
Analysis of end-to-end test automation tools based

on the examples of Selenium WebDriver and

Playwright

Agnieszka Antonczak, Beata Bylina

Institute of Computer Science,

Marie Curie-Sklodowska University

Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Email: agnieszka.w.antonczak@gmail.com, beata.bylina@mail.umcs.pl

Abstract—In the digital era, ensuring software reliability and
effectiveness is crucial for business operations and daily life.
This article analyzes and compares two prominent end-to-end
test automation tools, Selenium WebDriver and Playwright. By
examining their architecture, functionality, and browser inter-
action, the study provides practical guidance on tool selection.
It includes theoretical foundations of testing, the importance of
manual testing, and a detailed analysis of both tools. The findings
suggest that Playwright generally offers faster test execution,
particularly in headless mode, and simpler configuration. In
contrast, Selenium benefits from a mature community and
extensive documentation. The choice of tool should be based on
project-specific needs, with Playwright favored for speed and
simplicity, and Selenium for community support and integration
capabilities.

I. INTRODUCTION

I
N THE digital age, where technology is an integral part of

everyday life, software quality and reliability are crucial

for both business and personal efficiency. In response to

these needs, end-to-end (E2E) testing has gained prominence

as a method of software verification aimed at ensuring that

IT systems perform to users’ expectations under real-world

conditions. By simulating the end user’s interactions with an

application, E2E testing allows for comprehensive verification

of a system’s functionality [6]. Automated software testing

tools are critical in performing extensive system tests, reducing

errors that could lead to financial losses, and improving

reliability and performance [8]. Test automation, using tools

such as Selenium WebDriver and Playwright, offers efficiency,

speed and accuracy that are difficult to achieve with manual

approaches. A comparative analysis [7] reveals that Selenium,

a widely adopted open-source tool, offers extensive support

for multiple browsers and platforms, which enhances its utility

for diverse testing scenarios. The study highlights Selenium’s

flexibility and robustness, making it a prevalent choice among

testers for complex web application environments. Conversely,

commercial tools like HP QuickTest Professional (now HP

UFT) provide strong integration capabilities with enterprise

environments, offering built-in object repositories and compre-

hensive technical support, which can be crucial for continuous

integration and extensive test management. Another study [4]

underscores that while no single tool can meet all testing

requirements, TestComplete ranked highest in effectiveness

among the evaluated programs, suggesting the importance of

aligning tool capabilities with team skills and project needs.

Similarly, the article by E. Pelivani and B. Cico [2] com-

pares Selenium with Katalon Studio, highlighting the strengths

and weaknesses of both tools in various testing scenarios.

This study underscores the necessity of selecting the right

tool based on specific project requirements, further validating

the approach taken in our current comparative study between

Selenium WebDriver and Playwright.

This article focuses on the analysis of Selenium WebDriver

and Playwright tools in the context of their use for end-to-

end test automation, motivated by the absence of comparative

studies between these two tools, especially given the recent

introduction of Playwright in 2020. Playwright has been

increasingly mentioned as a potent automation tool in the tech

community, prompting an evaluation of its capabilities relative

to the well-established Selenium WebDriver.

The article begins with an introduction to Selenium, focus-

ing on its architecture and how Selenium WebDriver com-

municates with browsers. It then moves on to Playwright,

describing it as an advanced tool capable of complex web

application testing across browsers and platforms. The article

continues with a discussion of developing 15 detailed test cases

for an online pet store, using the Page Object Model design

pattern and tools such as Maven and TestNG. This is followed

by a comparative analysis of test execution times, showing

that Playwright generally has shorter test execution times.

