
Towards Evolvable APIs through Ontological
Analysis

Nikolas Jíša
0009-0005-1551-2740

Czech Technical University in Prague
Thákurova 9, 160 00 Prague 6, Czech Republic

Email: jisaniko@fit.cvut.cz

Robert Pergl
0000-0003-2980-4400

Czech Technical University in Prague
Thákurova 9, 160 00 Prague 6, Czech Republic

Email: robert.pergl@fit.cvut.cz

Abstract—In recent times, the growth of technology toward
decentralized solutions and microservice architecture has made
Application Programming Interfaces (APIs) crucial for connect-
ing different parts of business software systems. Although the
technologies for developing and using APIs are quite stable,
the fast-changing business world demands that APIs be easy
to maintain and adapt. Currently, changes in APIs made by
API providers often imply required updates on the side of API
consumers, which can be costly and prone to mistakes. This
paper analyzes the types of changes in APIs and uses this analysis
to build a detailed model that shows the relationships between
API consumers and API providers. This model helps visualize
these relationships and can serve as a stepping stone for further
automation. As a means of possible evolvable realization, we
discuss the Normalized System Theory and implementation.

I. INTRODUCTION

O
VER the past few decades, there has been an extraordi-
nary surge in technological progress, particularly evident

in the widespread incorporation of the Internet into various
aspects of our daily routines, such as social networking, e-
commerce and banking [1]. In [2], Kurzweil proposes an
extension to Moore’s Law to apply the exponential growth
of hardware progress to also include software and other
technological areas. One such technological area could be
the Internet, which incorporates a multitude of distributed
systems, where services frequently depend on one another to
function effectively. Among these distributed systems, there
are client-server applications that can be realized through
Application Programming Interfaces (APIs). Naturally, APIs
evolve and are subject to changes, which is also acknowledged
by Lamonthe et al. in [3]. Changes in an API on the side of
the API Provider can imply other necessary changes on the
side of API consumer for given API to continue to function
as expected. However, keeping up with all the changes of
all consumed APIs in a system, to ensure that the expected
behavior matches the actual behavior, can be challenging [3].
This further highlights the critical importance of research and
inquiries aimed at optimizing API development, especially if
Kurzweil’s Law of Accelerating Returns is right.

The focus of this paper is the management of changes
on the side of the API consumer implied by updates of the
consumed API with the goal of introducing more automation
and reducing the manual labor needed on the side of API

consumer. We delve into an analysis of this problem and then
put together categories of conditions that must be satisfied
for the consumption of an API to work as expected. These
categories of conditions are closely related to changes on the
side of API provider, implying changes on the side of API
consumer. Finally, we establish an API ontological model for
both the API provider side and the API consumer side, with
an emphasis put on the API changes. Then use this model
to argue about API evolvability challenges and their possible
addressing.

The remainder of this paper is structured as follows. Sec-
tion II describes the research methodology and the research
goal. Section III explains relevant terms used in this paper and
section IV lists existing related research works. In section V,
the relevant changes in the APIs are delineated and the
ontological model based on these changes is described. Sec-
tion VI discusses usability of the model. Section VII evaluates
the model using the identified change drivers. Section VIII
concludes this paper and also mentions some ideas on follow-
up research.

II. RESEARCH OVERVIEW

A. Research Methodology

The research presented in this paper adheres to Design
Science Research Methodology (DSRM) [4] comprising three
interconnected cycles: 1) Relevance Cycle, which kicks off
the research by linking it to real-world needs, outlining what
needs to be studied, and setting clear standards for judging the
outcomes 2) Rigor Cycle, which ensures research innovation
by assembling existing knowledge as the foundation for the
study 3) Design Cycle, which involves constructing an artifact,
evaluating it, and incorporating feedback. This central cycle is
based on the other two.

The relevance cycle for this paper is described in sec-
tion II-B. The rigor cycle is described in section IV. The
design cycle and its results are described in section V and
their evaluation is given in section VII.

B. Research Goal

The goal of this paper is to contribute to machine actionabil-
ity (i.e. automation) of changes on the side of API consumer

Communication Papers of the 19th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 61–68

DOI: 10.15439/2024F3164
ISSN 2300-5963 ACSIS, Vol. 41

©2024, PTI 61 Topical area: Software, System and Service Engineering



implied by updates of given consumed API as depicted in
Figure 1. The research questions are as follows.

RQ1: What are the changes of APIs on the side of API
providers, that might imply necessity of changes on the
side of API consumers, for the calling of API methods
to continue working in the desired manner?

RQ2: What ontological model could describe APIs from
the point of view of these changes?

As an evaluation of the model, we represent an API using the
designed API model to illustrate it and visualise the identified
changes in the model.

