outputs the private key Dγ which encapsulates γ.

Algorithm 4 CP-ABSE Encrypt

Require: Message m, public parameters PK, access policy

A = BooleanExpr({a1, a2, . . . , an});
Ensure: Ciphertext ct;

ct← Encrypt(m,PK,A);
2: return ct;

The encryption algorithm also remains the same as with

regular CP-ABE: Enc(m,PK,A) takes as input parameters

a message, m, an access policy, A (which is or can be

trivially transformed into a logical boolean expression A =
BooleanExpr({a1, a2, . . . , an})), and the public parameters,

PK. It outputs the ciphertext, ct.

Algorithm 5 CP-ABSE CreateIndex

Require: Ciphertext ct, same access policy

A = BooleanExpr({a1, a2, . . . , an});
A′ ← A;

2: γ′ ← ParsePolicy(A);
for a′i in γ′ do

4: A′.replace(a′i, H(a′i));
end for

6: id← ct;

if ∃index[A′] in index then

8: index[A′].append(id);
else

10: index[A′]← [id];
end if

To ensure that the documents encrypted by the system are

stored and searchable, we are executing CreateIndex(ct, A)
right after a document/message is encrypted based on a given

policy. The algorithm is simply storing the ciphertexts at an

index obtained from the same policy A based on which the

message was encrypted in the previous step.

To further hide the index values, the attributes from the

given access policy A (obtained via parsing the policy)

will be further hashed with the system defined hash func-

tion H , and their clear-text values will be subsequently

replaced in the policy with the hashed ones. The ini-

tial logical relations between the attributes in the policy

will be kept for the newly obtained hashed policy, A′ =
BooleanExpr({H(a1), H(a2), ..., H(an)}).

After the execution of the aforementioned operations, we

will now append the document id for the ciphertext (in this

demonstration case, the document id is the ciphertext itself)

to the index of the hashed policy to store it.

These steps are to be repeated as needed for the multiple

users which are to use the system and the multiple protected-

access documents which need to be stored.

Now, how can a system user with a secret key, Dγ , get their

list of available documents given the user’s attached attributes?

Algorithm 6 CP-ABSE GenerateQuery

Require: Private key Dγ ;

Ensure: Query Q = {H(a1), H(a2), ..., H(an)};
γ ← ExtractAttributes(Dγ);

2: Q← {};
for ai in γ do

4: Q.append(H(ai));
end for

6: return Q;

First, the GenerateQuery(Dγ) algorithm will be executed

with the user’s secret key as an input parameter. The generation

of the query itself is based on the set of attributes, γ,

encapsulated in the secret key Dγ .

The set of attributes, γ, is extracted from Dγ (the extraction

method itself is specific to the proposed CP-ABSE scheme)
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TABLE I
FUNCTIONS USED IN THE FORMALIZATIONS AND THEIR MEANING

Notation First operation

HashFunction() Any trapdoor or one-way hash function desired to hide the values

BooleanExpr(set of attributes) An access control policy obtained as a boolean expression over a given set of attributes

EvaluatePolicy(access policy, set of attributes) Function to evaluate whether a given set of attributes satisfies a given access policy

ParsePolicy(access policy) Function to extract the attributes used in a private policy in a set of attributes

ExtractAttributes(CP −ABE private key) Function to extract the attributes encapsulated in a given CP-ABE specific private key

ExtractPolicy(KP −ABE private key) Function to extract the access policy encapsulated in a given KP-ABE specific private key

and each of them are hashed with the same one-way hash func-

tion H used for the attributes in the access policy during the

index creation step to ensure unitary information. The hashed

extracted attributes are next compacted into a set which will be

returned as the search query, Q = {H(a1), H(a2), ..., H(an)}.

Algorithm 7 CP-ABSE Search

Require: Query Q;

Ensure: List of document ids results = {id1, id2, ..., idn};
results← {}

2: for (A′, ids) in index do

if EvaluatePolicy(A′, Q) = TRUE then

4: results.extend(ids);
end if

6: end for

return results;

After successfully generating a query, Q, we can now

search for the encrypted documents which are satisfying Q

by executing the Search(Q) algorithm, which is to return the

document ids (in this demonstration, the ciphertexts) from the

index. The search itself is based on evaluating the hashed

policies indices against query Q, which contains a list with

the user’s hashed attributes.

