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Abstract—Spiking neural networks are a novel implementation
of artificial neural networks closely based on neurobiology. Our
goal is to analyze and see the plausibility of spiking neural
networks as intrusion detection models based on the BoT-IoT
dataset under a limited set of circumstances. We created a spiking
neural network classifier in PyTorch and snn-torch based on
Leaky Integrate-and-Fire neurons that managed to get an F1
score of 0.957 on 10 000 samples of the BoT-IoT dataset and
240 hidden spiking neurons. We performed training on the CPU
for 300 epochs and 10 simulation steps per epoch, utilizing
Adam optimizer, cross-entropy loss and backpropagation as a
learning algorithm. Lowering hidden spiking neuron count from
240 to 72 and sample size from 10 000 to 1 000, we were able
to optimize training time by 84% and testing time by 57%
while having an F1 score of 0.944. We present Loss, Receiver
Operating Characteristics, and Precision-Recall curves for the
two experiments and summarized data for additional experiments
performed with different sample sizes and neuron counts. We
conclude that spiking neural networks for intrusion detection
represents a viable solution for training and classification on
resource-constrained devices with limited samples. Further re-
search steps are presented to improve performance.

Index Terms—spiking neural networks, artificial intelligence,
intrusion detection systems, internet of things

1. INTRODUCTION

VEN though a strict definition does not exist, Internet-of-
things (IoT) can be defined as a set of connected devices
with the goal of exchanging sensor and communication data
between themselves to provide joint computing capabilities
[1]. These devices often function in environments with con-
strained resources, such as electricity, processing speed, and
memory. In 2023 there were 15.14 billion IoT devices active,
with the trend increasing to more than 29 billion devices by
the decade’s end [2]. allowing potential malicious actors to
launch attacks across different domains and infrastructure.
With the global number of IoT devices available, they
present a formidable attack surface for targeted cyber attacks.
The number of cyber attacks launched against IoT devices
surpassed one hundred twelve million potential intrusions in
2022. [3], emphasizing a need for IoT device intrusion de-
tection systems. Ideally, edge devices should handle intrusion
detection for quick recognition and adequate accuracy.
Dorothy Denning defined the first known occurrence of
intrusion detection systems (IDS) [4] in 1987. She defined
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intrusion detection systems as expert systems consisting of
a tuple of six elements (Subjects, Objects, Audit records,
Profiles, Anomaly records, and Activity rules with the role
of detecting anomalies in computer system access. Expert
system methodology was gradually improved and replaced by
statistical analysis [5] and pattern-oriented intrusion detection
[6], as well as machine learning and artificial intelligence
methods [7]. Applying statistics, machine learning, and artifi-
cial intelligence allows greater autonomy for IDS systems and
improves response times and detection rates with unknown
intrusions.

Deploying IDS solutions to IoT devices has always been
challenging due to the constraints of resources mentioned
above, most notably available memory. Machine learning
and statistics powered IDS solutions provide potential im-
provements for deployment on IoT devices, but the device’s
computing power often constrains them.

The concept of neuromorphic computing promises to im-
prove upon these limitations. Neuromorphic computing is
defined as the development of computer systems based on
biological characteristics of neurons and nerve systems [8].
One of important neuromorphic computing concepts are spik-
ing neural networks, which are more energy and efficient
than their traditional counterparts, as shown in the Izhikevich
model [9] which is used as the baseline for biological neuron
simulation due to its biological plausibility.

Spiking neural networks can be traced back to the original
discovery of neural spiking by Hodgkin and Huxley [10],
which was later abstracted by Bonhoeffer [11] into a more
general purpose model that handles different kinds of neuronal
behavior. This model is known as the Bonhoeffer - van der Pol
model, inspired by models of the human heart [12]. In 1982.
Hopfield [13] defined the concept of a “Hopfield network,”
which represents the first artificial spiking neural network.

The key feature that provides efficiency is the concept of
spiking (or action potentials) [10] which allow efficient signal-
ing of changes between neurons. Each neuron has an activation
function operating on the electrochemical interactions between
the neuron and its environment. When the neuron reaches
the activation potential threshold, it performs an electrical
discharge to other connected neurons.

Topical area: Advanced Artificial
Intelligence in Applications
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Spiking neural networks on dedicated chips can utilize a
maximum 65mW of power usage per 1 000 000 spiking
neurons [14]. Asghar et al. [15] created a neuromorphic chip
based on spiking neural networks that are even more resource
efficient, consuming, on average, 1.06 mW of power. The
Spiking-YOLO model has achieved similar resource efficiency
[16] utilizing spiking neural networks for object detection.