The stability of tests in headless and non-headless modes is

investigated. Personal experiences with the ease of use and

configuration of both tools are shared. The availability of

documentation, community support and educational resources

for both tools is compared. Differences in extensibility and

integration capabilities are described, focusing on how each

tool can be extended and integrated with other systems. The

article concludes with a summary of the findings, offering final

thoughts on the strengths and weaknesses of Selenium Web-

Driver and Playwright, and providing recommendations for

choosing the right tool based on specific project requirements

Position Papers of the 19th Conference on Computer

Science and Intelligence Systems (FedCSIS) pp. 1–8

DOI: 10.15439/2024F3747

ISSN 2300-5963 ACSIS, Vol. 40

©2024, PTI 1 Thematic Session: Information Systems Management



and team expertise.

II. SELENIUM

Selenium WebDriver [14] is an advanced browser test

automation tool that simulates user interactions with a web

application. The development of Selenium, initiated in 2004

by Jason Huggins, was a response to the limitations of

manual user interface testing. Originally an internal project

of ThoughtWorks, it quickly gained popularity and became

open-source, allowing it to evolve rapidly and adapt to new

web browser technologies [1]. Selenium’s architecture is

characterized by its modularity and ability to integrate with

various programming languages such as Java, C#, Python,

which significantly extending its versatility and accessibility.

The core component, Selenium WebDriver, communicates

directly with the browser using dedicated drivers, such as

ChromeDriver for Google Chrome or GeckoDriver for Firefox.

This direct communication allows Selenium to accurately

mimic user behavior, from clicks and text entry to advanced

interactions with various web elements. Selenium enables tests

to be run on a wide range of browsers, which is crucial for

cross-browser compatibility verification of web applications.

Selenium is one of the prominent automated GUI testing

tools, widely used for its capability to test web applications

across different browsers [8]. Its modularity also allows tests

to be easily scalable and integrated into existing frameworks,

significantly improving development and testing processes in

dynamically changing production environments. Setting up a

test environment with Selenium is relatively straightforward,

typically involving the setup of appropriate browser drivers

and selecting a development environment for executing test

scripts. This aspect makes Selenium an attractive solution for

organizations with varying degrees of technical sophistication,

allowing even less technical users to effectively design and

execute automated tests [5].

III. PLAYWRIGHT

Playwright [12], a state-of-the-art browser test automation

tool, has been introduced by Microsoft as a framework that

provides comprehensive capabilities for web application test-

ing. The development of Playwright is a response to the

growing need for end-to-end testing that can be executed reli-

ably and reproducibly across multiple platforms and browsers

simultaneously. Since its debut, Playwright has gained recog-

nition for its ability to work with Chromium, Firefox, and

Safari, thus offering extensive cross-browser testing capabil-

ities. Playwright’s architecture is built around the idea of a

"browser context," which enables the simulation of multiple

sessions in a single browser instance, which is particularly

useful for testing scenarios that depend on user sessions. In

addition, Playwright integrates with a variety of development

and testing environments providing developers with the flex-

ibility to choose tools tailored to their specific projects. It is

also distinguished by its support for programming languages

such as JavaScript, Python, as well as C# and Java, which

accounts for its versatility. Setting up a test environment

with Playwright is intuitive and mainly involves installing the

appropriate npm package or equivalents in other programming

languages. Playwright provides custom drivers for browsers

that are automatically managed by the framework, eliminating

the need to manually configure and update browser drivers. In

terms of testing capabilities, Playwright offers features such as

screenshot generation, video recording of test sessions, and ad-

vanced context and session management. These features make

it uniquely suited to the dynamically changing environment of

modern web applications, where there are often requirements

for testing application state-dependent functionality and user

interaction.

IV. TEST DATA

The analysis utilizes the example of the online pet store

https://petstore.octoperf.com to provide a practical context for

this comparison. Fifteen detailed test cases were created for

this store, which were used to implement automated tests

using both tools. The tests were written in Java, utilizing

Maven [11] for dependency management and TestNG [13]

for test management, which streamlined the testing process

and enhanced the execution framework. The Page Object

Model (POM) design pattern was used to implement the tests,

making the test scripts more readable and easier to maintain.