API Consumer
(new version)

API (old version)

API (new version) API
Call

Call API (old version)

Call API (new version)

Update to new version Manual Update

API Consumer
(old version)

API
Call

Implies

Fig. 1: API update schema

III. THEORETICAL BACKGROUND

A. Application Programming Interface (API)

According to Reddy in [5]: ”An Application Programming

Interface (API) provides an abstraction for a problem and

specifies how clients should interact with software components

that implement a solution to that problem." In this paper, we
distinguish the side of API provider, which is the side that
provides functionality in the form of API methods, and the side
of API consumer, which is the side that consumes functionality
by calls to API methods provided by the side of API provider.

B. Ontology

In this article, the term ontology has the meaning of
(Computational) ontology defined in [6] as follows:
”Computational ontologies are a means to formally model the

structure of a system, i.e., the relevant entities and relations

that emerge from its observation, and which are useful to our

purposes. An example of such a system can be a company with

all its employees and their interrelationships."

C. Static Analysis

According to Rival et al. in [7]: ”Static analysis is an auto-

matic technique for program-level analysis that approximates

in a conservative manner semantic properties of programs

before their execution."

D. Normalized Systems Theory

Normalized Systems Theory (NST) [8] is a theory based
on fine-grained modularity with goal to make systems more
evolvable and stable, specifically by elimination of Combina-
torial Effects. Compliance to fine-grained modularity ensures
that complex system is broken down into small components

that together form the system. NST involves four theorems as
follows: T1: Separation of Concerns: A processing function
can only contain a single task in order to achieve stability
T2: Action Version Transparency: A processing function that
is called by another processing function, needs to exhibit
version transparency in order to achieve stability T3: Data
Version Transparency: A structure that is passed through the
interface of a processing function needs to exhibit version
transparency in order to achieve stability T4: Separation of
States: Calling a processing function within another processing
function needs to exhibit state keeping in order to achieve
stability.

There exists an implementation of NST developed by NSX1

as described in [9] that has been successfully applied to
multiple real-world projects. This implementation introduces
five types of elements aligned with basic software concepts as
follows:

• Data Elements for data variables and structures
• Task Elements for instructions and functions
• Flow Elements for flows and orchestrations
• Connector Elements allowing input/output commands
• Trigger Elements allowing to setup triggers.

In addition to these elements, and NST Theorems, this im-
plementation is based on code generation via expanders. Ex-
panders are used to create instances of the elements and allow
isolation of cross-cutting concerns in most cases; situations
that would be difficult to cover with expanders can be handled
with custom code.

E. Combinatorial Effect

According to [8], combinatorial effect is characterized by a
change whose significance is influenced not only by the nature
of the alteration itself, but also by the scale or scope of the
system that undergoes the change.

F. FAIR Principles

FAIR principles are rules for scientific data management
and stewardship, which were established in [10]: ”Distinct

from peer initiatives that focus on the human scholar, the FAIR

Principles put specific emphasis on enhancing the ability of

machines to automatically find and use the data.". Each letter
of the FAIR acronym represents a group of principles:

F: Findability; F1: (Meta)data are assigned a globally unique
and persistent identifier F2: Data are described with rich
metadata (defined by R1 below) F3: Metadata clearly and
explicitly include the identifier of the data it describes
F4: (Meta)data are registered or indexed in a searchable
resource

A: Accessibility; A1: (Meta)data are retrievable by their
identifier using a standardized communications protocol
A1.1: The protocol is open, free, and universally imple-
mentable A1.2: The protocol allows for an authentication
and authorization procedure, where necessary A2: Meta-
data are accessible, even when the data are no longer
available

1https://normalizedsystems.org/about-us/

62 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



I: Interoperability; I1: (Meta)data use a formal, accessible,
shared, and broadly applicable language for knowledge
representation I2: (Meta)data use vocabularies that follow
FAIR Principles I3: (Meta)data include qualified refer-
ences to other (meta)data

R: Reusability; R1: Meta(data) are richly described with plu-
rality of accurate and relevant attributes R1.1: (Meta)data
are released with a clear and accessible data usage license
R1.2: (Meta)data are associated with detailed provenance
R1.3: (Meta)data meet domain-relevant community stan-
dards.

Although originally formulated for scientific data, they have
been adopted to generally drive advances in the management
of all types of digital objects [11]. In our work, we do
not address the full scope of FAIR principles, just the parts
important for machine-actionability of API evolvability.

IV. RELATED WORK

First, we reviewed state-of-the-art of API evolvability re-
search, and later we tried to find related ontologies to our
desired API model.

