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Abstract—The  demand  for  Electric  Vehicles  (EVs)  is 

increasing exponentially in recent times because of its ability to 

minimize  energy savings  and carbon emission.  However,  the 

charging process and charging option increases the challenges 

for EV adoption. With the growing adaptability to EVs, the need 

for addressing the challenges related to limited range and the 

availability  of  charging  infrastructure  becomes  crucial.  This 

paper  presents  an  optimized  deep  learning-based  charge 

scheduling approach in EVs for intelligent transport systems. 

The study leverages the Deep Reinforcement Learning (DRL) 

for making real-time decisions. The DRL model is trained using 

various features such as Battery critical percentage (SOC), time 

slots, nearest charge station, and availability of charging station. 

The  features  are  optimized  using  a  nature  inspired  Whale 

Optimization  Algorithm  (WOA),  which  helps  in  obtaining 

optimal  charge  scheduling.  The  proposed  approach  is 

experimentally evaluated in terms of reducing the tow counts in 

the  selected  region.   Results  from the  experimental  analysis 

validate  the  efficacy  of  the  proposed  approach  in  achieving 

optimal charge scheduling and navigation for EVs which also 

improve  energy  efficiency  and  reduce  charging  costs  and 

charging time.

Keywords—Electric Vehicles, Charge Scheduling, Intelligent 

Transport  System,  Particle  Swarm  Optimization,  Whale 

Optimization Algorithm, Deep Reinforcement Learning.

I. INTRODUCTION

HE ADOPTION of Electric Vehicles (EVs) is growing 
immensely  for  achieving  environmentally  friendly 

transportation  by  reducing  the  use  of  fossil  fuel  thereby 
contributing to the zero emission of toxic greenhouse gas [1]. 
Despite the advantages, the adaptability of EVs is restricted 
due to the challenges associated with the charging process 
such as limited charging stations, availability of charging slots, 
dynamic  charging  patterns,  and  varying  load  demand  [2]. 
These factors contribute to the increase in the peak demand, 
grid overload condition, voltage fluctuation etc., which affect 
the performance efficiency of EV echo system [3] [4]. This 
inefficiency results  in  traffic  congestion near  the  charging 
stations that impacts traffic planning, and traffic order [5]. 
This  problem  can  be  addressed  by  the  intelligent 
transportation system wherein the details about the availability 
of charging station and time slot can be obtained beforehand. 
Several studies have focused on developing optimized charge 
scheduling mechanisms [6] [7] [8]. These techniques intend to 
avoid overload on the charging station during peak hours. 
However, most of these techniques calculate the charging time 
when  EVs  are  either  parked  at  home  or  parking  lots.  In 
practical scenarios, EV users require charging stations while 
driving (both shorter and longer durations) due to the limited 
capacity of EV batteries [9]. In this context, in real time, an 

T

efficient navigation mechanism is required to suggest optimal 
route and availability of charging stations for charging EVs 
considering different aspects such as distance, charging rate, 
and  waiting  time  [10][11][12].  On  this  basis,  a  novel 
optimized  charging  scheduling  framework  for  supporting 
multiple EVs is designed, developed and evaluated in this 
work. The prominent aspects of this manuscript are as follows:

 A feature extraction technique is employed to extract the 
relevant features related to the charge scheduling and a 
DRL  based  feature  selector  known  as  (DRLFS)  is 
implemented for finding suitable features to improve the 
charge scheduling process.

 The selected features are optimized using a nature inspired 
WOA to obtain an efficient optimal charge scheduling in 
EVs.

 This  framework  efficiency  is  evaluated  checking  the 
number of tow count i.e., number of vehicles dead on the 
road before reaching its destination.

The rest of the paper is organized as follows. Section II 
discusses  charge  scheduling  techniques  presented  in  other 
works. Section III discusses the proposed charge scheduling 
framework in EV charging navigation for intelligent transport 
systems. Section IV briefs the simulation results and Section V 
concludes the paper with prominent future study observations.

II. LITERATURE REVIEW

A. Utilizing Machine Learning 

Several machine learning techniques have been proposed 
for improving the overall  efficiency of EV Charging echo 
system. The work presented in this paper [13] compares and 
evaluated the effectiveness of various machine learning (ML) 
approaches  for  EV  charging  considering  conventional 
charging,  rapid  charging,  and  vehicle-to-grid  (V2G) 
technologies. The work presented in this paper [14] provides 
the  insights  on the  usage of  machine  learning models  for 
determining  the  optimal  location  of  EV charging  stations 
(EVCS) and its infrastructure. Although from the mentioned 
references it is evident about the range of ML algorithms used 
in the EV charging navigation area, there summarize the need 
for looking into more advanced ML techniques, which is Deep 
Learning. 