Figure 1 illustrates the interrelationships between a defined test

case titled "Verification of login process with incorrect data,"

its implementation within an automated test using Selenium

WebDriver, and the effect of the test, as observed on the user

interface of the pet store. These elements are interconnected

by arrows, allowing you to follow the flow from the test

specification to the specific system behavior. The test case

shown in the figure is for a login process using incorrect

credentials. It includes the following steps: accessing the

site (orange and red arrows), navigating to the login section

(green arrow), entering invalid credentials (purple arrow) and

attempting authentication (blue arrow) with the expected result

of a login error message (pink arrow).

As part of the article, fifteen test cases were developed.

Each test case includes a detailed description of the purpose

of the test, the prerequisites necessary for its execution, the

detailed specified test activities and expected results, which

provides a comprehensive approach to verify the functionality

of the system. As noted by Umar and Chen, the creation of

detailed and comprehensive test cases is fundamental to the

effectiveness of automated testing frameworks, which we have

applied in our analysis of the online pet store [3]. In addition,

each test case is appropriately titled:

1) Verification of the login process with correct data

2) Verification of the login process with incorrect data

3) Successful creation of a user account

4) Logging out

5) Adding a product to the shopping cart without logging

in

6) Removing a product from the shopping cart without

logging in

7) Searching for a product from the search bar

2 POSITION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Fig. 1. Overview of the test case, automated test and login form view

8) Checking the display of the product image

9) Changing the quantity of a product in the shopping cart

10) Attempting to make a purchase without logging in

11) Making a purchase after logging in

12) Making a purchase with indicating a different delivery

address

13) Return to the main menu from the category level

14) Check the display of detailed product information

15) Verifying the absence of errors with an empty search

field

V. TEST EXECUTION TIME

The research involved benchmarking the execution time of

a set of 15 end-to-end tests using Selenium and Playwright

tools. Automated tests were created based on test cases. The

execution time of each test was measured directly in the

Intellij IDEA environment — using the built-in functionali-

ties of this IDE to monitor the duration of tests. The tests

were executed on three major web browsers in the following

versions: Google Chrome 120.0.6099.225 (Official Version)

(64-bit), Microsoft Edge 121.0.2277.83 (Official Version) (64-

bit) and Mozilla Firefox 122.0 (64-bit), in both standard (non-

headless) and headless modes. The tests were performed on

a computer running Windows 10 Home, equipped with an

Intel(R) Core(TM) i5-6300HQ CPU @ 2.30GHz at 2.30GHz,

with 16.0GB of RAM installed and a 64-bit, x64-based system.

The overall analysis of the data shows shorter test execution

times for the Playwright tool compared to Selenium in both

modes. Detailed results for the Google Chrome browser in

non-headless mode are shown in Figure 2, where we observe

a reduction in execution time by Playwright, especially in test

cases number 4, 11 and 12. Observations for the Microsoft

BEATA BYLINA, AGNIESZKA ANTOŃCZAK: ANALYSIS OF END-TO-END TEST AUTOMATION TOOLS 3



Fig. 2. Execution time of individual tests on Chrome browser (non-headless)

Fig. 3. Execution time of individual tests on Edge browser (non-headless)

Edge browser, illustrated in Figure 3, also suggest a shorter

execution time for Playwright. An analysis of the results for

the Mozilla Firefox browser, shown in Figure 4, also indicates

an overall time advantage for Playwright over Selenium.

However, test cases 1, 5, 6, 8, 9, 10 and 14 note that Selenium

performs comparably or slightly better. The differences in test

execution results between the tools indicate the importance

of considering specific test conditions and scenarios when

evaluating the performance of these tools.

In addition, analyzing the performance of tools in headless

mode provides additional perspectives on their performance.

As shown in Figure 5, for the Google Chrome browser in

headless mode, Selenium showed longer test execution times,

especially in test cases 3, 4, 11 and 12. Similar trends were

observed for the Microsoft Edge browser, where Selenium also

took longer to execute tests, as illustrated in Figure 6.