A. API Evolvability Related Work

In [3] Lamonthe et al. review API Evolvability literature
and, among other things, list open challenges and gaps in the
research area. From these open challenges, we identified the
following as being the most relevant for our paper (we also
included labels from [3]):

1) EC-2 Providing a commercially viable API migration
solution

2) EC-10 More tools to help with Web APIs
3) EC-15 Automatically identify factors driving API

Changes
4) UC-9 Tools to help API developers deal with API migra-

tion, not just users.
For EC-2 and UC-9, there exist approaches that attempt

to resolve these challenges. We identified most of the pub-
lications mentioned in this paragraph by applying snow-
balling [12] to [3]. In [13], Brito et al. introduce AppDiff
system, which can identify breaking and non-breaking changes
between two versions of a Java library based on similarity
heuristics and static analysis and in [14], Dagenais et al.
introduce SemDiff tool which recommends replacements for
framework methods that were accessed by a client program
and deleted during the evolution of the framework. However,
these tools have not yet provided a commercially viable
solution [3]. In [15] Ramos et al. introduce the MELT system,
which can extract transformations for the API Consumer side
based on the analysis of pull requests on the API Provider side
based on static analysis and natural language processing of
descriptions in pull requests and comments. In [16] Deshpande
et al. address problem of API migration with multi-objective
evolutionary algorithms without being limited to scenarios of
source method getting transformed always only to single target
method (one-to-one mappings), which makes this approach
applicable also to scenarios of one or multiple source methods

getting mapped to multiple target methods (one-to-many and
many-to-many mappings). In [17], Lamothe et al. introduce
system A3 for API migration of Android applications based
on generation of migration code from code examples. There
are also other approaches based on program synthesis that
utilize examples of mapping of API calls from one version to
another in order to generate transformation procedure. One
such example is APIFIX tool introduced in [18], another
example is ReFazer tool introduced in [19]. In [20] Beuer-
Kellner et al. introduces an API Migration approach based
on a service handling conversion of data structures between
different versions of APIs. In [21] Huang et al. propose API
Mapping approach MATL which leverages transfer learning
technique to automatize API mapping without necessarily
having knowledge of underlying source code of concerned
APIs. One other idea is to have developers on the side of API
Providers create transformation scripts for API Consumers to
help update API calls from one version of API to another [3].
Similarly to our goal, the mentioned techniques deal with
improving API migration. However, our focus is on providing
an analytical method based on APIs modeling to identify
change drivers. Our approach can then be used in combination
with these techniques and other implementation technologies,
such as the Normalized Systems we discuss here.

For EC-10, according to [22] Web API providers also
control runtime of APIs and can do changes anytime with
severe consequences to Web API consumers as opposed to
Library APIs. Additionally, Web APIs often lack machine-
undrestandable specifications, and data are often passed over
strings. Our paper focuses on APIs in general, and the pro-
posed API Model can later be used as a basis for contribution
to Web API tooling.

For EC-15, according to Granli et al. in [23], the largest
driving force for API changes is the desire for new function-
ality with changes occurring sporadically rather than contin-
uously, and the Law of Conservation of Organization Stabil-
ity [24] is not a considerable factor. The case study by Hou
et al. in [25] shows the reasons for the changes during the
evolution of the AWT2/Swing3 library. The case study by
Zarras et al. in [26] shows detection of evolution patterns and
regularities based on Lehman’s laws of software evolution.
In contrast to the studies mentioned above, in this paper, we
distinguish changes by the entities concerned.

B. Related Work on API Ontologies

In [27], Karavisileiou proposes a reference ontology based
on OpenAPI Specification4 for Representational State Trans-
fer (REST) services and a procedure to convert OpenAPI
Specification description into this ontology. This ontology is
somewhat different from what we aim to do here, since it does
not place an emphasis on combinatorial effects.

2https://docs.oracle.com/javase/7/docs/api/java/awt/package-summary.
html

3https://docs.oracle.com/javase/7/docs/api/javax/swing/
package-summary.html

4https://spec.openapis.org/oas/latest.html

NIKOLAS JÍŠA, ROBERT PERGL: TOWARDS EVOLVABLE APIS THROUGH ONTOLOGICAL ANALYSIS 63



In [28], Togias proposes a ontology for social network API.
Although the ontology is specifically meant for social network
APIs rather than APIs in general, multiple parts of the model
are also applicable to APIs in general. In our ontological
model, we use multiple entities that have similarities in this
ontology.

In [29], Androces introduces Platform as a Service (PaaS)
ontology. Although this ontology contains some entities that
are applicable to our desired API ontological model (such as
Operation or API), most of the entities are specific to the
PaaS area.