How would this evaluation work?

The evaluation step is quite trivial, as, having the policy,

A′ = BooleanExpr({H(a1), H(a2), ..., H(an)}), in order

for it to be satisfied the logical expression needs to be TRUE.

And how do we check that having the set of hashed attributes,

Q = {H(a1), H(a2), ..., H(an)}? For each hashed attribute in

the set, we are replacing its appearances in the hashed policy

with the TRUE value. For the rest of the hashed attributes in

the hashed policy which were not found in the set of hashed

attributes given as an input parameter, we are replacing their

appearances with the FALSE value, as them not being in

the set implies that the user does not have them attached to

its secret key, Dγ . After obtaining the policy to be evaluated

under a format such as (TRUE and FALSE) or TRUE, we

are evaluating it using a built-in default boolean eval function.

In case of the evaluation step for a certain indexed hashed

policy returning TRUE, the document ids indexed under the

aforementioned policy will be collected in a set of results.

We will be repeating the step for all the indexes to retrieve all

the document ids which would be viable results for the search

query Q.

Algorithm 8 CP-ABSE Decrypt

Require: Ciphertext ct, public parameters PK, private key

Dγ ;

Ensure: Message m′;

m′ ← Decrypt(ct, PK,Dγ);
2: return m′;

Now, after obtaining the set of results, for each result (the

document id being the actual ciphertext in this case) and we

will be proceeding with the CP-ABE specific decryption algo-

rithm, Decrypt(result, PK,Dγ). The decryption algorithm

takes as input the ciphertext, result, which was encrypted

with an access policy, A, the public parameters, PK, and the

private key of the user, Dγ . It outputs the initially encrypted

document/message, if the set of attributes, γ, encapsulated in

the private key, Dγ , satisfies the access policy A.

Algorithm 9 CP-ABSE Usage Example

GlobalInit();
2: (PK,msk)← Setup() {Global system setup}

γ ← {a1, a2, ..., an};
4: ... {Attribute initialization for system users}

Dγ ← KeyGen(PK,msk, γ);
6: ... {System registration / private key generation for system

users}

Get messages / documents to be encrypted and stored;

8: Define necessary access policies;

ct← Encrypt(m,PK,A); CreateIndex(ct, A);
10: Q← GenerateQuery(Dγ);

results← Search(Q);
12: for result in results do

m′ ← Decrypt(result, PK,Dγ);
14: end for

B. KP-ABSE formalization

Algorithm 10 KP-ABSE GlobalInit

index← [ ][ ]; H ← HashFunction();
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Algorithm 11 KP-ABSE Setup

Require: Security parameter 1λ;

Ensure: Public parameters PK, master key msk;

(PK,msk)← Setup(1λ);
2: return (PK,msk);

For Key Policy Attribute-Based Encryption schemes, the

setup algorithm of the system, Setup(1λ), is formalized sim-

ilarly to the CP-ABE one, with it taking a security parameter,

1λ and outputing the public parameters, PK, and a master

key, msk, known only to the PKG. Likewise to previously

formalized CP-ABSE scheme, we are adding the 2 global

parameters: index and H .

Algorithm 12 KP-ABSE KeyGen

Require: Public parameters PK, master key msk, access

policy A = BooleanExpr({a1, a2, . . . , an});
Ensure: Private key DA;

DA ← KeyGen(PK,msk,A);
2: return DA;

Now, for the key generation algorithm KeyGen (PK,

msk, A) we are keeping the same on as it was for KP-

ABE schemes in general: by taking as input the previ-

ously generated PK and msk and an access policy, A =
BooleanExpr({a1, a2, . . . , an}), the algorithm outputs the

private key, DA, which encapsulates the access policy based

on which it was generated.