In contrast, Figure 7 illustrates the results for Mozilla

Fig. 4. Execution time of individual tests on Mozilla browser (non-headless)

Fig. 5. Execution time of individual tests on Chrome browser (headless)

Fig. 6. Execution time of individual tests on Edge browser (headless)

Firefox in headless mode, which do not show an equally clear

advantage for either tool. Although in some test cases, such

as No. 6 and No. 9, it was Playwright that recorded longer

execution times, in other cases the results of both tools are

comparable. This indicates the need for a deeper analysis of

the specific conditions under which the tools were tested, and

potential optimizations in the test setup. These observations

highlight that while Playwright generally shows better time

performance in headless mode, the performance differences

are dependent on the specific execution environment and can

vary by browser and test scenario. Such variation in results

underscores the importance of matching the test tool to the

project’s specifications, and shows that no tool is a one-size-

fits-all solution.

Analyzing the overall execution times of all tests, we

observe that Playwright performs better in both headless and

standard (non-headless) modes for all tested browsers. The

Fig. 7. Execution time of individual tests on Mozilla browser (headless)

4 POSITION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Fig. 8. Execution time for all tests in non-headless mode

Fig. 9. Execution time for all tests in headless mode

average execution times, calculated from the three test calls,

are shown in two graphs, each of which provides additional

information about the effectiveness of the test tools.

In Figure 8, showing the results for non-headless mode,

it can be seen that Playwright shows a significant advantage

over Selenium. In particular, for the Google Chrome browser

Playwright was 46% faster, for Microsoft Edge a 28% speedup

was achieved, and for Mozilla Firefox a 19% speedup was

achieved. These results demonstrate Playwright’s superior

performance in a typical browser environment, where user

interactions are simulated in a full user interface.

Figure 9 illustrates the results for headless mode, where

the differences in execution time are even more noticeable. In

this scenario, for the Mozilla Firefox browser, Playwright was

found to be faster by as much as 51% compared to Selenium, a

significant time advantage of 40 seconds. For Microsoft Edge,

the difference was 47%, while for Google Chrome Playwright

was 14% faster. Such results in headless mode, where tests are

performed without a graphical user interface, may indicate that

Playwright is better optimized for performance and resource

management.

The conclusions of the analysis indicate that the Playwright

tool may offer better performance in terms of test execution

time compared to Selenium, which may be important when

choosing the right test automation tool for projects with limited

time resources.

VI. TEST STABILITY

The tests were run in two modes: headless and non-headless.

In non-headless mode, all tests were successful in each of

the ten run cycles. In headless mode, on the other hand,

instability was observed in the case of Playwright, where test

8 (concerning the display of the product image) failed an

average of four times, regardless of the browser used. It is

worth noting that in the case of Selenium this problem did

not occur, suggesting differences in how the two tools handle

rendering of page elements.

An interesting aspect is that regardless of the tool and

mode, there were cases where tests failed due to errors in the

application itself, rather than the testing tool. For example, a

BEATA BYLINA, AGNIESZKA ANTOŃCZAK: ANALYSIS OF END-TO-END TEST AUTOMATION TOOLS 5



user registration test using random data revealed a problem

in the handling of the ”Country” field, where entering a

country name longer than 20 characters prevented registration.

This indicates the value of automated testing in identifying

application errors, regardless of the tool used.

The results show a negligible difference in test stability be-

tween Playwright and Selenium in headless mode. A possible

reason for Playwright’s problems could be the way the tool

handles element rendering, which requires further research. At

the same time, these observations underscore the importance

of running tests in different configurations to better understand

the limitations and potential problems associated with test

automation tools.

VII. EASE OF USE AND CONFIGURATION

In terms of our experience with Selenium, our first inter-

action with Playwright resulted in some interesting insights.

From a user’s perspective, both tools presented ease of im-

plementation; however, Playwright seemed to offer greater

simplicity, especially in the aspect of browser configuration. A

differentiating element was the release of the user from having

to worry about browser version compatibility and the process

of downloading drivers, which was important in the case of

Selenium, particularly in its third version.