There are also multiple API description formats, which can
also be considered as types of ontologies on their own, because
these formats support structured metadata that describe APIs
semantically and therefore conform to ontology as defined
in section III-B. Examples are OpenAPI Specification4, API
Blueprint 5 and SmartAPI6. Although all of these API descrip-
tion formats contain rich structured metadata, they do not focus
on API change management.

V. IMPLEMENTATION AND RESULTS

A. Problem Analysis

From what Wilkinson et al. describe in [10], compliance
of a system with FAIR Principles helps to introduce machine
actionability in general. Therefore, compliance of APIs with
FAIR Principles could be a starting point to make changes
on the side of the API consumer implied by updates on the
side of API provider machine actionable. However, structured
rich metadata (from F2 and I1) must contain relevant data for
API changes on the side of API provider which impact the
side of API consumer. Furthermore, the API version before
an update and the API version after the update should have
metadata in the same format, so that the metadata after the
update can be compared with metadata before the update to get
the semantic representation of the API update. This semantic
representation of the API update shall then serve as an input
for the automation of changes on the side of the API consumer
implied by the update of API on the side of API provider.

To make APIs comply with FAIR Principles, generally, a
structured API description conforming to an ontology such
as one of ontologies mentioned in section IV would suffice.
However, since the ontologies mentioned in section IV are not
meant for managing API changes on both the API provider
side and the API consumer side, we need to create our
own ontology. The changes are analyzed in section V-B and
based on these changes a ontological API model is created in
section V-C.

B. API Change Drivers

Based on analysis of changes in multiple APIs, in order
to better understand change drivers (i.e. reasons to change),
we put together three categories of conditions that must be
satisfied between the call to the API consumer method and

5https://apiblueprint.org/documentation/specification.html
6https://smart-api.info/

the API method itself on the side of the API provider. If
any condition in any of these categories changes on either
side, changes on the other side may also be required for
the API consumer to be able to call the given API method
with the desired behavior. The conditions are as follows:
C1: Correspondence of data transfer settings such as protocol
settings and endpoint settings C2: Correspondence of API
method signature and its meaning (on side of API provider)
with API method call and its expected meaning (on side of
API consumer) C3: Correspondence of API method behavior
on side of API provider with expected behavior on side of API
consumer. Examples of changes affecting given conditions are:

E1: Change to different communication protocol (af-
fects C1)

E2: Change of communication protocol settings such as
change of authentication, encryption, encoding, serializa-
tion ... (affects C1)

E3: Change of signature of API method (affects C2):

• Change of API method name or return type
• Creation or deletion of a API method parameter
• Change of order of API method parameters
• Change of API method parameter name or parameter

type

E4: Deletion of API method (affects C2, C3)
E5: Change of meaning of API method return value or
parameter values (such as change of expected units from
kilometers to meters) (affects C3)

E6: Change of API method pre-conditions / post-
conditions (affects C3)

E7: Change of API method behavior (affects C3)
E8: Change of API method mechanism resulting in drastic

decrease of performance (affects C3)

C. API Ontological Model

We decided to create a new model from scratch inspired
by these existing API ontologies rather than using any of
the mentioned models (such as, for example, OpenAPI) as
a starting point, because we wanted our model to focus
on change drivers for modifications on API consumer side
implied by modifications on API provider side and also to
be more abstract than the existing API ontologies mentioned
in section IV-B. We utilized Visual Paradigm Community7 for
the creation of models and diagrams.

1) API Provider Side Model: Based on our analysis of the
change drivers in the previous section, we first created the API
model of the side of API provider in the UML class diagram,
which is shown in Figure 2. We represent the ontology in plain
UML notation instead of using a formal ontology modeling
framework (such as OntoUML [30]) because given the tech-
nical terms involved in modeling APIs, using such frameworks
would add unnecessary complexity without providing benefits
for our goal. The idea of this model is the following. 1) API

Provider provides APIs 2) API contains API Methods
3) API Method contains API Method Signature, API

7https://www.visual-paradigm.com/

64 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



API API Method

+name : string

+dataType

API Method Parameter

+behavior

API Method Behavior

+qualifiedName : string

+resultDataType

API Method Signature

API Provider

+endpoint

+otherSettings

API Method Data Transfer

Settings

Provides

1..*

1

1

*
1

1

1

1

1

1..*

APIMethodBehaviorGS {non-disjoint, complete}

1
<<depends on>>

1

1

1
*

1

1

1..*

1..*

1
1

11

1

API Method Behavior Mapping

Input to Output

API Method Behavior

with Side Effects

APIMethodBehaviorGS {non-disjoint, complete}

Fig. 2: The suggested API ontological model

Method Behavior and API Method Data Trans-

fer Settings 4) API Method Signature contains
name, resultDataType and API Method Parame-

ters 5) API Method Parameter contains name and
dataType 6) API Method Behavior represents the be-
havior of the method. It can be API Method Behavior

Mapping Input to Output and it can also be API

Method Behavior with Side Effects; this model
does not specify exactly how the behavior is defined - it
could be, for example, natural text description, pseudocode,
mapping function, or source code 7) API Method Data

Transfer Settings involves the configuration of com-
munication protocol, including serialization settings, authen-
tication settings, encryption settings, endpoint settings, ...;
this model does not specify how exactly the endpoint

and otherSettings are defined - endpoint could be,
for example, defined by Uniform Resource Locator (URL)
and otherSettings could be defined in another structured
object.

