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Abstract—Traditional methods like Graph Convolutional Net-
works (GCNs) face challenges with limited data and class imbal-
ance, leading to suboptimal performance in graph classification
tasks during toxicity prediction of molecules as a whole. To
address these issues, we harness the power of Graph Isomorphic
Networks, Multi Headed Attention and Free Large-scale Adver-
sarial Augmentation separately on Graphs for precisely capturing
the structural data of molecules and their toxicological properties.
Additionally, we incorporate Few-Shot Learning to improve the
model’s generalization with limited annotated samples. Extensive
experiments on a diverse toxicology dataset demonstrate that
our method achieves an impressive state-of-art AUC-ROC value
of 0.816, surpassing the baseline GCN model by 11.4%. This
highlights the significance of our proposed methodology and Few-
Shot Learning in advancing Toxic Molecular Classification, with
the potential to enhance drug discovery and environmental risk
assessment processes.

Index Terms—Graph Neural Networks, Graph Isomorphic
Network, Multi Headed Attention, Graph Data Augmentation,
Few Shot Learning, Toxicity Prediction.

I. INTRODUCTION

Toxicological assessment of molecular compounds plays a

pivotal role in drug discovery, environmental risk assessment,

and chemical safety evaluation. Accurate prediction of a

molecule’s toxicity is crucial in ensuring the development of

safe and effective drugs while minimizing potential harm to

both human health and the environment.

Traditional methods of toxic molecule detection [[1],[2]]

possess some inherent limitations. This is because conducting

experiments to synthesize a compound and then analyzing

its toxicity is time-consuming and often very expensive. It

consumes a lot of resources and is not feasible for large-scale

testing of molecules.

A number of approaches based on machine learning have

also recently been proposed. The methods described above

use several molecular characteristics, such as their physical

and chemical properties, to predict their toxicity. However,

a present problem in the field is lack of sufficient labelled

data, due to the difficulties faced in synthesizing and testing

new molecules, as explained above. Moreover, often these

machine learning techniques only look at certain numerical

properties of the molecules and fail to take into consideration

the structural aspects of the molecule.

In recent literature, a lot of research is being done in

representing molecules as graphs and processing them through

Graph Neural Networks (GNNs). While this method does

not tackle the low-data scenario we often face in toxicity

prediction, newer methods have integrated few-shot learning

into GNNs, like the Adaptive Step Model-Agnostic Meta-

Learner (AS-MAML). We believe that this intersection of

graph-embedding algorithms and few-shot learning is key to

creating effective models for molecular toxicity prediction.

The research problem addressed in this paper is to investi-

gate and propose enhancements to the GNN-specific few-shot

learning technique in order to achieve favorable results in the

toxicity prediction task on the Tox21 data set under the few

shot learning scenario.

II. BACKGROUND

Before delving into the specifics of the architecture, it is

essential to provide some background information that will be

helpful for better understanding.

A. Few Shot Learning (FSL)

As suggested by Vinyals et al. in [3], FSL is the ability of

an algorithm to generalize well from limited data points with

supervised information available for every class. To achieve

this, we employ Model-Agnostic Meta-Learning (MAML)

given by Finn et al. which aims to find a good initialization for

the model parameters θ, for rapid adaptation to novel classes

with only a few labeled examples. This is done by optimizing

the model’s performance on a set of meta-training experiments,

where each task simulates a few-shot learning scenario.

B. Adaptive Step Model Agnostic Meta Learning (AS-MAML)

Introduced by Ma et al. in [5], it is a meta-learning technique

that builds upon the MAML[4] algorithm by introducing an

Adaptation Controller that employs reinforcement learning

techniques to determine the optimal step size and when to

stop the adaptation process. A StopController model, incor-

porating LSTM [6] layers and a sigmoid function, estimates

the probability of stopping the adaptation process based on

the training loss and embedding quality. This addresses the

challenge of finding the optimal learning rate and step size in

MAML-based meta-learning approaches.

C. Graph Convolution Network (GCN)

GCNs were introduced as a way to extend convolutional

neural networks (CNNs) to handle irregular and non-Euclidean

data. Kipf and Welling in [7] mentions that the key challenge
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in processing graph data is that the number of nodes and

their connectivity can vary widely from one graph to another.

GCNs address this challenge by learning to exploit the local

neighborhood information of each node in the graph to make

predictions. The core idea behind GCNs is to perform node

feature aggregation through a series of graph convolutions,

enabling nodes to gather information from their neighbors and

incorporate it into their own representations.

D. Graph Isomorphic Network (GIN)

Graph Isomorphic Networks by Xu et al. in [8] are a class of

deep learning models designed for graph classification tasks.

