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Abstract—Large Language Models (LLM) have brought nu-
merous of new applications to Machine Learning (ML). In
the context of tabular data (TD), recent studies show that
TabLLM is a very powerful mechanism for few-shot-learning
(FSL) applications, even if gradient boosting decisions trees
(GBDT) have historically dominated the TD field. In this work
we demonstrate that although LLMs are a viable alternative,
the evidence suggests that baselines used to gauge performance
can be improved. We replicated public benchmarks and our
methodology improves LightGBM by 290%, this is mainly driven
by forcing node splitting with few samples, a critical step in FSL
with GBDT. Our results show an advantage to TabLLM for 8
or fewer shots, but as the number of samples increases GBDT
provides competitive performance at a fraction of runtime. For
other real-life applications with vast number of samples, we found
FSL still useful to improve model diversity, and when combined
with ExtraTrees it provides strong resilience to overfitting, our
proposal was validated in a ML competition setting ranking first
place.

I. INTRODUCTION

T
ABULAR data in real-world applications is the most

common type of data [1], this continues to be true since

relational databases are still pretty common in all sort of

domains from social to natural sciences [2]–[6]. Deep Learning

(DL), or in general, Neural Network based architectures have

shown tremendous potential in tasks like Natural Language

Processing (NLP) with developments like transformers [7]

and large-scale pre-trained models like DeBERTa [8] have

pushed the state-of-the-art (SOTA) and gave DL a top spot in

performance. The same can be observed for Computer Vision

(CV) with developments like convolutional neural networks

(CNN) opening the door for more advanced designs like

EfficientNets [9] and more recently Vision Transformers (ViT)

have found their way into CV as well [10] with Next-ViT [11]

aiming to bridge the gap that still separates ViT from CNN in

terms of efficiency in the latency/accuracy trade-off.

Despite all the success from DL, tabular data continues to

be omnipresent [12], [13], and to the best of our knowledge,

we have not found a consistent DL-based approach that can

outperform Gradient Boosted Decision Trees (GBDT) [14]–

[16] over a wide variety of tasks and conditions, even though

it is possible to find specific niche setups where this happens

[17]–[19].

Recently, the introduction of Large Language Models

(LLM) [20] demonstrated a whole new level of performance

for several tasks [21], [22], from traditional NLP to even code

generation [23]. The concept of revisiting the qualities of DL-

based techniques, in particular LLM for tabular data surged

again [6], due to some of the key properties over GBDT [24],

such as: representation learning, sequential processing and

generalization. Even though DL provides some advantages,

if maximum performance is desired, GBDT continues to be

the SOTA [25] even with amazing advances in DL, some

of the most notable attempts to outperform GBDT with DL

methods include: Wide&Deep [26], DeepFM [27], SDTR

[28], DeepGBM [29], TabNN [30], BGNN [31], TabNet [32],

TransTab [33], TabTransformer [34], SAINT [35] and NPT

[36], none of them providing enough evidence to actually be

able to beat GBDT over a wide variety of tasks, most of the

time, it has been demonstrated the claimed improvements are

only present in very specific cases or datasets [17].

There are however, some situations where LLM based

solutions seem to have an edge [6], this is when data is limited,

and LLM have the capacity to perform both zero-shot (ZSL)

and few-shot learning (FSL) [37]. While there is no doubt

current SOTA in GBDT will show random-performance for

zero-shot learning, recent studies [38] show that even under a

few-shot schema, LLM can outperform Xgboost [14], one of

the most popular GBDT algorithms.

In this work, we will further explore the performance

of GBDT under a FSL schema in order to provide strong

baselines. Since previous studies [17] have demonstrated bias

in claims of DL outperforming GBDT in other tasks, we look

to enhance experiments to confirm SOTA results in the new

trend of results regarding FSL and the superiority of LLM

over GBDT.

II. RELATED WORK

The main concept behind ZSL or FSL by definition implies

the evaluated classifier has either (a) never seen the data

samples before (ZSL), or only a few samples (FSL), however,

this can only be proven true if we were to train a model

(LLM for the purpose of this research) from scratch. Any sort

of pre-trained architecture could, in theory, already seen the

dataset, hence showing incredible performance. This particular

problem has been studied before [39], where both GPT-3.5

and GPT-4 are proven to have seen common datasets in the

past, like Adult Income and FICO [40], in some cases, even

proven LLM have literally memorized the datasets verbatim

[41] as samples can be extracted out. With this in mind, the fair
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TABLE I
GPT-3/4 VS TRADITIONAL ALGORITHMS FOR FEW-SHOT-LEARNING PERFORMANCE (AUC)