2) API Consumer Side Model: Next, we extend the model
by incorporating the API consumer side and highlight the
dependencies between the API consumer side and the API
provider side with red dashed lines in Figure 3. The idea of
the entities in this model is the following: 1) API provider
side elements are in orange color and have the same meaning
as in Figure 2 2) API consumer side elements are in red color
3) API Consumer represents the entity consuming an API

4) API Method Call represents a call of API Method

by API Consumer; it consists of name and API Method

Call Parameter Assignments; it has API Method

Call Data Transfer Settings and it can also have
API Method Call Result Value Syntactic and

Semantic Processing 5) API Method Call Data

Transfer Settings involves configuration of commu-

nication protocol, including serialization settings, authentica-
tion settings, encryption settings, endpoint settings, ...; this
model does not specify how exactly the endpoint and
otherSettings are represented 6) API Method Call

Parameter Assignment represent what should be as-
signed to API Method Parameter identified by name

and dataType in API Method Call; this model does not
specify exactly how the assignment is defined - it could
be, for example, natural text description, pseudocode, map-
ping function, or source code 7) API Method Call Re-

sult Value Syntactic and Semantic Process-

ing represents processing of the result value of the API

Method Call; this model does not specify exactly how the
processing is defined - it could be, for example, natural
text description, pseudocode, mapping function, or source
code.

As depicted in Figure 3, the API consumer side entities
directly depend on the API provider side entities as follows:
1) API Method Call directly depends on API Method

Signature 2) API Method Call Data Transfer

Settings directly depends on API Method Data

Transfer Settings 3) API Method Call Result

Value Syntactic and Semantic Processing

directly depends on API Method Behavior and
API Method Signature 4) API Method Call

Parameter Assignment directly depends on API

Method Behavior and API Method Parameter.

VI. DISCUSSION

Analysis of potential changes on the side of the API
provider that could imply changes on the side of API consumer
answers RQ1 in section V-B and we also pointed out the
meaning of these changes and some of their possible sources.
For RQ2, the answer is the ontological model described in sec-
tion V-C. The model serves to clarify the ontological aspects

NIKOLAS JÍŠA, ROBERT PERGL: TOWARDS EVOLVABLE APIS THROUGH ONTOLOGICAL ANALYSIS 65



API API Method

+name : string

+dataType

API Method Parameter

+behavior

API Method Behavior

+qualifiedName : string

+resultDataType

API Method Signature

API Provider

API Consumer

+qualifiedName : string

API Method Call

+processing

API Method Call Result Value

Syntactic and Semantic Processing

+name : string

+dataType

+assignment

API Method Call Parameter

Assignment

+endpoint

+otherSettings

API Method Data Transfer

Settings

has 0..11

+endpoint

+otherSettings

API Method Call Data

Transfer Settings

1

*

Provides

1..*

1

1

1

*
1

1

1

1

1

1

1..*

1

1..*

APIMethodBehaviorGS {non-disjoint, complete}

1
<<depends on>>

1

has

1..*

1

<<depends on>>

1

<<depends on>>

<<depends on>>

1

<<depends on>>

<<depends on>>

*

<<depends on>>

1

1

1..*

1..*

1
1

1

1

11

1

*

API Method Behavior Mapping

Input to Output

1

API Method Behavior

with Side Effects

1

APIMethodBehaviorGS {non-disjoint, complete}

0..1

Fig. 3: API ontological model with both provider side and consumer side

of API, API provider, API consumer, and their relationships.
We opt for a model that is sufficiently generic to describe
most APIs without being limited by any specific domain in
context of APIs such as [29] or [28]. Nevertheless, our model
focuses on evolvability and change drivers, therefore, some
API components (for OpenAPI for example License Object)
do not have explicit semantic constructs in our model, and
some other API components are defined only in an abstract
manner (for OpenAPI for example Server Object, which is
abstractly defined as part of API Method Data Transfer Set-
tings in our model). Although the model is relatively simple,
it can represent and be used for change analysis of any size
of a real-world API (just the number of instances grows).
The only current limitation is that it does not cover inter-
instance dependencies, i.e. changes of one endpoint causing
changes in another one. The identified change drivers could
serve as a basis for applying NST, which could help mitigate
combinatorial effects that cause a change made to an API
system to require the same effort and scope as making the
same change to a future evolved version of the API system,
even if it were a thousand times larger.