It should be noted, however, that these perceptions may

have been shaped by the sequence of tool usage — with

initial use of Selenium, followed by adaptation of existing

tests to the Playwright environment. It is possible that the re-

implementation of the tests ran with greater efficiency and

fluidity. The initial configuration for both Selenium and Play-

wright is relatively similar, but there are significant differences,

especially when considering different versions of Selenium.

Selenium 3 requires downloading and configuring the ap-

propriate drivers for each browser, in addition to one added

dependency. Example 7.1 shows the configuration code for

the Chrome browser. With Selenium 4, on the other hand, the

process is somewhat simplified, as there is no need to manually

download browser drivers. However, it is required to add an

additional dependency — WebDriverManager. Nonetheless,

the number of lines of code remains similar, as you can see

in the example of 7.2.

Unlike Selenium, Playwright does not require adding ad-

ditional dependencies or manually configuring drivers, which

greatly simplifies the configuration process. Implementing the

same goal in Playwright requires only one line of code as you

can see in the example 7.3.

In summary, both Selenium and Playwright offer satisfying

experiences for users with varying levels of experience. Per-

sonal observations suggest a preference toward Playwright’s

greater intuitiveness, primarily due to its simplified browser

configuration. However, it should be stressed that these conclu-

sions are subjective in nature and may be partially determined

by the order in which these tools are used. An analysis of

the number of lines of code needed to execute tests shows

Playwright’s advantage. For Selenium, the number of lines

of code is about 2,300 for Selenium 3 and remains similar

for Selenium 4, despite the ease of driver management. In

comparison, Playwright requires only about 1,700 lines of

code.

VIII. COMMUNITY AND SUPPORT

In the digital age, where software development is happening

at a rapid pace, community support and the availability of

learning resources are becoming key factors in the selection

of test automation tools. An analysis of the tools from the

standpoint of documentation availability, size and activity of

the community, support for new users, and training resources

reveals significant differences between them.

Selenium, which has been around since 2004, has estab-

lished itself as one of the most mature tools in the test

automation field. Its documentation is not only extensive, but

also regularly updated, with numerous examples to help users

understand various aspects of the tool. This maturity is also

reflected in the size and activity of the community, which is

evident in forums, newsgroups and social media. Selenium is

also a leader in educational resources, with numerous online

courses, tutorials and webinars, reflecting its long presence in

the market. On the Udemy platform, the number of courses

on Selenium is 1,881, which far exceeds those dedicated to

Playwright, of which there are 126 [15, 16].

On the other hand, Playwright, despite being a newer player

on the market, has gained a rapidly growing community.

Its documentation, while less extensive than Selenium’s, is

well organized and includes numerous examples. Playwright

also stands out for its development activity, as evident in the

number of commits on GitHub, surpassing those for Selenium

in 2023 [9, 10]. Despite the smaller number of educational

resources available, Playwright is rapidly gaining popularity,

indicating its future potential.

In terms of online presence, a search for Selenium brings up

significantly more results than Playwright, reflecting its long-

standing presence and established position in the industry.

Similarly, on Stack Overflow, the number of discussions

and questions about Selenium far exceeds those devoted to

Playwright.

IX. EXTENSIBILITY AND INTEGRATION

Selenium and Playwright offer significant integration capa-

bilities with a variety of development tools and environments.

Selenium, being a mature tool, is well-established among

developer tools, offering integration with popular database

management systems, reporting tools and version control sys-

tems. Playwright, while newer to the market, also demonstrates

impressive integration capabilities, especially with modern

development environments and frameworks. Both tools feature

support for multiple programming languages. Selenium has

traditionally supported languages such as Java, C#, Python,

which contributes to its versatility. Playwright, on the other

hand, initially focused on Node.js, has also extended its

support to other languages, including Java and Python, which

increases its appeal in development environments.