Algorithm
Kaggle

Titanic

OpenML

Diabetes

Adult

Income
FICO

Spaceship

Titanic
Pneumonia

GPT-4 0.98 0.75 0.82 0.68 0.69 0.81

GPT-3.5 0.82 0.74 0.79 0.65 0.63 0.54

GBDT (Xgboost) 0.84 0.75 0.87 0.72 0.80 0.90

Logistic Regression 0.79 0.78 0.85 0.72 0.77 0.90

evaluation of LLM vs GBDT under a truly FSL schema is very

challenging, while we can guarantee GBDT has never seen the

data, the same cannot be said for many LLM applications.

The results from Bordt et al. [39], using a 20-shot-learning

are shown in Table I, in this work authors study LLM

memorization.

Although LLM results are far from bad, the performance

still shows gaps to match GBDT. On top of this, GBDT is

a much simpler and faster model, essentially being a more

efficient and more powerful option. For the Kaggle Titanic

dataset, the power of GPT-4 might look impressive, until

authors have proven this is due to memorization and not any

particular useful learning. This problem is not particular to

tabular data, as LLM have been proved to do so as well for

other domains [42]. Nonetheless, authors have found that there

is some learning happening, for datasets with no memorization

LLM can still provide some performance, especially in very

few shot-learning, which leads to the work of Hegselmann et

al. [43], where LLM are shown to actually outperform GBDT.

In such work, authors present TabLLM, a very innovative

solution to use LLMs for few-shot classification on tabular

data, in principle, first running a serialization-step, to turn

tabular into a natural language representation. An extensive

analysis is done to benchmark multiple serialization tech-

niques. Surprisingly, one of the simplest approaches resulted to

be very effective, “Text Template” is a compact representation

of the form: “The <column name> is <value>”. This followed

by a task-specific prompt, that can later be fined-tuned for FSL.

TabLLM has been benchmarked for both binary and multi-

class problems, from datasets identified in key literature for

this task [19], [25], [44]. For simplicity, we will focus on the

binary tasks, as to ensure all tasks are of the same objective,

and metrics are comparable, e.g. AUC. A summary of their

benchmarking results is presented in Table II. For full details

refer to Table 12, 13 and 14 in [43].

The results show NN-based solutions, both TabPFN [47]

and TabLLM [43], substantially outperform LightGBM for

FSL, the improved performance by these techniques is such

that the minimal delta observed comes in the Bank dataset

where TabLLM shows an average (over 4 to 64 FSL) advan-

tage of 163% relative improvement [(0.642 − 0.5)/(0.554 −
0.5)] vs the GBDT solution. On the other extreme, the superi-

ority of TabLLM goes further to outperform LightGBM for as

much as 745% [(0.686− 0.5)/(0.522− 0.5)] for the Credit-g

experiment.

In the next section, we present our analysis regarding the

extreme underperformance from LightGBM, and our recom-

mendations to establish a fair baseline for a FSL application.

Increasing its performance to a more competitive level, and

hoping this serves as reference for future benchmarks in the

field.

III. PROPOSED SOLUTION

The process of FSL might have slightly different interpreta-

tions depending on the field, but the core concept remains, the

usage of only a few samples to train a model. This concept

holds for the tabular data use-case. Knowing this, is imperative

to understand how algorithms like LightGBM work in order

to build an effective FSL solution. The LightGBM algorithm

is a boosting approach using decisions trees (DT) to learn a

function from the input space Xs to the gradient space G [15],

the splitting criteria is reviewed below.

Given a training set with n i.i.d. instances {x1, ..., xn} ,

where each xi is a vector with dimension s in space Xs.

For each boosting iteration, the negative gradients of the loss

function with respect to the output of the model are denoted

as {g1, ..., gn} . The DT model splits each node to maximize

information gain, which is measured by the variance after

splitting. For a training set O on a fixed node, the gain of

splitting (V ) feature j at point d is defined as:

Vj|O(d) =
1

nO

(

(

Σ{xi∈:xij≤d}gi
)2

nj

l|O(d)
+

(

Σ{xi∈:xij>d}gi
)2

nj

r|O(d)

)

(1)

The problem however arises in practice since the optimiza-

tion is constrained so that the left nj

l|O(d) and right nj

r|O(d)
nodes have a minimum sample size. A segment of LightGBM

implementation is shown in Algorithm 1.