Unlike traditional GCNs, GINs do not rely on graph structure

during message passing, making them more flexible and

suitable for various graph types. The core idea behind GINs is

to employ an aggregation function that is permutation-invariant

to the node ordering, ensuring that the model produces the

same output regardless of how the nodes are arranged. This

property allows GINs to capture the global graph information

effectively and provide more robust representations for graph

classification tasks.

E. Free Large-scale Adversarial Augmentation on Graphs

(FLAG)

It is a technique for enhancing graph data to imprive GNNs’

performance. FLAG by Kong et al. in [9] suggests augment-

ing node properties rather than modifying graph topological

structures, which is where the majority of existing graph reg-

ularizers concentrate their efforts. It improves generalization

to out-of-distribution samples by iteratively enhancing node

characteristics with gradient-based adversarial perturbations

during training. This makes the model invariant to tiny fluc-

tuations in input data. Adversarial data points are created and

then inserted into the training data as part of the adversarial

training process. The objective of this min-max optimization

problem is to minimize the objective function while keeping

the perturbation within a predetermined bound.

III. RELATED WORKS

Some of the earliest works in toxicity prediction include

DeepTox by Mayr et al., who used chemical properties of these

compounds fed into a Deep Neural Network to predict their

toxicity. By using this method and ample of labelled data Mayr

et al., manages to achieve an 0.92 AUC value. Alperstein et al.

introduced All SMILES VAE [11], a generative model which

uses variational autoencoders (VAEs) for generating SMILES

strings using stacked RNNs. The model surpassed state-of-

the-art methods and achieved an ROC-AUC score of 0.871

on the dataset. Censnet by [12] learns node and edge features

through the use of novel propagation rules while switching

the roles of nodes and edges. The method attains about 0.79

AUC score at most on the Tox21 dataset when tested under

various splitting scenarios. Zhou et al. proposed Uni-Mol [13],

a framework that incorporates the pretraining of transformers

in order to use 3D information. It was evaluated on Tox21 as a

downstream task and outperformed several methods, achieving

an ROC-AUC score of 0.796.

Graph Multiset Transformer (GMT) [14] adopts a novel

pooling method wherein multi-head attention is used for

learning node interaction based on task relevance. An AUC

score of about 0.773 was obtained on Tox21. Meta-MGNN

by Guo et al. employs meta-learning to learn molecular rep-

resentations under few-shot settings. It uses pretrained GNNs

and leverages additional tasks to be optimised. When tested

on Tox21, an AUC score of 0.769 was obtained under the

one-shot setting and about 0.78 under the five-shot setting,

outperforming several baseline models. However very few

works have obtained significant results in few shot domain

with graphs.Chen et al. in [16] achieves an average ROC-AUC

score of 0.757 employing the Mean Teacher Semi-Supervised

ML Algorithm, which is a 6% increase over GCN models

trained using supervised and conventional ML techniques.

However for low data scenarios, very few works have been

able to get significant results.

IV. TOX21 DATASET

Tox21 is a dataset containing measurements of toxicity of

12 thousand molecules against 12 target proteins. It aims to

help analyse the performance of models in predicting the

biochemical activity of compounds using their chemical struc-

ture. We use the AhR sub-dataset from Tox21 that focuses on

chemicals’ interactions with this Aryl hydrocarbon Receptor,

a ligand-activated transcription factor that is essential for the

toxic response to toxins and medications. The dataset is open

source and can be downloaded from Tox21 AHR1.

Each chemical compound in this collection is represented

as a graph, with atoms serving as nodes and chemical bonds

between atoms serving as edges. Molecules’ structural infor-

mation is preserved in the graph representation, making it ideal

for GNN-based approaches that can efficiently handle graph-

structured data. By learning from the graph structure and asso-

ciated node features, GNNs can discern complex relationships

and identify key structural characteristics associated with toxic

and non-toxic compounds.

V. BASELINE MODEL

The initial configuration we are evaluating serves as the

baseline, which is the standard GCN + AS-MAML model

utilizing the few-shot learning setup detailed earlier. While we

remain consistent with the framework described in the paper,

there is one notable difference: we do not employ distinct

classes for training and validation. This configuration consists

of three successive layers: a GCN convolution layer, followed

by a TopK Pooling Layer [17], each with a hidden layer

dimension of 128. The Baseline Architecture is shown in Fig.1,

has a validation accuracy of 65.02% and an AUC-ROC value

of 0.732 on Tox21 AhR data.

1http://bioinf.jku.at/research/DeepTox/tox21.html
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Fig. 1: The image illustrates the baseline sub-architecture.The

resulting output vector is subsequently fed into a binary

sigmoid classifier. The obtained Node Information Score is

utilized by the FSL Reinforcement Learning Agent to optimize

gradients and weights, thereby achieving a faster convergence

rate.