To detect changes on the side of API Consumers implied by

changes on the side of API Providers, artifacts such as source
code, documentation artifacts, or other artifacts generated from
source code or documentation artifacts could be used. One of
the ways would be to compare the artifacts for a new API
version with the artifacts for the previous API version. This
comparison could be automatically activated as soon as a new
version of API is detected and the result of this comparison
could trigger a notification or even an automated script,
which could update API consumption calls automatically or
with possibly minimal manual intervention in the form of
confirmation.

In this paper, we have considered API on an abstract level
and have not covered areas in lower levels of abstraction such
as security settings, licensing, or areas of concrete protocols
and technologies used with APIs. Also, we have not done
detailed investigation of cases when an API called (directly or
indirectly) by API provider gets updated and indirectly implies
changes to the side of API consumer. We have considered
these cases to be the same as direct modifications on the
side of API provider implying changes to the side of API
consumer. We also have not covered the options concerning
implementation beyond suggesting the Normalized Systems,

66 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Example Map Provider : API

Provider

Example Map API : API

has

endpoint = https://example.map.api/CalculateDistance

Calculate Distance Settings : API Method Data

Transfer Settings

Provides

Calculate Distance : API

Method

qualifiedName = CalculateDistance

resultDataType = double

Calculate Distance Signature :

API Method Signature

name = a

dataType = point

Calculate Distance A Parameter : API

Method Parameter

behavior = sqrt((b.x-a.x)^2+(b.y-a.y)^2)

Calculate Distance Behavior : API Method

Behavior Mapping Input to Output

name = b

dataType = point

Calculate Distance B Parameter : API

Method Parameter

qualifiedName = CalculateDistance

Calculate Distance Call : API

Method Call

has

Pizza Delivery Application :

API Consumer

<<depends on>>

endpoint = https://example.map.api/CalculateDistance

Calculate Distance Call Settings : API Method Call

Data Transfer Settings

<<depends on>>

<<depends on>>

<<depends on>>

processing = <Store Result to Variable "distance">

Calculate Distance Call Result Value Processing : API Method

Call Result Value Syntactic and Semantic Processing

<<depends on>>

<<depends on>>

name = a

dataType = point

assignment = <Delivery Point>

Calculate Distance Call B Parameter Assignment :

API Method Call Parameter Assignment

<<depends on>>

name = a

dataType = point

assignment = <Location of Pizzeria>

Calculate Distance Call A Parameter Assignment :

API Method Call Parameter Assignment

Fig. 4: Example of an API representation in API Ontological Model

which would be out of the scope of this paper.

VII. EVALUATION

To verify that our model is applicable and that it can
expicitly vizualize the relevant change drivers, we represent
an example API with our model and later demonstrate the
readability of the relevant change drivers.

Let us consider an Example Map API which has method
CalculateDistance accepting parameters a and b which
are of type Point, which has members x and y of
type double, and the return value is of type double.
The Point type could be defined in programming lan-
guage C as struct Point { double x; double y;

} and the CalculateDistance method would have sig-
nature double CalculateDistance(struct Point

a, struct Point b). Let us also consider an application
for pizza delivery that consumes the API. Both the API
consumer side and the API provider side could be represented
in API Ontological Model as demonstrated in the UML Object
Diagram8 in Figure 4 which can be considered an instance of
the model in Figure 3.

The model makes change drivers explicit to see, which we
demonstrate on examples listed in section V-B as follows:

• Changes of API Method Data Transfer Set-

tings in E1 and E2 are changes of API Method

Data Transfer Settings on the side of API

8https://www.omg.org/spec/UML

provider and imply changes of API Method Call

Data Transfer Settings on the side of API con-
sumer.

• Changes of API Method Signature in E3 and E4

signify changes of API Method Signature and
API Method Parameter on the side of API
provider and imply changes of API Method Call,
API Method Call Result Value Syntactic

and Semantic Processing and API Method

Call Parameter Assignment on the side of API
consumer.

• E5, E6, E7 and E8 are changes of API

Method Behavior on the side of API provider
and imply changes of API Method Call

Parameter Assignment and API Method Call

Result Value Syntactic and Semantic

Processing on the side of API consumer.