6 POSITION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Example 7.1 (Java): Driver configuration in Selenium 3

System.setProperty("webdriver.chrome.driver", LocalWebDriverProperties.getChromeWebDriverLocation());

ChromeOptions options = new ChromeOptions();

options.addArguments("--remote-allow-origins=*");

Example 7.2 (Java): Driver configuration in Selenium 4

WebDriverManager.chromedriver().setup();

ChromeOptions options = new ChromeOptions();

options.addArguments("--remote-allow-origins=*");

Example 7.3 (Java): Driver configuration in Playwright

browser = pw.chromium().launch(new BrowserType.LaunchOptions().setHeadless(false));

Example 7.4 (Java): Adding the ability to record tests in Playwright

context = browser.newContext(new Browser.NewContextOptions().setRecordVideoDir(Paths.get("videos/")));

Playwright is distinguished by the simplicity of using built-

in tools, such as screen recording, which is accomplished

through short code snippets, which is represented by the ex-

ample 7.4. This capability significantly simplifies the process

of documenting tests and analyzing their progress.

Such solutions built into Playwright minimize the need to

look for external tools and speed up the configuration process.

On the other hand, Selenium, although it may require the

use of external tools for some advanced features such as screen

recording, offers better extensive documentation, making it

easier to integrate these tools. The availability of extensive

documentation and a user community often makes adding

and configuring external tools in Selenium more intuitive

and less time-consuming. The choice between Selenium and

Playwright should be dictated by the specific needs of the

project and the preferences of the development team. Play-

wright offers simplicity and speed of configuration with its

built-in tools, while Selenium provides greater flexibility in

integrating external tools through better documentation and

community support.

X. CONCLUSION

The present work aimed to thoroughly analyze and compare

two end-to-end test automation tools, Selenium WebDriver and

Playwright. In pursuit of this goal, a series of comparative tests

were conducted, focusing on aspects such as test execution

time, stability, ease of use, configuration and integration capa-

bilities with other tools. Fifteen test scenarios were developed

and implemented, which included test automation for an on-

line pet store, available at https://petstore.octoperf.com/, using

Java. These scenarios involved key store functionalities, such

as logging in, logging out and placing orders, which allowed

a deeper evaluation of the performance and effectiveness of

Selenium WebDriver and Playwright tools under real-world

usage conditions. The execution of these test tasks was an

integral part of the research, allowing a direct comparison of

the tools in question in terms of their suitability for end-to-end

test automation.

According to the study, Playwright generally offers faster

test execution times compared to Selenium, which is partic-

ularly evident in headless mode. This time advantage can be

significant in projects where time constraints are crucial. As

shown in Table I, Playwright completed the test suite in 2

minutes and 4 seconds, whereas Selenium took 2 minutes and

38 seconds. In terms of test stability, both tools demonstrated

a high level of reliability, although Playwright tended to be

unstable in specific scenarios in headless mode, as indicated

by the one false negative test out of 15, while Selenium had

none.

As for ease of use and configuration, Playwright seemed

to offer a simpler approach, especially in terms of browser

configuration. This is reflected in the number of lines of

code required for the project, with Playwright needing 1700

lines compared to Selenium’s 2300 lines, suggesting a more

efficient and streamlined setup. However, Selenium, with its

maturity and community support, maintains a strong position,

offering rich educational resources and better documentation.

In terms of integration with other systems, both tools present

extensive capabilities, however Selenium stands out with better

documentation and support, making it easier to use external

libraries.

Based on the analysis, I recommend choosing a test automa-

tion tool based on the specific requirements of the project.

Playwright may be preferred in projects where short test

execution times and simple configuration are a priority, while

Selenium will be a better choice in situations where rich

community support, high configuration flexibility and the

ability to integrate with external tools are key.

There are a number of opportunities for further devel-

opment of this topic. Future research could focus on an

extended comparison of the performance of the two tools

in different environments and applications, including more

complex testing scenarios. In addition, analysis of the long-

term stability and scalability of these tools in large software

projects could provide more valuable information. It’s also

worth exploring how developments in technologies such as

artificial intelligence could affect the future of test automation,

which could open up new perspectives in the field.