Another key difference between spiking neural networks
and traditional artificial neural networks is the existence of
time as a component used for neuronal learning. Spike timing
dependant plasticity (STDP) [17] is based on the duration
before pre-synaptic and post-synaptic spikes and represents
one of the key learning mechanisms in artificial and biological
spiking neural networks. Time component utilization repre-
sents the side-effect spiking neural network models, which are
based on systems of differential equations compared to other
common artificial intelligence models. It is worth mentioning
that, like modern artificial neural network learning, Lillicrap
et al. [18] observed a variant of backpropagation as a learning
mechanism for biological neurons.

With current knowledge, applying spiking neural networks
to the domain of intrusion detection would allow us equal
or better performance than current state-of-the-art solutions.
The added benefit would be significantly less usage of power
and computing resources, per current literature, making them
suitable for IoT devices.

ITI. CURRENT STATE OF SPIKING NEURAL NETWORKS AND
INTRUSION DETECTION

The application of spiking neural networks in intrusion
detection systems is a relatively new concept. One of the first
usages dates back to 2014. spiking neural network concepts
managed to get a 99.78% success rate when detecting failure
rates in power systems [19].

Alom and Taha defined a way for autoncoders to be trans-
formed into spiking neural networks to gain the benefits of
neuromorphic computing [20]. Utilizing IBM TrueNorth [14],
it was possible to have an intrusion detection system with
90.12% accuracy consuming less than 50 mW of power. This
research also presents the method of converting traditional
artificial neural networks to spiking neural networks, allowing
potential performance improvements without retraining.

Zhou et al. introduced the first complete spiking neural
network implementation for intrusion in 2020 [21]. The
system in question consists of three layers with a total of
205 neurons, and it managed to reach 98.98% accuracy for
intrusion detection.

Zarzoor et al. have applied spiking neural networks with
decision trees for Internet-of-things attack classification [22]
with 95% accuracy on attack classification from the IoT Botnet
2020 dataset.

Besides spiking neural networks, Hassini et al. [23] provide
a solution based on deep learning for intrusion detection that
reached 99.96% accuracy across 15 classes for edge IoT
devices. Although unrelated to spiking neural networks, this
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solution represents one of the most advanced state-of-the-art
approaches.

Encountered research so far focuses on spiking neural
networks that were used for classification outside of Internet-
of-things devices. Even though this approach proves their
applicability, it does not factor in the possibility of IoT devices
performing attack classification independently of a centralized
classifier.

Table I contains summarized findings with F1 scores and
accuracy, whichever metrics are available due to the quality
of work.

TABLE I
SUMMARIZED FINDINGS FROM CURRENT STATE
Paper Accuracy

Wang et al. [19] 99.78%
Alom and Taha [20] 90.12%
Zhou et al. [21] 98.98%

Zarzoor et al. [22] 95%
Hassini et al. [23] 99.96%

III. EXPERIMENT SETUP

We have used the BoT-IoT [24]-[27], [27], [28] dataset for
our research due to its subject area of network traffic belonging
to IoT devices. Due to resource constraints regarding comput-
ing power used for training, we have used the already prepared
5% subset of the BoT-IoT dataset to perform training and
testing of the model. The dataset contains 3 668 522 entries,
with 477 entries marked as non-malicious and the remaining
marked as malicious, randomized and split into 80% of the
dataset used for training and 20% of the dataset used for
testing before further subsampling for our experiments. We
randomized data before subsampling according to experiment
requirements and applied mini-batching with a size of 100
samples per mini-batch as a way to optimize limited experi-
ment resources.

We have not used spike trains for our experiments and have
decided to use the numeric representation of data in order to
simplify the experiment.

The BoT-IoT dataset contains 46 different features. In order
to simplify handling, we have selected the subset of features
shown in Table II:

TABLE II
SELECTED BOT-IOT FEATURES

Feature name Feature description Type
proto Network traffic protocol String
spkts Source-to-destination packet count Numeric
dpkts Destination-to-source packet count Numeric
srate Source-to-destination packets per second | Numeric
drate Destination-to-source packets per second | Numeric
state Transaction state String
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We have performed one-hot encoding of the proto and state
features for easier training, increasing the total input features
to 18 presented in Table III. The final list of utilized features
is presented below:

TABLE III
MODIFIED SELECTED BOT-IOT FEATURES
Feature name Feature description Type
arp ARP protocol detected Boolean
icmp ICMP protocol detected Boolean
tep TCP protocol detected Boolean
udp UDP protocol detected Boolean
spkts Source-to-destination packet count Numeric
dpkts Destination-to-source packet count Numeric
srate Source-to-destination packets per second | Numeric
drate Destination-to-source packets per second | Numeric
acc ACC state Boolean
con CON state Boolean
eco ECO state Boolean
fin FIN state Boolean
int INT state Boolean
mas MAS state Boolean
req REQ state Boolean
rst RST state Boolean
tst TST state Boolean
urp URP state Boolean