VIII. CONCLUSION

The main contribution of this paper is the API ontological
model, which makes it easier to see how changes on the side
of the API provider affect the side of API consumer. Problem
Analysis, among other things, suggests the idea of using the
API ontological model as a basis for the automation of changes
on the side of the API consumer implied by changes on the
side of API provider. This automation could also involve an
application of NST. The model could also be extended by
introducing a structure to unstructured data (such as behav-

NIKOLAS JÍŠA, ROBERT PERGL: TOWARDS EVOLVABLE APIS THROUGH ONTOLOGICAL ANALYSIS 67



ior, assignment, endpoint or otherSettings) and
also the idea of API SDK libraries could be applied to our
model. Another interesting idea for further research would be
to implement conversions between our model and other API
ontology models or API description formats such as OpenAPI
Specification or API Blueprint, which would make it easier to
apply our model to existing APIs.

Statement on the use of AI

AI technologies (Writefull and ChatGPT) were used but
only to improve the language of the paper.

REFERENCES

[1] L. Rainie and B. Wellman, The Internet in Daily Life: The Turn to

Networked Individualism, 07 2019, pp. 27–42. ISBN 9780198843498
[2] R. Kurzweil, The Law of Accelerating Returns. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2004, pp. 381–416. ISBN 978-3-662-05642-
4. [Online]. Available: https://doi.org/10.1007/978-3-662-05642-4_16

[3] M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A systematic
review of api evolution literature,” ACM Comput. Surv., vol. 54,
no. 8, oct 2021. doi: 10.1145/3470133. [Online]. Available: https:
//doi.org/10.1145/3470133

[4] A. Hevner, “A three cycle view of design science research,” Scandina-

vian Journal of Information Systems, vol. 19, 01 2007.
[5] M. Reddy, API Design for C++. Elsevier Science, 2011. ISBN

9780123850041. [Online]. Available: https://books.google.cz/books?id=
IY29LylT85wC

[6] N. Guarino, D. Oberle, and S. Staab, What Is an Ontology?

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–17.
ISBN 978-3-540-92673-3. [Online]. Available: https://doi.org/10.1007/
978-3-540-92673-3_0

[7] X. Rival and K. Yi, Introduction to static analysis: an abstract inter-

pretation perspective. Mit Press, 2020.
[8] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:

From Foundations for Evolvable Software Toward a General Theory

for Evolvable Design. nsi-Press powered bei Koppa, 2016. ISBN
9789077160091. [Online]. Available: https://books.google.cz/books?id=
0rA_tAEACAAJ

[9] G. Oorts, K. Ahmadpour, H. Mannaert, J. Verelst, and A. Oost, “Easily
evolving software using normalized system theory-a case study,” Pro-

ceedings of ICSEA, pp. 322–327, 2014.
[10] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Ax-

ton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E.
Bourne et al., “The fair guiding principles for scientific data management
and stewardship,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[11] K. De Smedt, D. Koureas, and P. Wittenburg, “Fair digital objects for
science: From data pieces to actionable knowledge units,” Publications,
vol. 8, no. 2, 2020. doi: 10.3390/publications8020021. [Online].
Available: https://www.mdpi.com/2304-6775/8/2/21

[12] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th

international conference on evaluation and assessment in software

engineering, 2014, pp. 1–10.
[13] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Apidiff: Detecting

api breaking changes,” in 2018 IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER), 2018. doi:
10.1109/SANER.2018.8330249 pp. 507–511.

[14] B. Dagenais and M. P. Robillard, “Semdiff: Analysis and recommenda-
tion support for api evolution,” in 2009 IEEE 31st International Confer-

ence on Software Engineering, 2009. doi: 10.1109/ICSE.2009.5070565
pp. 599–602.

[15] D. Ramos, H. Mitchell, I. Lynce, V. Manquinho, R. Martins, and C. L.
Goues, “Melt: Mining effective lightweight transformations from pull re-
quests,” in 2023 38th IEEE/ACM International Conference on Automated

Software Engineering (ASE), 2023. doi: 10.1109/ASE56229.2023.00117
pp. 1516–1528.

[16] N. Deshpande, M. W. Mkaouer, A. Ouni, and N. Sharma, “Third-party
software library migration at the method-level using multi-objective
evolutionary search,” Swarm and Evolutionary Computation, vol. 84,
p. 101444, 2024. doi: https://doi.org/10.1016/j.swevo.2023.101444.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S221065022300216X

[17] M. Lamothe, W. Shang, and T.-H. P. Chen, “A3: Assisting an-
droid api migrations using code examples,” IEEE Transactions on

Software Engineering, vol. 48, no. 2, pp. 417–431, 2022. doi:
10.1109/TSE.2020.2988396

[18] X. Gao, A. Radhakrishna, G. Soares, R. Shariffdeen, S. Gulwani,
and A. Roychoudhury, “Apifix: output-oriented program synthesis for
combating breaking changes in libraries,” Proceedings of the ACM on

Programming Languages, vol. 5, no. OOPSLA, pp. 1–27, 2021.
[19] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,

R. Suzuki, and B. Hartmann, “Learning syntactic program transforma-
tions from examples,” in 2017 IEEE/ACM 39th International Conference

on Software Engineering (ICSE), 2017. doi: 10.1109/ICSE.2017.44 pp.
404–415.