The minimum samples per leaf then becomes a blocker for

FSL, causing the algorithm to stall. Unable to perform any split

until training samples exceeds the min_samples_leaf param-

eter. Although previous works [43] have explored parameter

tuning based on literature recommendations [12], [19], this is

not being addressed, and as a result LightGBM shows random-

guess performance (e.g. 0.5 AUC) in most experiments, since

the default value for min_samples_leaf is set to 20.

In this work we propose a LightGBM configuration specif-

ically for FSL applications. We identified key parameters

needed as shown in Table III.

The most important parameter for FSL is, without a doubt,

min_data_in_leaf, as otherwise optimization cannot happen.
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TABLE II
TABLLM EXPERIMENTS RESULTS: LIGHTGBM (GBDT) VS NN-BASED (AUC)

Dataset Method 4-shot 8-shot 16-shot 32-shot 64-shot Average

Bank [44]

LightGBM
TabPFN

TabLLM

0.50
0.59
0.59

0.50
0.66
0.64

0.50
0.69
0.65

0.50
0.76
0.64

0.77
0.82
0.69

0.554
0.704

0.642

Blood [44]

LightGBM
TabPFN
TabLLM

0.50
0.52
0.58

0.50
0.64
0.66

0.50
0.67
0.66

0.50
0.70
0.68

0.69
0.73
0.68

0.538
0.652
0.652

Credit-g [44]

LightGBM
TabPFN

TabLLM

0.50
0.58
0.69

0.50
0.59
0.66

0.50
0.64
0.66

0.50
0.69
0.72

0.61
0.70
0.70

0.522
0.640
0.686

Diabetes [45]

LightGBM
TabPFN

TabLLM

0.50
0.61
0.61

0.50
0.67
0.63

0.50
0.71
0.69

0.50
0.77
0.68

0.79
0.82
0.73

0.558
0.716

0.668

Heart [46]

LightGBM
TabPFN
TabLLM

0.50
0.84
0.76

0.50
0.88
0.83

0.50
0.87
0.87

0.50
0.91
0.87

0.91
0.92
0.91

0.582
0.884
0.848

Income [12]

LightGBM
TabPFN

TabLLM

0.50
0.73
0.84

0.50
0.71
0.84

0.50
0.76
0.84

0.50
0.80
0.84

0.78
0.82
0.84

0.556
0.764
0.840

TABLE III
PROPOSED PARAMETERS FOR FSL APPLICATIONS IN LIGHTGBM

Parameter Description Default Recommended

extra_trees use extremely randomized trees false True

num_leaves max number of leaves in one tree 31 4

eta shrinkage rate 0.1 0.05

min_data_in_leaf minimal number of data in one leaf 20 1

feature_fraction subset of features on each tree 1.0 0.5

bagging_fraction select part of data without resampling 1.0 0.5

bagging_freq frequency for bagging 0 1

min_data_per_group number of data per categorical group 100 1

cat_l2 L2 regularization in categorical split 10 0

cat_smooth reduce noise-effect in categoricals 10 0

max_cat_to_onehot one-vs-other algorithm control 4 100

min_data_in_bin minimal number of data inside one bin 3 3

The same concept applies to any other parameter that relies

on counting of samples, such as min_data_per_group. In

general, it is required to minimize the restrictions here, this is

however a very bad practice for Non-FSL applications, leading

to overfitting, and should be used with care in any other types

of problems.

Due to the partition mechanism of DT, small sample-size

will generate a very constrained histogram, and a greedy

partition threshold is not desirable, to enhance this, the usage

of extremely randomized trees is required to ensure partition

splits are over represented in the tree structure.

In the next section we provide experimental results to

demonstrate the ability of LightGBM to do few-shot learning.

IV. EXPERIMENTS

Our experiment design covers two folds. First, we replicate

previous work [43], but apply our recommended methodology

to enable efficient FSL for LightGBM. Second, we bring a

practical application to incorporate FSL into larger-scale data,

this serves as reference that even if samples are vast, FSL can

provide benefits.

A. TabLLM Experiment Replication

Both TabPFN and TabLLM show similar performance in

average. Only a marginal improvement of 1% in favor of

TabPFN, however, both of those solutions outperform Light-

GBM over 343% in average, with extreme cases such as

Credit-g where the relative performance of TabLLM is 745%

better. While we were able to validate these numbers are

correct, our results show this extreme underperformance is

driven due to incorrect parameters.

