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Abstract—Docking of a ligand onto the binding pocket of its 
protein target, designated as the molecular docking problem, is a 
very important method for structure-based drug design.  We 
have  implemented  a  generic  pose  generation  method  for 
molecular  docking  by  solving  the  quadratic  unconstrained 
binary optimization (QUBO) problem with the Fujitsu digital 
annealer.  In combination with the AutoDock 4 scoring function, 
the success rate for predicting the binding poses to be sufficiently 
close to their experimental binding poses, namely, with the root 
mean squared deviation (RMSD) less than 2  Å, was 84.3 %, 
when benchmarking against part of the PDBbind core set (242 
protein-ligand complexes).  To our best knowledge, this is the 
first implementation of molecular docking that conforms with 
the QUBO formalism demonstrating a performance comparable 
with the conventional methods.

Index Terms—molecular docking, quadratic unconstrained 
binary optimization, QUBO, pose generation, AutoDock

I. INTRODUCTION

OLECULAR  docking  is  an  essential  method  for 
structure-based drug design and virtual  screening of 

chemical libraries for finding chemical skeletons for creating 
novel chemical entities.  Docking of a ligand onto the binding 
pocket of its protein target, generally consists of two parts: 
pose generation and binding affinity evaluation. In the first 
step, a myriad of ligand conformations at the protein surface 
(usually at the binding pocket) need to be generated, and these 
conformations should include the ones that are very close to 
the  experimentally  determined  binding  poses.  Typical 
experimental  methods  are  protein  X-ray  crystallography, 
nuclear  magnetic  resonances,  and  cryogenic  electron 
microscopy.  In the second step, the binding affinities of these 
ligand conformations at the protein binding pocket will be 
evaluated with a scoring function (or a free energy functional), 
and the poses with best binding affinities should be very close 
the  experimental  binding  poses.   It  is  considered  as  a 
successful molecular docking when the second step can be 
achieved, i.e., the root mean squared deviation (RMSD) of the 
predicted binding pose with the best score (binding affinity) 
from the experimental binding pose is less than, e.g., 2 Å.  

M

Quadratic  unconstrained  binary  optimization (QUBO), 
sometimes  also  known  as unconstrained  binary  quadratic 
programming (UBQP),  is  a  class  of  combinatorial 
optimization problems with a huge variety of applications. 

QUBO is  known as  an NP hard problem.   Many classical 
problems from theoretical computer science, e.g., maximum 
cut, graph  coloring and  the partition  problem,  have  been 
formulated into QUBO.  Due to its close connection to Ising 
models,  QUBO constitutes a major class of computational 
problems for adiabatic quantum computation, where it can be 
solved through a physical process named quantum annealing. 
 D-Wave and Fujitsu  are  two well-known companies  that 
strive to develop computers to efficiently solve the QUBO 
problems with quantum annealer and quantum-inspired (or 
physics-inspired) annealers, respectively.    Although many 
important applications have been embedded into the QUBO 
formulism, molecular docking is still not yet implemented and 
it is not clear whether such an implementation can indeed lead 
to practically useful applications.    

II. METHODS

Many important problems in molecular biology, including 
protein  folding,  protein-protein  binding,  protein-DNA  (or 
RNA) binding, and protein-ligand binding, are problems of 
searching for free energy minimum, from the perspective of 
statistical  thermodynamics.  The  problem  of  finding  the 
minimum value in one dimension can be easily solved by, e.g., 
the Newton-Raphson method, etc. The difficulty of finding the 
global minimum exponentially escalates as the dimensionality 
increases.  Compared  with  algorithms  that  have  been 
developed for decades, the emerging hardware such as those 
developed by D-Wave and Fujitsu have the opportunity to find 
solutions with lower function values at high dimensions with 
dramatically less time than the conventional methods.  The 
QUBO formulism generally reads: 

    (1)

In Equation (1), X has n binary variables, and J, H and X 
are (n × n), (1 × n) and (n × 1) matrices respectively. Given the 
element values  Jij and Hi of the  J and  H  matrices, QUBO 
solvers can be used to find a set of solutions to X that minimize 
the value of F(X). 
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In this  work we construct  a  QUBO model  for  finding 
binding poses in molecular docking. In a 3-D lattice covering 
the binding pocket, QUBO solvers should obtain a solution Xi

 of 1, to indicate a ligand atom will locate as this lattice point. 
Compare the distribution of ligand atoms and Xi to obtain the 
possible  binding  positions  of  ligand.  In  addition  to  using 
Fujitsu DAU3 as QUBO solvers, we can also PyTorch to solve 
the QUBO model.  

III. RESULTS

   Our major results can be seen from Figure 2 and Figure 3. 

IV. DISCUSSION

From  our  results  it  indicates  that  with  proper 
implementation  and  suitable  parameters,  it  is  possible  to 
embed the molecular docking problem into the QUBO format. 
Currently  our  implementation  is  largely  guided  by  our 
intuition  and  our  prior  understandings  of  the  molecular 
docking  problem,  and  these  background  and  experiences 
greatly  accelerate  the  progress  of  this  work.    It  may  be 

possible to employ some machine learning approaches or large 
language models, such as newer generation of ChatGPT, to 
translate the problem of interest into the QUBO formulism. 
However, it may take some more  time to witness this to be a 
reality.   

V. CONCLUSION

Molecular docking is an essential workhorse for structure-
based drug design and virtual screening of chemical libraries 
for finding chemical skeletons for creating novel chemical 
entities.  Emerging hardware such as those developed by D-
Wave and Fujitsu have a great opportunity to find solutions 
with  lower  function  values  at  high  dimensions  with 
dramatically less time than the conventional methods. To our 
best knowledge, this is the first implementation of molecular 
docking  that  conforms  with  the  QUBO  formalism 
demonstrating  a  performance  comparable  with  the 
conventional  methods.   It  can be envisioned that  such an 
approach could evolve to become to more efficient and more 
accurate  method  for  molecular  docking  and  thereby 
accelerate the drug discovery process.   
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Figure 2:  (a) Lattice points with Xi = 1, as determined by Fujitsu DAU3. 
Represented as small round spheres.  (b)  The grey line shows that F(X) 
decrease as the number of epoch increases.  The black line shows the 
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minimum values determined by Fujitsu DAU3 and PyTorch. 

Figure 1:  (a) Lattice points near to the binding pocket of the protein in the 
PDB  ID  1a30.   The  protein  conformation  was  shown  in  ribbon 
representation, colored in cyan.  In the region of the protein binding 
pocket, the grey round points are the lattice points  Xi.  (b) (Up) The 
distance between the non-hydrogen covalent bonds are between 1.25 Å 
and 1.65 Å. (Middle) The maximum distance between two lattice points 
Dij,max is less than 1.25 Å.   Lattice points i and j cannot co-exist inside an 
atom.   (Down) The minimum distance between two lattice points Dij,min 

is larger than 1.65 Å.  Lattice points i and j cannot form the covalent bond. 

Figure 3:  Resulting using (a) FujitsuDAU3, (b) PyTorch (p, Erep) = (2, 
20), (c) (4, 40) and (d) (5, 30)  for solving QUBO.  The fraction of  RMSD
bfe_min < 2.0 Å (blue line), < 1.5 Å (red line)、< 1.0 Å (grey line) and < 0.6 
Å (yellow line)。 
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