The goal of our research was to classify attack subcategories
according to the above features. There was a total of four
attack subcategories identified in the BoT-IoT dataset:

e Denial of Service (DoS)

o Distributed Denial of Service (DDoS)
o Reconnaissance

. Theft

Due to the uneven distribution of attack subcategories, we
have removed the Theft attack subcategory from the classifi-
cation since its number of occurrences is much lower than that
of other attack subcategories. Theft attack subcategory has the
potential to skew results since we need more data to train for
Theft subcategories (in the 5% dataset, the Theft subcategory
appears in less than 0.01% due to rounding). We applied one-
hot encoding to the remaining subcategories. Table IV shows
the number of occurrences for attack subcategories:

TABLE IV
ATTACK SUBCATEGORY OCCURENCE

Attack subcategory | Number of occurrences | Percentage of dataset
DoS 1 650 260 44.99%
DDoS 1 926 624 52.52%
Reconnaissance 91 082 2.48%
Theft 79 Less than 0.01%

The classifier consists of two main Leaky Integrate-and-
Fire layers (with decay rate 5 = 0.95 and 120 fully connected

neurons per layer) joined with three linear transformation lay-
ers used for reshaping data. Although we have introduced the
Izhikevich model previously in this paper, we have decided to
use the Leaky Integrate-and-Fire spiking neuron model, which
is easier to implement, albeit with less biological plausibility.
This decision is because we do not require full biological
plausibility for our use case, and the Leaky Integrate-and-
Fire spiking neuron model is less complex than the Izhikevich
model.

We applied backpropagation with temporal characteristics
to update the weights after each epoch of the experiment.
Biological spiking neurons operate with different learning
methods, such as spike timing dependant plasticity (STDP) and
its variants. This field is under constant research to determine
how learning is performed between neurons; hence, there is
no correct answer for using the learning method.

We applied surrogate gradients to improve backpropaga-
tion performance. In our case, we used the fast sigmoid
surrogate gradient applied to the spiking neural network lay-
ers. We chose the Adam optimization algorithm [29] with
learning_rate = 0.0001, 51 = 0.9, 82 = 0.999 and cross-
entropy loss [30] for calculating the value of loss.

The training lasted for 300 epochs, each epoch containing
10 discrete time steps as the temporal component. There were
no optimizations regarding stop-loss values where training
would halt. Training was performed by Intel 17-3630QM
laptop CPU, without GPU usage. PyTorch version used was
2.1.0+cpu, and snntorch version used was 0.7.0.

IV. EXPERIMENT RESULTS

We executed the original experiment with 240 hidden neu-
rons and 10 000 samples from the 5% BoT-IoT dataset with
applied one-hot encoding transformations, resulting in an F1
score of 0.957. The loss curve is shown in Fig. 1. The noisiness
shown inside loss curves is characteristic because the training
was performed per epoch per set of discrete time steps. The
loss gradient was calculated after each epoch, thus causing the
noisiness inside every epoch.

Loss curve for 10 000 samples and 240 hidden neurons

—— Train Loss
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Fig. 1. Loss curve for 10 000 samples and 240 hidden neurons (two hidden
layers of 120 spiking neurons)

ROC and PRC curves shown as Fig. 2. and Fig. 3 show
additional experiment performance results. The area under
Curve values is at the bottom for every attacking category.
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Reconnaissance as the attack category was abbreviated to
Recon due to brevity.

Multiclass ROC for 10 000 samples and 240 hidden neurons
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Fig. 2. Multiclass ROC curves for 10 000 samples and 240 hidden neurons
(two hidden layers of 120 spiking neurons)

Multiclass Precision Recall Curve for 10 000 samples and
240 hidden neurons
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Fig. 3. Multiclass Precision-Recall curves for 10 000 samples and 240 hidden
neurons (two hidden layers of 120 spiking neurons)

We have repeated the experiment with 1 000 samples and
72 spiking neurons to improve training and testing time. Our
experiment yielded an F1 score value of 0.944.

The loss curve shown in Fig. 4 has a longer drop than the
previous one with 10 000 samples. ROC (Fig. 5) and PRC
(Fig. 6) curves show the impact of fewer samples and fewer
neurons used for training, but showing similar results.