We have replicated the binary problems. For the sake of

simplicity, our LightGBM does not include hyperparameter

tuning and instead executed with our fixed recommended

parameters as shown in Table III. This leads to intentional

underoptimization to disregard the effect of better tuning in

the results. We found LightGBM much more competitive as

seen in Table IV.
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Algorithm 1 LightGBM: feature_histogram Implementation

is_splittable_ = false;

//...

const auto grad = GET_GRAD(data_, t);

const auto hess = GET_HESS(data_, t);

sum_left_gradient += grad;

sum_left_hessian += hess;

left_count += cnt;

if (left_count < min_data_in_leaf) {

continue;

}

right_count = num_data - left_count;

if (right_count < min_data_in_leaf) {

break;

}

//...

is_splittable_ = true;

Our methodology improved the performance of LightGBM

by 290%, essentially reducing both TabLLM and TabPFN

claimed advantage by 84.5%.

LightGBM can outperform or meet TabLLM for 64-shot

performance in 5 out of 6 datasets, only missing for Income

dataset, where TabLLM performance is constant regardless the

number of shots. This is an interesting problem to review for

memorization.

For extreme low FSL, like 4 and 8 shot, we found Light-

GBM to be competitive, yet falling generally behind, this can

further be improved with parameter tuning, but gaps are large

to close still. Over 16-shots there is considerable performance

parity and as the shots increase LightGBM consistently starts

to take over. When enough samples are available, no perfor-

mance advantages were found from TabLLM or TabPFN, yet

both solutions are considerably slower to LightGBM.

B. FedCSIS 2024 Data Science Challenge

To further review performance and applications of FSL,

we applied our findings to the FedCSIS 2024 Data Science

Challenge hosted in the KnowledgePit platform, a web system

designed for ML competitions helping to bring collaboration

between industry and academia [48].

The challenge: Predicting Stock Trends, provides stock-

tickers and their performance as measured by 116 financial-

markers, such as: Dividend Payout Ratio, Gross Profit Margin,

and Price to Total Revenue per Share. The information is

provided for current Trailing Twelve Months (TTM), these

are static features, named I1 to I58. Another set, known as

relative-features, named dI1 to dI58 provide the relative 1-yr

change for such indicators.

This is a competition event that promotes an objective

evaluation of performance. Participants were asked to predict

the optimal investment strategy of securities among 3 actions:

buy, hold or sell. An in-depth review of the competition is

detailed in [49].

Initial Model: In order to establish a baseline we started our

simplest possible solution directly with DT, this due to its usual

superiority over other algorithms for tabular data that has not

been deeply feature engineered [50]. A LightGBM regression

model using all features as-is and the original discrete target

“Class” achieves 0.8439 mean absolute error (MAE). The

first insight came from feature importance, which suggests the

relative (dI*) variables far dominate the static set (I*) as seen

in Table V, taking 4 out of the top 5 spots. This inspired further

review to enhance generalization given the limited data size.

Sample and Feature Selection: Following Occam’s Ra-

zor principle, we challenged the value of the static features

(I*). When using all variables it’s possible to get 0.6018

AUC, an alternate variant for diversification would be to use

relative-features (dI*) only, this proves to be quite competitive,

retaining 95% of predictive power (0.5963 AUC), with a

50% reduction of features. This is important since the large

feature mismatch promotes orthogonal decisions boundary for

subsequent ensembling techniques.

Another diversification technique comes from instance sam-

pling. We studied the sample-size vs performance in the same

binary case to determine the right number of shots to use,

ideally the smaller the better for diversification in further

stages. Results are provided in Table VI where we can observe

even after a 40% sample size reduction (6864 to 4118) there

is zero impact in performance, and reducing further brings

minimal degradation, this provides an ideal framework for

FSL, as the ability to use few samples allows for stacking

level-0 models with non-overlapping samples.

Stacking Level-0 Models: Based on previous insights, we

determined that FSL is a viable strategy to enable multiple

orthogonal models. Although previous analysis was done in a

binary setting, these new models are built with the Perform

target in the dataset. Unlike the discrete buy/hold/sell, this

continuous representation allows the model to understand the

impact of each action, e.g. not all “buys” are equal, since

they provide different levels of financial gain/loss. Using a

3k shot-approach per model we forced diversification in the

sample space. In order to improve generalization, we used

the learnings that ExtraTrees outperforms GBDT in most FSL

settings. We did not create any feature engineering, but our

Base Feature Set is a concatenation of existing features over

multiple years for stock-tickers that are present more than once

in the dataset, only relative features (dI*) are used. The details

of each model and their respective performance is shown in

Table VII. Note that because we switched to Perform as target,

MAE is no longer optimal, so we optimized for the mean

squared error (MSE) instead.