Algorithm 13 KP-ABSE Encrypt

Require: Message m, public parameters PK, set of attributes

γ = {a1, a2, . . . , an};
Ensure: Ciphertext ct;

ct← Encrypt(m,PK, γ);
2: return ct;

For KP-ABE based KP-ABSE, the encryption step also

remains the same to the original, with Enc(m,PK, γ) get-

ting as input a document/message, m, a set of attributes,

γ = {a1, a2, . . . , an}, and the public parameters, PK and

returning the ciphertext, ct, generated based on the attributes

given.

Algorithm 14 KP-ABSE CreateIndex

Require: Ciphertext ct, same set of attributes γ =
{a1, a2, . . . , an};
γ′ ← {};

2: for a′i in γ′ do

γ′.add(H(a′i));
4: end for

id← ct;

6: if ∃index[γ′] in index then

index[γ′].append(id);
8: else

index[γ′]← [id];
10: end if

After the encryption step, we are indexing the ciphertext

in the system by executing CreateIndex(c, γ) algorithm,

which is storing the ciphertext at an index generated based

on the same set of attributes, γ, on which the ciphertext

was encrypted. To hide the index values, the attributes are

be hashed with the system defined hash function H and

compacted in a set. Next, we will append the document id

for the ciphertext (again, the document id is the ciphertext

itself) to the index of the hashed attributes set object.

The key generation is to be done for the needed number

of users, and, for the documents/messages to be stored, the

encryption and index creation algorithms are to be executed

for whichever number of documents necessary.

When a search is wanted to be performed over the stored

encrypted documents, the following algorithms will be exe-

cuted:

Algorithm 15 KP-ABSE GenerateQuery

Require: Private key DA;

Ensure: Query Q =
BooleanExpr({H(a1), H(a2), ..., H(an)}), the hashed

policy;

A′ ← ExtractPolicy(DA);
2: γ′ ← ParsePolicy(A′);

Q← A′;

4: for a′i in γ′ do

Q.replace(a′i, H(a′i));
6: end for

return Q;

First, we need to generate the search query based on

the user’s secret key, GenerateQuery(DA). The KP-ABE

secret key encapsulates the access policy attributed to the

user and, in order to generate the query, we will first be

extracting the policy from the key. From the obtained policy,

we will now be extracting the attributes. For each attribute’s

occurrences in the policy, we will be replacing its appearance

with its hashed value, H(ai). Thus, we will be obtaining

a hashed policy, which will be acting as our search query,

Q = BooleanExpr({H(a1), H(a2), ..., H(an)}).
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Algorithm 16 KP-ABSE Search

Require: Query Q;

Ensure: List of document ids results = {id1, id2, ..., idn};
results← {}

2: for (γ′, ids) in index do

if EvaluatePolicy(Q, γ′) = TRUE then

4: results.extend(ids);
end if

6: end for

return results;

Having the query, Q, the user can now perform a search

for the secret documents which are satisfying Q with the

Search(Q) algorithm, which will be returning a list with

the accessible document ids/ciphertexts. The search is based

on evaluating the hashed policy from the query against all

the indices, each of them being a compacted set of hashed

attributes.

When the evaluation for a certain indexed attribute set

returns TRUE, the document ids indexed under it will be

collected in a set of results.

Algorithm 17 KP-ABSE Decrypt

Require: Ciphertext ct, public parameters PK, private key

Dγ ;

Ensure: Message m′;

m′ ← Decrypt(ct, PK,Dγ);
2: return m′;

For each result (with the document id as the ciphertext)

obtained in the results set, the KP-ABE specific decryption

algorithm, Decrypt(result, PK,DA) will be executed. Hav-

ing as input parameters result, which was encrypted with a

set of attributes, γ, the public parameters, PK, and the secret

key of the user, DA, the decryption algorithm outputs the

initially encrypted document/message, if the set of attributes,

γ, satisfies the access policy A, encapsulated in the private

key, DA.