[20] L. Beurer-Kellner, J. von Pilgrim, C. Tsigkanos, and T. Kehrer, “A
transformational approach to managing data model evolution of web
services,” IEEE Transactions on Services Computing, vol. 16, no. 1, pp.
65–79, 2023. doi: 10.1109/TSC.2022.3144613

[21] Z. Huang, J. Chen, J. Jiang, Y. Liang, H. You, and F. Li, “Mapping
apis in dynamic-typed programs by leveraging transfer learning,”
ACM Trans. Softw. Eng. Methodol., vol. 33, no. 4, apr 2024. doi:
10.1145/3641848. [Online]. Available: https://doi.org/10.1145/3641848

[22] E. Wittern, “Web apis - challenges, design points, and research
opportunities: invited talk at the 2nd international workshop on
api usage and evolution (wapi ’18),” in Proceedings of the 2nd

International Workshop on API Usage and Evolution, ser. WAPI ’18.
New York, NY, USA: Association for Computing Machinery, 2018.
doi: 10.1145/3194793.3194801. ISBN 9781450357548 p. 18. [Online].
Available: https://doi.org/10.1145/3194793.3194801

[23] W. Granli, J. Burchell, I. Hammouda, and E. Knauss, “The driving
forces of api evolution,” in Proceedings of the 14th International

Workshop on Principles of Software Evolution, ser. IWPSE 2015. New
York, NY, USA: Association for Computing Machinery, 2015. doi:
10.1145/2804360.2804364. ISBN 9781450338165 p. 28–37. [Online].
Available: https://doi.org/10.1145/2804360.2804364

[24] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski, “Metrics and
laws of software evolution-the nineties view,” in Proceedings Fourth

International Software Metrics Symposium, 1997. doi: 10.1109/MET-
RIC.1997.637156 pp. 20–32.

[25] D. Hou and X. Yao, “Exploring the intent behind api evolution: A case
study,” in 2011 18th Working Conference on Reverse Engineering, 2011.
doi: 10.1109/WCRE.2011.24 pp. 131–140.

[26] A. V. Zarras, P. Vassiliadis, and I. Dinos, “Keep calm and wait for the
spike! insights on the evolution of amazon services,” in ADVANCED

INFORMATION SYSTEMS ENGINEERING (CAISE 2016), ser. Lecture
Notes in Computer Science, S. Nurcan, P. Soffer, M. Bajec, and J. Eder,
Eds., vol. 9694, 2016. doi: 10.1007/978-3-319-39696-5_27. ISBN 978-
3-319-39696-5; 978-3-319-39695-8. ISSN 0302-9743 pp. 444–458, 28th
International Conference on Advanced Information Systems Engineering
(CAiSE), Ljubljana, SLOVENIA, JUN 13-17, 2016.

[27] A. Karavisileiou, N. Mainas, and E. G. Petrakis, “Ontology for openapi
rest services descriptions,” in 2020 IEEE 32nd International Conference

on Tools with Artificial Intelligence (ICTAI), 2020. doi: 10.1109/IC-
TAI50040.2020.00016 pp. 35–40.

[28] K. Togias and A. Kameas, “An ontology-based representation of the
twitter rest api,” vol. 1, 11 2012. doi: 10.1109/ICTAI.2012.85 pp. 998–
1003.

[29] D. Androcec and N. Vrcek, “Platform as a service api ontology,”
in PROCEEDINGS OF THE 12TH EUROPEAN CONFERENCE ON

EGOVERNMENT, VOLS 1 AND 2, M. Gasco, Ed., 2012. ISBN 978-1-
908272-42-3 pp. 47–54, 12th European Conference on eGovernment
(ECEG), ESADE, Inst Publ Governance & Management, Barcelona,
SPAIN, JUN 14-15, 2012.

[30] G. Guizzardi, G. Wagner, J. P. Andrade Almeida, and R. S. S. Guizzardi,
“Towards ontological foundations for conceptual modeling: The unified
foundational ontology (ufo) story,” APPLIED ONTOLOGY, vol. 10, no.
3-4, pp. 259–271, 2015. doi: 10.3233/AO-150157

68 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