Final Blend: Our Level-1 Meta model is fed with the five

different L0 configurations. MLPRegressor from sklearn was

selected for simplicity, architecture is 2 hidden-layers of 10
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TABLE IV
UNTUNED LIGHTGBM IMPROVED BASELINE PERFORMANCE (AUC)

Dataset Method 4-shot 8-shot 16-shot 32-shot 64-shot Average

Bank
Our LightGBM
LightGBM [43]

0.54
0.50

0.62
0.50

0.65
0.50

0.70
0.50

0.77
0.77

0.656
0.554

Blood
Our LightGBM
LightGBM [43]

0.50
0.50

0.63
0.50

0.67
0.50

0.70
0.50

0.71
0.69

0.642

0.538

Credit-g
Our LightGBM
LightGBM [43]

0.60
0.50

0.64
0.50

0.62
0.50

0.65
0.50

0.70
0.61

0.642

0.522

Diabetes
Our LightGBM
LightGBM [43]

0.50
0.50

0.62
0.50

0.65
0.50

0.71
0.50

0.78
0.79

0.652

0.558

Heart
Our LightGBM
LightGBM [43]

0.78
0.50

0.85
0.50

0.88
0.50

0.90
0.50

0.91
0.91

0.864
0.582

Income
Our LightGBM
LightGBM [43]

0.60
0.50

0.68
0.50

0.77
0.50

0.81
0.50

0.83
0.78

0.738

0.556

TABLE V
COMPETITION: TOP FINANCIAL INDICATORS AS DETERMINED BY LGBM BASELINE MODEL

Feature Description Importance

dI58 1-year Absolute Change of Price to Cash Flow from Operations per Share 1.000

I57 Cash Flow from Operations Pct of Capital Expenditures 0.725

dI52 1-year Absolute Change of Cash Ratio 0.675

dI43 1-year Absolute Change of Dividend Yield - Common - Net - Issue - % 0.613

dI56 1-year Absolute Change of Book Value Percentage of Market Capitalization 0.537

I5 Excess Cash Margin - % 0.536

dI57 1-year Absolute Change of Cash Flow from Operations Pct of Capital Expenditures 0.521

Group Industry sector 0.520

I24 Accounts Receivable Turnover 0.471

dI17 1-year Absolute Change of Debt - Total to EBITDA 0.404

dI44 1-year Absolute Change of PE Growth Ratio 0.377

TABLE VI
COMPETITION: SAMPLE SIZE EFFECT IN PERFORMANCE

Sample Size AUC

6,864 0.6018

6,178 0.6098

5,491 0.6027

4,118 0.6055

1,373 0.5835

686 0.5887

and 5 neurons with ReLU activation [51]. Optimization is still

using Perform target, with a 10% validation sample size and

adam optimizer [52]. Early stopping is based on R2 score with

64 max epochs.

Since the competition requires discrete actions

(buy/hold/sell) instead of expected performance, we optimize

the performance-to-action thresholds by ensuring the same

action-distribution between train and test. This solution has

ranked 1st place in the event, with a MAE score of 0.772,

which represents a 3.66% and 7.12% relative improvement

against 2nd and 10th place respectively.

V. CONCLUSIONS

When the merit of a proposal is measured by its relative

performance to a baseline, the baseline itself is equally, or

even more important than the proposal. It is trivial to show a

solution is good by simply selecting a weak reference point

to compare with. Efforts invested in a new proposal can

also be applied to improve a baseline. In this work we have

improved LightGBM FSL performance found in literature by

290%. Improvements of this magnitude are unusual with just

parameter optimization.

Our results show GBDT can perform few-shot-learning

(FSL) with surprising performance with as little as 8-shots.

And when data is available, FSL can be used to force diver-

sification between individual models in ensemble or stacking

architectures.

While global optimum is too expensive to reach, its im-

perative to learn the inner caveats of algorithms to exploit

their strengths to reasonable levels. Our solution in FedCSIS
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TABLE VII
LEVEL-0 MODELS FOR FEDCSIS24: STOCK PREDICTION COMPETITION

Model Features Target MSE

ExtraTrees Base Feature Set Original 0.020039

GBDT Base Feature Set Original 0.020051

ExtraTrees Base Feature Set Quantile(0.5%,99.5%) 0.019609

ExtraTrees Base with Categorical Removed Original 0.020088

ExtraTrees Base with static features added back Original 0.020055

competition shows the importance of understanding your algo-

rithms to maximize performance, both the FSL approach for

diversity and ExtraTrees to fight overfitting proved to be very

successful in our experiments to achieve 1st place.
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