Algorithm 18 KP-ABSE Usage Example

GlobalInit();
2: (PK,msk)← Setup() {Global system setup}

A← BooleanExpr({a1, a2, ..., an});
4: ... {Access policy initialization for system users}

DA ← KeyGen(PK,msk,A);
6: ... {System registration / private key generation for system

users}

Get messages / documents to be encrypted and stored;

8: Define attribute sets;

ct← Encrypt(m,PK, γ); CreateIndex(ct, γ);
10: Q← GenerateQuery(DA);

results← Search(Q);
12: for result in results do

m′ ← Decrypt(result, PK,DA);
14: end for

III. SECURITY

A. CP-ABSE

The initial assumption is that the security of the CP-ABSE

scheme is similar to the CP-ABE scheme on which it is based.

We will further demonstrate that the additional operations

introduced for searchability do not compromise the security

guarantees provided by base CP-ABE. Specifically, we will

sketch the arguments as to why the confidentiality of the

encrypted documents and the privacy of the attributes from

the access policies are preserved.

1) CP-ABE Security Model: The Setup algorithm security

for CP-ABE implies that the algorithm generates the public

parameters, PK, and a master secret key, msk. The security

requirement is that without msk, it is not feasible for adversary

to generate valid private keys for any given attribute set.

The KeyGen algorithm generates a private key Dγ for a set

of attributes γ. The security requirement is that an adversary

with some private keys Dγ1, Dγ2, Dγ3..., Dγk cannot generate

a valid private key for a new attribute set γ′, unless γ′ is a

subset of one of the sets γi where 1 ≤ i ≤ k.

Encryption and decryption security wise, the Encrypt algo-

rithm ensures that a ciphertext ct encrypted under an access

policy A can only be decrypted by a private key Dγ if γ

satisfies A. The security requirement is that an adversary

should not be able to decrypt ct without possessing such a

Dγ .

2) CP-ABSE General Scheme Overview: In addition to the

CP-ABE setup, CP-ABSE introduces an index structure and

a hash function H as system global parameters. Algorithms

wise, it introduces CreateIndex, which is executed after en-

cryption and it indexes the ciphertext using a hashed version of

the access policy; GenerateQuery, which generates queries

by hashing the attributes in the user’s private key; and Search,

which evaluates the hashed query against the hashed policies

in the index and returns available results.

Having these added algorithms, we need to take the follow-

ing security proof components into account:

• The confidentiality of the encrypted documents: Since

the encryption and decryption processes in CP-ABSE are

identical to CP-ABE, the confidentiality of the encrypted

documents relies on the security of the underlying CP-

ABE scheme. Any attack on the confidentiality of CP-

ABSE ciphertexts can be reduced to an attack on CP-

ABE ciphertexts; the index stores only hashed versions

of the access policies and does not reveal any additional

information about the plaintext or the original attributes.

The hash function H should be an irreversible collision-

free hash function, ensuring that the hashed values do not

leak information about the original attributes.

• The privacy of the attributes in the access policies: The

security of the hashed attributes in the index access poli-

cies and queries depends on the hash function H , which

should be chosen to ensure that it is computationally

infeasible to reverse-engineer the original attributes from

their hashed values. The GenerateQuery process uses
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the same hash function H , ensuring that the attributes in

the user’s private key are protected in the same way as

the attributes in the access policies.

• The search operation security: The search operation in-

volves evaluating whether the hashed query satisfies the

hashed policies in the index. This process does not reveal

any additional information about the original attributes or

the plaintext, as it only involves hashed values.

B. KP-ABSE

Similarly to CP-ABSE, the initial assumption is that the

security of the KP-ABSE scheme is the same as it is for the

base KP-ABE scheme. We will demonstrate that the additional

operations introduced to enable searchability do not compro-

mise the security guarantees provided by the underlying KP-

ABE scheme; this will be accomplished by showing that both

the confidentiality of the encrypted documents and the privacy

of the attributes are maintained.

1) KP-ABE Security Model: The security of the Setup

algorithm in KP-ABE ensures that it generates public parame-

ters, PK, and a master secret key, msk. The security condition

is that, without access to msk, it is infeasible for an adversary

to create valid private keys for any access control policy.