B. Utilizing Deep Reinforcement Learning

A subset of machine learning (ML), Deep Reinforcement 
learning (DRL) has attracted a lot of attention in this subject. 
Table 1 provides a summary of the areas of EV Charging echo 
system in which DRL is used.
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TABLE I.  DRL USED STUDIES 

Methodology & Focus Reference 
Deep reinforcement learning simulator to validate the 
feasibility of learning algorithms to be deployed [15] 

Deep-learning-based EV arrival rates calculated 
according to the historical data   [16] 

Deep reinforcement learning for optimal scheduling of 
charging station according to the random behaviour 
characteristics of the EV charging arrival and departure 
times 

[17] 

Hybrid deep learning mechanism to assure safe and 
dependable charging operations that prevent the battery 
from being overcharged or discharged 

[18] 

Deep reinforcement learning based EV cluster 
scheduling strategy considering real-time electricity 
prices  

[19] 

Deep reinforcement learning to minimize the total 
charging time of EVs and maximal reduction in the 
origin-destination distance 

[20] 

Deep reinforcement learning based optimal charging 
strategy considering traffic conditions, user's behaviour, 
and the pricing 

[21] 

Deep reinforcement learning based evaluation of 
model-free coordination of EV [22] 

Deep reinforcement learning for EV charging 
navigation for single EV [23] 

 

C. Reseach Gaps 
This research identifies some of the prominent research 

gaps from the existing works, which are outlined as follows: 

In most of the existing techniques, the charging navigation 
estimations are not real time, which is required for making 
intelligent decisions for charge scheduling and navigation. 

The most widely used deep learning used EV scheduling 
techniques has not ben verified for multiple EVs, which is 
required for measuring the efficiency of the EV charging echo 
system. 

So, there is a need to investigate methods to enhance the 
adaptability of deep learning models to dynamic and uncertain 
environments, such as incorporating uncertainty estimation or 
developing RL techniques that handle real-time changes 
effectively. 

III. PROPOSED RESEARCH METHODOLOGY 
This research aims to develop an efficient DRL-based 

technique for charge scheduling and navigation in EVs to 
enhance overall power management and efficiency. In general 
reinforcement learning can learn from the actions and its 
continuous interactions from the external environment. This 
enables the reinforcement learning models to make fast 
decisions in a dynamic environment. In this research, the EV 
model itself is considered as the environment and the model 
learns the parameters of the EV such as the SoC of the battery, 
time slots, charging pattern and availability of charging 
station. The proposed charge scheduling strategy is designed 
to minimize the charging time, mitigate traffic congestion and 
improve the power management. In practical conditions, the 
driving cycle is more complex and DRL based control 
strategies help in finding the best solution for the complex 
problems aiming to achieve optimal charge scheduling. 

The main goal of charge scheduling is to minimize the 
number of tow counts i.e., number of vehicles dead on the road 
before reaching its destination and also the power utilization 
of vehicles. Reduced number of tow counts is essential for 

achieving an optimal charge scheduling, which is also the aim 
of this research. In order to address the research gaps, the 
proposed DRL-WOA is designed which modifies the charging 
and scheduling process in real-time. This is achieved by 
optimizing model parameters which helps the system to 
dynamic environmental factors in an effective manner. In 
addition, the work also incorporates uncertainty estimation 
technique into the DRL framework to enhance the adaptability 
to uncertain environments. This integrated DRL-WOA 
approach enables continuous learning and adjustment based 
on real-time data, addressing the challenges of EV charging, 
scheduling, and navigation in dynamic settings. 

The proposed work flow involved is shown in Fig. 1 and 
the same are explained in below subsections. 

 
Fig. 1. Proposed workflow 

A. EV Dataset Creation 
In this study the data set is derived with random SOC, and 

at random coordinated within the city boundaries. To enable 
this, the following parameters are considered. Number of 
Vehicles, Number of Charging Stations, X Dimension of city 
(km), and Y Dimension of city. Based on these parameters, 
the EV Commute and Charging Station block set shall 
generate the dataset with the following data units such as 
Vehicle Number, Available battery Power, Needed Charging 
Time, Starting X-Position, Starting Y-Position, Destination 
X-Position and Destination Y-Position. 

B. Feature Selction 
In this step, feature selection is performed to select 

essential and relevant features from the dataset. It is important 
to perform feature selection in order to avoid the selection of 
irrelevant features. In this work, four important features are 
selected namely; (i) Time-Related Probabilities (timprob) (ii) 
Charging Probabilities (chprob) (iii) Battery Critical Level 
(batt_crit) and (iv) Charging Stations Locations as these are 
crucial for charge scheduling. 