Fig. 2: Proposed sub-architecture of FLAG+GCN based clas-

sification model.

VI. PROPOSED ARCHITECTURES

In this research paper, we introduce and empirically evaluate

three distinct architectural frameworks, each of which outper-

forms the baseline model in terms of achieved results. These

three novel architectures systematically introduce variations

across distinct components of the baseline model’s structure

the body, the input and the output, enhancing the model’s

capacity to capture intricate patterns and further enriching its

learning capabilities.

A. Augmenting Input data using FLAG

1) Architecture: The first suggested setting adds a prepro-

cessing step of FLAG in order to augment the data being fed

into the model as shown in Fig.2. This adds perturbations

to node features and provides greater variations in novel

tasks available for few-shot learning. The aim of FLAG is

to generate additional realistic graph instances that maintain

the underlying distribution of the original data, effectively

expanding the dataset and boosting model generalization.

Fig. 3: A comparision of validation accuracy for GCN vs

GCN+Flag method.

Fig. 4: A plot of ROC score for GCN vs the proposed

GCN+FLAG sub-architecture.

2) Experimental Results: As shown in Fig.3 and Fig.4, we

observe significant improvement in performance on the use

of FLAG. This could be because it preserves the structural

integrity of the graphs since only node features are modified.

Tox21 is a molecular dataset where random changes in struc-

ture may not be realistic. Also, certain constraints are imposed

on the perturbations, further improving reliability. FLAG has

been found to be effective for discrete features which are

commonly encountered in molecular data. In addition to this,

FLAG improves generalization, robustness and data diversity,

and is computationally efficient with validation accuracy of

70.68% and validation AUC-ROC score of 0.806, both of them

greater than the baseline GCN model.

B. Replacing GCNs with GINs

1) Architecture: The proposed novel architecture (Re-

fer Fig.5) introduces a modification to the AS-MAML

algorithm[5] by replacing the three Graph Convolutional Net-

work (GCN)[7] components with three Graph Isomorphism
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Fig. 5: Proposed sub-architecture of GIN based classification

model.

Fig. 6: A plot of validation accuracies of the baseline and the

proposed GIN sub-architecture.

Network (GIN) convolution operators. The GIN operator is

anticipated to offer enhanced expressibility, resulting in im-

proved hidden layer embeddings compared to the original

GCN-based approach. In the forward() operation of the GIN

model, a multi-layer perceptron (MLP) is employed, compris-

ing four hidden layers, each containing ten perceptrons. The

output layer, consistent with the GCN model, consists of 128

perceptrons.

2) Experimental Results: In the GIN model, we observed

significant improvements in validation accuracy and ROC

AUC score compared to the baseline GCN model, even at

an early stage. The final validation accuracy of 73.23% as

shown in Fig.6 and ROC score of 0.816 as shown in Fig.7

can be attributed to the enhanced expressiveness of the Graph

Isomorphism Network Operator utilized in GIN. Notably,

this improved accuracy is consistently maintained over the

course of 150 epochs, suggesting that while GIN may not

necessarily provide an advantage in achieving higher-quality

training results, it excels at capturing relevant task information

with fewer epochs.

C. Enhanced Aggregation and Extraction using Weighted

Multi Headed Attention (MHA).

Fig. 7: A plot of ROC score for GCN vs the proposed GIN

sub-architecture.

Fig. 8: Proposed sub-architecture of GCN+MHA based clas-

sification model.

1) Architecture: The final setting as shown in Fig.8, in-

volves adding a Multi Attention Head (MAH) mechanism as

an operator in the last part of the AS-MAML model. The

baseline GCN carries out a normal aggregation of the outputs

of the Relu layers and passes it to a binary classification

network as displayed in the baseline figure above which

might be unable to extract all necessary information or give

weightage to the important ones. By inculcating a MAH layer,

we attempt to change this fact and try to make the best out of

the convolutions. MAH takes these three values as input to the

Key, Value and Query fields to identify patterns of significance.

The weight factor “w” adds an extra bias to the inclusion of

the attention layer while performing regularization.

2) Experimental Reults: Upon examination of the graphs

presented in Fig.9 and Fig.10, it becomes evident that the

adapted model consistently outperforms the baseline coun-

terpart during the validation phase. The GCN+MAH model

achieves a notable validation accuracy of approximately

69.62%, showcasing a significant improvement over the base-

line’s attainment of 65%. Additionally, a discernible discrep-

ancy of 0.055 units is observed in the AUC-ROC values,

further substantiating the effectiveness of the modified ar-

chitecture. This enhanced performance of the GCN+MAH
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Fig. 9: A plot of validation accuracies of the baseline and the

proposed GCN+MAH sub-architecture.