In conclusion, although both tools — Selenium WebDriver

BEATA BYLINA, AGNIESZKA ANTOŃCZAK: ANALYSIS OF END-TO-END TEST AUTOMATION TOOLS 7



TABLE I
COMPARISON OF SELENIUM WEBDRIVER AND PLAYWRIGHT BASED ON KEY CRITERIA

Criteria Selenium WebDriver [14] Playwright [12]

Browser compatibility Chrome, Safari, Firefox, Edge Chromium, Safari, Firefox, Edge

Programming language support Java, JavaScript, Python, Ruby, C# Java, Node.js, Python, .NET

Cost Open source, free to use. Open source, free to use.

Operating System compatibility Windows, Linux, and macOS Windows, Linux, and macOS

Total test execution time 2 Minutes 38 Seconds 2 Minutes 4 Seconds

False negative tests 0/15 1/15

Lines of code in project 2300 1700

Number of courses on Udemy [15, 16] 1881 126

Number of threads on StackOverflow [17, 18] 57696 3213

and Playwright — have their strengths and weaknesses, the

choice between them should always be made taking into

account the specific needs and limitations of the project. Umar

and Chen in their study conclude that the success of automated

testing projects heavily relies on the appropriate selection of

testing tools and frameworks, a perspective that our compara-

tive study of Selenium WebDriver and Playwright supports [3].

The research and analysis carried out provides valuable input

to the evaluation of these tools, and the conclusions drawn

from this work can be helpful in deciding on the appropriate

test automation tool.

REFERENCES

[1] A. Holmes, M. Kellogg, Automating functional tests using Selenium,
2006, doi: 10.1109/AGILE.2006.19

[2] E. Pelivani and B, Cico A comparative study of automation testing tools

for web applications, 2021 doi: 10.1109/MECO52532.2021.9460242.

[3] M. A. Umar, Z. Chen, A study of automated software testing: Automa-

tion tools and frameworks, International Journal of Computer Science
Engineering 2019, doi: 10.5281/zenodo.3924795.

[4] M. Psujek, A. Radzik, G. Kozieł, Comparative analysis of solutions used

in automated testing of Internet applications, Department of Computer
Science, Lublin University of Technology, Lublin, Poland, 2021, doi:
10.35784/jcsi.2373.

[5] P. Ramya, V. Sindhura, P. V. Sagar, Testing using selenium web driver,
2017, doi: 10.1109/ICECCT.2017.8117878.

[6] R. Dahiya, A. Shahid, Importance of manual and automation testing

Department of Information Technology, AGI Institute, Auckland, New
Zealand, 2019, doi: 10.5121/csit.2019.91719.

[7] R. K. Lenka, U. Satapathy, M. Dey, Comparative Analysis on Auto-

mated Testing of Web-based Application, Department of CSE, 2018, doi:
10.1109/ICACCCN.2018.8748374.

[8] S. K. Alferidah, S. Ahmed Automated Software Testing Tools, Interna-
tional Conference on Computing and Information Technology, ICCIT
2020, doi: 10.1109/ICCIT-144147971.2020.9213735.

[9] https://github.com/microsoft/playwright/graphs/commit-activity
(06.01.2024).

[10] https://github.com/SeleniumHQ/selenium/graphs/commit-activity
(06.01.2024).

[11] https://maven.apache.org/
[12] https://playwright.dev/docs/intro
[13] https://testng.org/
[14] https://www.selenium.dev/documentation/
[15] https://www.udemy.com/courses/search/?src=ukw&q=Playwright

(06.01.2024).
[16] https://www.udemy.com/courses/search/?src=ukw&q=Selenium

(06.01.2024).
[17] https://stackoverflow.com/questions/tagged/selenium-

webdriver?tab=Newest (10.07.2024).
[18] https://stackoverflow.com/questions/tagged/playwright (10.07.2024).

8 POSITION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