C. Feature Extraction 
The DRL based Feature Selector (DRLFS) is implemented 

to identify an optimal subset containing relevant features. The 
architecture of the DRLFS is shown in Fig. 2. The DRLFS 
employs a reinforcement learning mechanism with an agent 
and an interactive environment. The agent in the DRL 
environment employs a learning-based policy for identifying 
and selecting the attributes for performing a specific task. 
Here, the features are selected based on actions and computes 
the rewards for every action. For effectively searching the 
feature subset the DRLGS employs a random policy along 
with two other search mechanism which helps in controlling 
the balance between exploration and exploitation. Entire 
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searching process for feature selection is segmented into 
multiple smaller segments wherein each segment incorporates 
a continuous and sequential process. In this process, the 
features are selected and are grouped into a separate subset. 
This process is continued till the DRLFS reaches termination. 
In addition, several iterations are performed in each 
segmentation and during each iterative stage, the agent in the 
DRL environment identifies one feature and determines its 
actions, provides reward and stores the action for future 
learning. In particular, after every iteration the DRLFS 
generates a decision based on the selected features and acts 
accordingly. 

 
Fig. 2. Feature Selector 

The proposed learning mechanism can be summarized as 
follows: Considering a search space ‘S’ wherein the feature 
set ‘F’ are randomly selected. In this work, the features are 
selected by computing a binary classification problem and 
hence is represented as |S| = 2|F|. Any change in the action of 
the DRL environment filters out certain important attributes 
and affect the correlation between them. In order to avoid this, 
each feature is reconfigured in the action space which in turn 
results in the formation of multiple discrete actions. However, 
it is a challenging and complex task to handle such a large 
action space since it affects the performance of the DRL in 
terms of making decisions about the feature selection process. 
In this context, this research considers a fine-grained action 
space in the continuous form as output. If the feature subset 
consists of only selected features then for every iteration, the 
DRL selects the features which belongs to the subset using a 
deterministic policy. After reaching termination, the feature 
subset obtained at the last iteration is considered as the final 
subset (Fe). 

Let Error (F) and Error (Fe) represent the testing error for 
features F and final subset Fe, respectively. The objective is to 
obtain a minimum error and hence the reward function is 
computed as follows: R = Error (F) − Error (Fe)                                              (1) 

For the obtained error function, the maximum reward can 
be obtained by computing the optimal deterministic policy μ: 

μ∗ = arg max µ Error(F) − Error(Fe)                             (2) 

For generating an optimal policy for feature selection, the 
DRLFS uses a Deep Deterministic Policy Gradient (DDPG) 
which is an off-policy actor-critic DRL algorithm. The DDPG 
uses a train and error method along with a stable, fine-grained 
action for training the DRL to find an optimal feature subset. 

Pseudocode of the DRLFS algorithm 
Initialization: 
Randomly initialize critic network Q (s, α|θQ) and actor 

μ(s|θμ) 
Initialize target network Q’ and μ’ 

Initialize the Replay Buffer R 
for episode = 0 to N do 
 Initialize the feature subset F as an empty set 
Initialize the state s0 as a zero vector with a length d  
while st is not se do 
According to the current actor policy, select the action at 

= μ (s|θμ) 
 Randomize the action at by truncated normal 

distribution and decaying 
 Transform st to st+1 and add newly selected feature 

into F by at 
 Test the generalization error on the DRL algorithm 

and calculate the reward rt 
 Store the transaction (st, at, rt, st+1) into R 
 Sample a random minibatch from R 
 Update critic Q(s, α|θQ) by minimizing the loss 
 Update the actor policy μ(s|θμ) using the sampled 

policy gradient 
 Update the target networks Q’ and μ’ 
 if ≠ features = limit then 
 Set st = se 
 end if 
end while 
end for 
In the DRLFS algorithm, each iterative step follows a 

criteria to terminate the current step and begin with another 
one. In this process, the selected features in the subset are 
defined as the search depth. In this research a fixed depth 
search (FDS) is considered by selecting a limited number of 
features. In the FDS, the searching mechanism in each 
iterative step terminates at a fixed depth. Such a policy 
provides a stable search evenly for every depth, which means 
that all different depths are explored for the same number of 
times. This helps in exploring more depth space and selecting 
more features. Further, the selected features are optimized to 
optimize the charge scheduling process in EVs, which is 
discussed in the next section. 