Fig. 10: A plot of ROC Score of the baseline and the proposed

GCN+MAH sub-architecture.

model can be attributed to the model’s abilty to simultaneously

consider multiple attention patterns, enabling it to capture

intricate data relationships and patterns more effectively. The

experiments have been carried out with the weight factor “w”

having a value of 0.4 which is another hyper parameter that

we introduce.

VII. DISCUSSION AND EVALUATIONS

Within this section, we elaborate on the training regimen

and specifications pertinent to Few-Shot Learning (FSL),

followed by a comprehensive evaluation of their collective

outcomes along with an exhaustive assessment of the best

method employed.

A. Few Shot Learning Specifications

In Table I, we list some of the common tunable parameters

in a few shot learning scenarios and state the settings used for

our testing.

Fig. 11: Plot of validation accuracy for baseline and all three

proposed sub-architectures.

Fig. 12: Plot of ROC score for baseline and all three proposed

sub-architectures.

B. Comprehensive Analysis

Table II and Fig.11, Fig.12, highlight the enhanced express-

ibility and feature representation ability of GIN operators,

attention modules and data augmentation algorithms.

By adopting these modified architectures, which have the

potential to advance the state-of-the-art results. We anticipate

achieving improved performance and predictive capabilities in

the context of the AS-MAML algorithm for few-shot learning

tasks, particularly in toxicological classification of molecular

compounds.

GIN’s superiority is attributed to its order-agnostic aggrega-

tion operation, which ensures robustness and insensitivity to

changes in node positions. In contrast, GCN’s performance is

influenced by the order of nodes in the neighborhood, making

it more sensitive to node ordering. Another aspect contributing

to GIN’s efficacy is its higher expressiveness compared to

GCN. While GCN focuses on local information within fixed

neighborhoods, it faces limitations in capturing higher-order
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TABLE I: Tunable Parameters and Values for FSL setting

Tunable Parameter Significance Value in Experiments

Train Shot The number of labeled examples from the training set used for adapting the model during the
few-shot learning process.

10

Validation Shot The number of labeled examples from the validation set used for fine-tuning or evaluating the
model during the few-shot learning process.

10

Train Query Set The set of unlabeled examples from the training set that are used for prediction or evaluation
after model adaptation.

15

Validation Query Set The set of unlabeled examples from the validation set that are used for prediction or evaluation
after fine-tuning or model evaluation.

15

Epochs Count of how many times the full dataset was run through the model during training. 150

Learning Rate (Outer Loop) A hyperparameter that determines the step size or rate at which the model’s parameters are
updated during the training process.

0.001

Learning Rate (Inner Loop) A hyperparameter that determines the step size or rate at which the model’s parameters are
updated during the inner loop training process.

0.01

TABLE II: The table presents a detailed comparison between the accuracy and ROC values of the proposed methods.

Model and Algorithm Validation Accuracy ∆ Accuracy Score ROC-AUC Score ∆ ROC-AUC Score

GCN (Baseline) 65.02 % - 0.732 -

GCN + FLAG 70.68 % +5.66 % 0.806 +0.074

GIN 73.23 % +8.21 % 0.816 +0.084

GCN + MHA 69.62 % +4.6 % 0.787 +0.055

graph structures. Conversely, GIN’s iterative message passing

mechanism enables it to encompass more intricate and global

structural patterns, making it more adept at handling complex

molecular graphs.

Moreover, GIN’s passing of the Weisfeiler-Lehman (WL)

test [18], a theoretical measure of a GNN’s expressive power,

further validates its strength as a graph neural network.

The WL test checks whether a GNN can differentiate non-

isomorphic graphs with the same initial node labels. GIN’s

successful performance on this test showcases its stronger rep-

resentational capacity compared to GCN and other methods.

Nevertheless, it’s essential to acknowledge that the efficacy

of GNN architectures may vary based on the specific dataset

and task, with hyperparameter tuning and data preprocessing

also impacting their overall performance.

VIII. CONCLUSION

In conclusion, the GIN method presented in this research

paper establishes a new benchmark in drug discovery and

toxicity prediction using the Tox21 data, exhibiting remarkable

improvements of 8.21% in accuracy and 11.4% in ROC

performance compared to existing GCN methods. Moreover,

its exceptional performance in low labeled data scenarios, sur-

passing all other given methods, underscores its robustness and

practicality. This novel approach holds immense promise for

researchers and practitioners in pharmaceutical and chemical

industries, providing valuable insights and advancements in

these fields while inspiring further exploration and adoption

of graph neural network-based methodologies for addressing

real-world challenges
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