For the KeyGen algorithm, it produces a private key DA

corresponding to a specific access policy A. The security

condition here is that even if an adversary has access to private

keys DA1, DA2, DA3, . . . , DAk, they cannot derive a valid

private key for a new access policy A′, unless A′ is logically

equivalent to one of the known policies Ai where 1 ≤ i ≤ k.

In terms of encryption and decryption security, the Encrypt

algorithm guarantees that a ciphertext ct encrypted with a set

of attributes γ can only be decrypted by a private key DA if

the access policy A is satisfied by γ. The security requirement

is that an adversary should not be able to decrypt ct without

having an appropriate DA.

2) KP-ABSE General Scheme Overview: In addition to

the standard KP-ABE setup, KP-ABSE includes an index

structure and a hash function H as global system parame-

ters. Algorithmically, it introduces several new components:

CreateIndex, which is run post-encryption to index the

ciphertext based on a hashed version of the attribute set used

for encryption; GenerateQuery, which produces queries by

hashing the attributes in the user’s access policy contained

in their private key; and Search, which matches the hashed

query against the hashed attribute sets in the index to return

relevant results.

Given the additional algorithms, we must consider the

following security proof components:

• The confidentiality of the encrypted documents: Since the

encryption and decryption processes in KP-ABSE are the

same as in KP-ABE, the confidentiality of the encrypted

documents depends on the security of the underlying

KP-ABE scheme. Any attack on the confidentiality of

KP-ABSE ciphertexts reduces to an attack on KP-ABE

ciphertexts. The index only stores hashed versions of

the attribute sets, ensuring no extra information about

the plaintext or original attributes is revealed. The hash

function H must be an irreversible, collision-free one-

way function to prevent leakage of information about the

original attributes.

• The privacy of the access policies: The security of the

hashed attributes in the index and queries relies on the

hash function H . This function must be chosen such

that it is computationally infeasible to derive the original

attributes from their hashed values. The GenerateQuery

algorithm also uses the hash function H , ensuring that

the access policies in the user’s private key are protected

similarly to the attribute sets in the indices.

• The search operation security: The search operation

involves checking whether the hashed query satisfies

the hashed attribute sets in the index. This evaluation

process only uses hashed values and does not reveal any

additional information about the original attributes or the

plaintext.

In our following work, we plan to formally prove that any

adversary who can break the security of a CP-ABSE or KP-

ABSE scheme with non-negligible probability can also break

the security of the CP-ABE, respectively the KP-ABE on

which it is based, which implies that the security of the ASE

scheme built on top of the ABE scheme with the keywords

acting as attributes idea is at least as strong as the ABE

scheme.

IV. PRACTICAL IMPLEMENTATIONS

The proposed CP-ABSE and KP-ABSE scheme structures

are expected to be generally applicable for all existent ABE

schemes with the addition of the specific index creation,

query generation and search algorithms. In order to test the

feasibility and applicability of the transformations proposed,

several existent implementations for both CP-ABE and KP-

ABE were extended with the aforementioned steps in order

for them to become working ASE schemes.

The batch of initial implementations were taken from the

open source toolbox library Charm [15], used for prototyping

cryptosystems based on a series of provided schemes. Its

implementation is done in Python by representatives of Johns

Hopkins University as part of their Advanced Research in

Cryptography laboratory [16].

From the ABENC [17] schemes package of the library,

several schemes were successfully adapted by having the 3

algorithms added to them. The transitioning from ABE to ASE

with the 3 steps has not impacted any of the functionality

available for the implemented ABE schemes, including user

attribute revocation, user access policy adjustments, attribute

accountability hiding, policy accountability hiding and other

bonus functionalities of the given ABE schemes.

For demonstrative implementations, SHA256 was used was

used as the one-way hash function, due to its efficiency and the

fact that it is collision-free, but SHA256 hashes do not include

the salting element. That makes the hashes more susceptible

to dictionary-based cyber attacks [18]. Thus, while SHA256 is

more suitable for applications that require frequent interaction,
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bcrypt [18] is a better solution for safely storing the hashed

policies at the expense of efficiency. The proposed extensions

are not limiting to a certain hash function, policy structure or

index secret document storage method and are meant to be

a comprehensible base for the further development of ASE

schemes, based on either CP-ABE, or KP-ABE schemes.