D. Optimization 
A Whale Optimization Algorithm (WOA) is used for 

further optimization of charge scheduling. The WOA is a 
metaheuristic technique which mimics the hunting behavior of 
humpback whales. The algorithm is inspired by the bubble-net 
hunting strategy. The humpback whales prefer to hunt schools 
of krill or small fishes that are close to the surface. This is done 
by forming bubbles across a circular path with ‘upward-
spirals’ and ‘double-loops’. Mathematically, the spiral 
bubble-net feeding maneuver is modelled in order to perform 
optimization. 

WOA is mainly known for the hunting behaviour with the 
best search agent to chase the prey. The algorithm employs a 
spiral to simulate bubble-net attacking mechanisms of 
humpback whales. The stages involved in the algorithm are as 
follows: 

Encircling Prey: 

The algorithm assumes that the current best solution is 
close to target prey. Based on the obtained solutions, the 
position is further updated as shown in below given equations:  

D ⃗=|C ⃗*X ⃗_best (t)-X ⃗(t)|                                            (3) 

X ⃗(t+1)= X ⃗_best (t)-A ⃗*D ⃗                                         (4) 
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Where t defines the current iteration, A and C are the 
coefficient vectors, Xbest is the position vector of the best 
solution, and X indicates the position vector of the whales. 

A ⃗=2a ⃗r ⃗_1-a ⃗                                                               (5) 

C ⃗=2r ⃗_2                                                                         (6) 

Where, vec{r1}  , vec{r2}   are random vectors in [0, 1]. 

Exploitation Stage: 

This stage is also known as attacking mechanism of the 
Bubble net. This mechanism is mathematically modeled and 
involves two prominent mechanisms: 

(i) Shrinking encircling mechanism: This behavior is 
achieved by decreasing the value of vec{a}, where a is 
decreased from 2 to 0 over the course of iterations. 

(ii) Spiral updating position: In this process, the spiral 
position is updated with a random number that lies between -
1 to 1. 

Search for prey: 

 Humpback whales search randomly according to the 
position of each other 

D ⃗=|C ⃗*X ⃗_rand (t)-X ⃗(t)|                                            (7) 

X ⃗(t+1)= X ⃗_rand (t)-A ⃗*D ⃗                                        (8) 

The pseudocode of the WOA is given below: 

Initialization 

Initialize the whale population Xi (i = 1, 2, …., n) 
Calculate the fitness value of each search agent 
 Xbest is the best search agent 
while (t < maximum number of iterations) 
            for each search agent 
 update α, A, C, l and p 
 if (p < 0.5): 
 Update current agent using equation 3 
else: 
 Select the random agent Xrand 
 Update current agent using equation 7 
else: 
 Update search agent using equation 4 
end for 
Check if the search agent crosses the search space  
Calculate the fitness value of each search agent 
Update Xbest if there is a better solution  
t = t+1 
end while 
Return Xbest 
End 
The WOA leverages the selected features to generate an 

optimal charge scheduling plan, prioritizing charging sessions 
at times and locations where the distances to charging stations 
are minimal. This integrated approach ensures that EVs are 
charged in a manner that minimizes both time and distance, 
optimizing overall charging efficiency and user convenience. 
By optimizing the features, the optimal charge scheduling is 
generated, with a reduced number of tow counts, charging 
power, cost and time. The performance evaluation of this 
approach is discussed in the next section. 

IV. RESULTS AND DISCUSSION 
The proposed DRL based charge scheduling approach is 

experimentally evaluated with respect to different evaluation 
metrics. 

A. Experimental Setup 
Based on the defined city dimensions, a EV data set is 

created. This data set is included in Table 2.  

TABLE II.  BASE CONFIG DATA SET 

Methodology & Focus Reference 
Number of Vehicles 20 

Number of Charging Stations 10 
X Dimension of city (km) 25 
Y Dimension of city (km) 20 

 
For navigation, this research identifies the details of the 

map locations which are tabulated in Table 3. Based on the 
map locations, the proposed approach simulates the map as 
shown in Fig. 3. 

 
Fig. 3. Charging Station Locations 

TABLE III.  CHARGING LOCATION MAPPING 

Locations Simulation Map 
location (Latitude and 

Longitude) 

Real Map locations  
(Latitude and Longitude) 

1 (1, 1) 13.0859° N,80.2067° E 

2 (3, 2) 12.9909° N, 80.2119° E 

3 (4, 3) 13.0865° N, 80.2726° E 

4 (-1, 2) 13.0698° N, 80.2245° E 

5 (2, 2.5) 13.0853° N, 80.2607° E 

6 (3.3, 4) 13.0938° N, 80.2891° E 

7 (0.9, 3) 13.0629° N, 80.2314° E 

8 (3, 5) 13.0732° N, 80.2609° E 

9 (0, 3) 13.0696° N, 80.2728° E 

10 (1.3, 5) 13.0806° N, 80.2876° E 

 

With in this limits an EV charge scheduling dataset is 
created based on the features related to the charging station 
generator, charging station log, probability slabs, and EV 

58 POSITION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



generators the vehicle details with data required for validating 
the charging navigation which is included in Table 4. 