After promising results from experiments done with 1
000 and 10 000 samples and 72 and 240 hidden neurons,
we have decided to start lowering the experiment variables,
most notably sample size and hidden neuron count. Table
V shows the results of previous experiments and additional
ones performed with varying sample sizes and neuron counts.
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Loss curve for 1 000 samples and 72 hidden neurons
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Fig. 4. Loss curve for 1 000 samples and 72 hidden neurons (two hidden
layers of 36 spiking neurons)

Multiclass ROC for 1 000 samples and 72 hidden neurons
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Fig. 5. Multiclass ROC curves for 1 000 samples and 72 hidden neurons
(two hidden layers of 36 spiking neurons)

Multiclass Precision Recall Curve for 1 000 samples and
72 hidden neurcns
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Fig. 6. Multiclass Precision-Recall curves for 1 000 samples and 72 hidden
neurons (two hidden layers of 36 spiking neurons)
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Sample sizes and neuron counts were randomly selected to
see how the model would perform under new experimental
conditions.

We can see that we get similar performance as state-of-the-
art solutions with fewer samples and neurons that might apply
to constrained systems. Previously described experiments with
loss, ROC, and PRC charts are in bold as a baseline for other
performed experiments that weren’t presented in more detail.

TABLE V
SUMMARIZED EXTENDED EXPERIMENT DATA
Number of | Hidden Training Testing F1 score
samples neurons | time (seconds) | time (seconds)
500 20 58.730 0.091 0910
500 240 103.546 0.149 0.949
1 000 20 145.789 0.085 0915
1 000 72 196.461 0.128 0.944
1 000 240 231.894 0.159 0.959
10 000 72 1844.896 0.170 0.953
10 000 240 2339.638 0.210 0.957

Table VI below aggregates our experiment data with previ-
ously presented state-of-the-art data for comparison purposes.

TABLE VI
SUMMARIZED FINDINGS FROM CURRENT STATE

Paper Accuracy
Wang et al. [19] 99.78%
Alom and Taha [20] 90.12%
Zhou et al. [21] 98.98%
Zarzoor et al. [22] 95%
Hassini et al. [23] 99.96%
1000 samples and 72 hidden neurons 95.99%
10 000 samples and 240 hidden neurons 96.33%

Following the experiment data and comparison with discov-
ered state-of-the-art solutions, we can see that our two experi-
mental models are comparative with state-of-the-art models,
surpassing accuracy on some models, especially since our
model is based on common hardware.

V. DISCUSSION AND FUTURE WORK

Experimental results from the previous section offer excit-
ing insight into the applicability of spiking neural networks
for intrusion detection systems and their behavior when the
number of samples and neurons vary.

From our starting setup with 10 000 samples and 240
hidden neurons, we were able to lower the number of samples
and neurons to 1000 samples and 72 neurons with similar
F1 scores (0.957 versus 0.944, respectively). We performed
additional experiments with even lower number of samples
and hidden neurons that yielded F1 scores above 0.91 for all
setups described in the tables above.

The first step should be to improve the computing resources
used for experimentation and define stricter experimental cri-
teria. Improvements would give us more detailed information

on how the model performs with unconstrained sample sizes
and diverse features and the inclusion of the Theft attack sub-
category. Another task regarding computing resources would
be accurate measurements of the spiking neural network to
confirm resource efficiency, both on the original experiment
environment and IoT devices. Experimental criteria should be
stricter, and detailed experiment analysis should be performed
on the behavior of false positives and false negatives, which
can impact IoT devices differently due to their nature of being
edge devices and with limited resources.

Besides resource increase, further research should be per-
formed on different kinds of spiking neurons and different
learning algorithms (such as STDP), as well as models with
more than two hidden layers of spiking neurons.

Another interesting topic is the application of neuromorphic
hardware such as Intel Loihi [31] or Graphcore’s IPU proces-
sors [32] as integral components of the IoT device for intru-
sion detection and potential other artificial intelligence tasks
that could be performed on-device. Utilizing neuromorphic
hardware would improve total performance regarding accuracy
and training times while allowing easier on-device intrusion
detection.

VI. CONCLUSION

Internet-of-Things as a platform presents a new attack vector
for malicious actors. Due to their decentralized and resource-
constrained nature, performing adequate cyber attack detection
and prevention without a centralized or significantly powerful
device can be difficult.

We have introduced a method using spiking neural net-
works to enable intrusion detection classification in resource-
constrained environments with cutting-edge performance. We
performed testing using the BoT-IoT dataset, which includes
a range of typical attacks found in Internet-of-Things environ-
ments and varying numbers of samples and hidden neurons.
This allowed us to examine how F1 scores change as the num-
ber of samples and hidden neurons change, further optimizing
performance with an F1 trade-off.

Even though we have reached state-of-the-art performance,
we have presented additional steps in our research that can po-
tentially improve performance by experimenting with different
kinds of spiking neurons, more layers, and different learning
algorithms.
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