Taking that into consideration, the following schemes from

the library were successfully adapted and tested:

• DAC-MACS [9], a multi-authority CP-ABE scheme with

efficient decryption and authority revocation implementa-

tions, proposed by Kang Yang, Xiaohua Jia, K. Ren and

B. Zhang;

• The next scheme proposed by Kang Yang, Xiaohua

Jia, the Expressive, Efficient, and Revocable Data Ac-

cess Control for Multi-Authority Cloud Storage CP-ABE

scheme [10];

• The KP-ABE lightweight attribute-based encryption

scheme for the Internet of things [11], proposed by

Xuanxia Yao, Zhi Chen and Ye Tian;

• From Attribute Based Encryption with Privacy Protection

and Accountability for CloudIoT [12], proposed by Jiguo

Li, Yichen Zhang, Jianting Ning, Xinyi Huang, Geong

Sen Poh and Debang Wang, the first proposed pairing-

based scheme for policy-hiding CP-ABE;

• One of the first proposed CP-ABE schemes, in

Ciphertext-Policy Attribute-Based Encryption [13], by

John Bethencourt, Brent Waters; this scheme is a basic

pairing-based CP-ABE scheme;

• The Rouselakis - Waters Efficient Statically-Secure

Large-Universe Multi-Authority Attribute-Based Encryp-

tion scheme [14], based on a bilinear pairing group of

prime order;

The added algorithm which needed the most scheme spe-

cific implementation was the GenerateQuery one, given the

different formats of the private keys employed by each adapted

scheme.

The development environment utilized for this project was

PyCharm Community 2024 [19] with Python 3.12, running

within a Parallels-managed virtual machine [20] on Ubuntu

22.04. The implementations were developed as prototypes,

leveraging the open-source nature of the base ABE implemen-

tations designed for educational purposes in Python, which

inherently did not prioritize maximum time efficiency.

Benchmark tests conducted post-adaptation indicated incon-

sistencies in execution times across multiple trials of the same

code. Notably, there were instances where the more complex

ASE implementations executed faster than expected, suggest-

ing the influence of external factors related to the development

environment. Consequently, these benchmark results should be

interpreted with caution and are not wholly reliable.
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VI. CONCLUSION

The formalization of transforming Attribute-Based Encryp-

tion (ABE) schemes into Asymmetric Searchable Encryp-

tion (ASE) schemes is an important step forward in the

field of cryptography. By treating attributes in ABE as key-

words in ASE, efficient search capabilities are introduced, all

while preserving the robust security properties of ABE. This

theoretical framework for Ciphertext-Policy Attribute-Based

Searchable Encryption (CP-ABSE) and Key-Policy Attribute-

Based Searchable Encryption (KP-ABSE) demonstrates the

feasibility and practicality of this approach, as evidenced by

our successful adaptation of several existing ABE schemes.

The importance of this formalization lies in its ability

to enable more secure and flexible search functionalities in

encrypted databases, which is more and more necessary for

multi-user environments with diverse access control require-

ments. Our analysis shows that the introduction of the index,

query generation, and search algorithms does not compromise

the confidentiality of encrypted documents or the privacy

of access policies and does not introduce high performance

overhead.

Moving forward, we aim to provide the formal security

proof for both CP-ABSE and KP-ABSE schemes and further

refine and optimize the three added steps: CreateIndex,

GenerateQuery, and Search. Our goal is to enhance their

efficiency, making them even more suitable for practical

applications. Additionally, we plan to develop two specific

algorithms based on this formalization: one for Key-Policy

Attribute-Based Searchable Encryption (KP-ABSE) and one

for Ciphertext-Policy Attribute-Based Searchable Encryption

(CP-ABSE); and test performance benchmarks on relevant

data. These algorithms will leverage the strengths of their

respective ABE schemes, providing tailored solutions for

different use cases and further advancing the capabilities of

searchable encryption.
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