TABLE IV.  EV DATA SET 

Vehic
le 

Num
ber 

Availa
ble 

batter
y 

Power 

Neede
d 

Charg
ing 

Time 

Starti
ng X-
Positi

on 

Starti
ng Y-
Positi

on 

Destinat
ion X-

Position 

Destinat
ion Y-

Position 

1 53 1.4 398 94 245 223 

2 70 1.0 139 340 328 82 

3 26 2.2 171 293 112 376 

4 37 2.0 446 480 274 70 

5 28 2.0 128 408 122 465 

6 45 1.5 309 237 176 416 

7 65 1.1 143 379 377 191 

8 64 1.0 266 390 468 65 

9 64 1.1 169 82 398 156 

10 60 1.1 132 328 345 375 

11 54 1.2 457 77 413 270 

12 100 0.0 54 481 3 388 

13 85 0.5 200 130 401 216 

14 93 0.2 73 69 435 290 

15 5 1.0 480 18 257 201 

16 26 2.1 209 25 452 473 

17 57 1.3 451 185 56 391 

18 49 1.5 49 66 472 479 

19 64 1.0 177 411 8 22 

20 30 2.3 324 226 274 149 

B. Results 
The Tow count is the key output which is getting 

monitored between different stages. The stages which are 
getting monitored are represented in Fig. 4. For better charge 
scheduling the number Tow counts should be at minimal.  

 

Fig. 4. Tow count computing stages 

Using the generated data, initially, the performance of 
charge scheduling is determined without optimization. It was 
observed from the analysis that the total number of tow count 
vehicles without any optimization is 9. However, this number 
is too high and is not suitable for achieving appropriate 
charge scheduling. Hence the charge scheduling process is 
optimized using an existing particle swarm optimization 
(PSO) algorithm. Although PSO optimized results are better 
than the charge scheduling process without optimization, the 
number of Tow count vehicles is not completely minimized.  
The proposed WOA algorithm further minimize the Tow 
count vehicles. For the data set considered the Tow count got 
as zero. The result of the optimized charge scheduling is 
illustrated in Fig. 5. 

 
Fig. 5. Tow count values 

As inferred from Fig. 6, the WOA algorithm achieves 
convergence in a lesser number of iterations and this shows 
that the features are optimized for the charge scheduling 
process 

 
Fig. 6. WOA Iterations 

Charge scheduling when the vehicle moves from one 
location to another with and without optimization is shown in 
below Fig. 7. In this its evident that the charge scheduling 
process is improved by also vehicle take the alternate routes. 
In addition, by improving the performance of the charge 
scheduling process the relative metrics such as average needed 
power, average charge cost, and average charging time also 
will be improved. 

 
Fig. 7. Vehicle Navigation 
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Fig. 8 shows the implemented DRL based feature selector 
which selects the suitable features. This helps to reduce the 
overhead of analysing all features which inturn reduce the 
computational time. 

 

Fig. 8. Optimal Feature Selection  

V. CONCLUSION AND FUTURE WORK 
The main aim of this research is to develop an efficient 

charge scheduling process for EVs to minimize the charging 
time and improve overall efficiency. An optimal EV charge 
scheduling approach is designed using an optimized DRL 
based framework. The proposed approach achieves an 
effective charge scheduling performance by selecting optimal 
features using the DRLFS technique. The efficacy of the 
DRLFS is evaluated in terms of effective feature selection 
which provides relevant features for optimizing the charge 
scheduling. The performance is evaluated without 
optimization and it was observed that the number of tow 
counts was high, which is not suitable for charge scheduling. 
Further, the features were optimized using the WOA, results 
show that the WOA reduces the number of tow count vehicles 
to zero in comparison to the existing PSO algorithm. In future, 
the study will be extended to evaluate the performance in a 
large city and with more vehicles.  

Aligning to this, further exploration ought to focus on the 
below mentioned overlayered factors. 

Integrate standardized protocols and interfaces: Evaluate 
the efficiency after integrating protocols and interfaces which 
are generally used with this frame work with diverse vehicle 
systems and components. 

Safety and Validation: Evaluate this framework's 
capability to withstand the backdoor attacks which can be 
exploited to seriously harm the system components. 
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