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Abstract—Accurate local weather forecasting is vital for farm-
ers to optimize crop yields and manage resources effectively, but
existing forecasts often lack the precision required locally. This
study explores the potential of combining data from local weather
stations with global forecasts and reanalysis data to improve
the accuracy of local weather predictions. We propose integrating
the HadISD data set, which contains data from 27 stations in
the Czech Republic, with the Global Forecast System predictions
and ERA5-Land reanalysis data. Our goal is to improve 24-
hour weather forecasts using Multilayer Perceptrons, CatBoost,
and Long Short-Term Memory neural networks. The findings
demonstrate that combining local weather station data with
global forecasts improves the accuracy of weather predictions in
specific locations. This advancement holds promise in optimizing
agricultural practices and mitigating weather-related risks in
the region.

I. INTRODUCTION

A
CCURATE weather forecasting is crucial for farmers
to make informed decisions that optimize crop yields

and manage resources efficiently. However, available weather
forecasts often lack the precision required for agricultural
planning, leading farmers to invest in their own weather
stations. This study explores the potential of combining data
from local weather stations with global forecasts to improve
local weather predictions.

As local weather station data could suffer from various
inconsistencies, we propose testing this idea by integrating
the local weather station data (HadISD data set [1], [2]), with
the Global Forecast System (GFS) predictions. In addition,
we incorporate ERA5-Land reanalysis data to introduce infor-
mation on weather conditions in surrounding areas. Our goal
is to improve the accuracy of 24-hour weather forecasts by
evaluating three machine learning techniques: Multilayer Per-
ceptons (MLP) [3], gradient-boosting regression trees method

CatBoost [4], and Long Short-Term Memory (LSTM) [5]
neural network.

In this study we focus on the Czech Republic, utilizing data
from 27 stations recorded in the HadISD data set within the
country and close neighborhood. We supplement this data with
GFS forecasts, which provide weather predictions on a 0.25-
degree grid resolution, corresponding to an approximately 27.8
km × 27.8 km area in Central Europe. The GFS model predicts
various meteorological parameters at different atmospheric
levels, offering a comprehensive data set for creating our
machine-learning models.

To further improve our predictions, we employ the ERA5-
Land data set, renowned for its high-accuracy reanalysis data.
Recognizing the latency in the availability of ERA5-Land’s
data, we trained a U-Net [6] model to map the GFS forecast
data to the ERA5-Land’s high-resolution grid. This approach
enables us to generate ERA5-Land-like predictions in near
real-time, potentially enhancing the accuracy of our weather
forecasts.

Our methodology involves training and comparing the per-
formance of CatBoost, MLP, and LSTM machine learning
techniques against two baseline models, the raw GFS pre-
dictions, and the last measured values from the stations. The
training data set is constructed using weather data from 2022,
pairing each station’s observations with corresponding GFS
grid data. The models are then validated using data from 2023.

In this paper, we present a detailed analysis of our ap-
proach, including data pre-processing, model architectures,
training processes, and evaluation metrics. We discuss the
performance improvements achieved by integrating ERA5-
Land predictions.

Our findings demonstrate that combining local weather
station data with global forecasts and incorporating ERA5-
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Land reanalysis data can substantially improve the accuracy
of weather predictions in specific locations. This advancement
holds significant promise for optimizing agricultural practices,
mitigating weather-related risks, and ultimately enhancing
food security in the region.

II. RELATED RESEARCH

Weather forecasting is a well-explored area of research with
numerous methodologies and models developed to improve
prediction accuracy. The integration of local weather station
data with global models is promising in improving forecast
precision, particularly in agricultural contexts.

a) Global Forecast Models and Their Limitations:

Global forecast models such as the Global Forecast System
(GFS) from the National Centers for Environmental Predic-
tion (NCEP) and the European Centre for Medium-Range
Weather Forecasts (ECMWF) provide detailed predictions on a
global scale. These models use numerical algorithms and vast
amounts of atmospheric data to produce forecasts at various
temporal and spatial resolutions. There is a large body of
literature devoted to improving the global model using in-situ
data, (e.g. [7], [8]) However, the coarse resolution of these
models often limits their utility for local weather predictions,
which are crucial for agricultural decision-making.

b) Machine Learning in Weather Forecasting: Machine
learning has become increasingly prominent in weather fore-
casting due to its ability to handle large data sets and cap-
ture complex, nonlinear relationships within the data. Various
ML techniques, including neural networks, support vector
machines, and ensemble methods, have been applied to en-
hance forecast accuracy. For example, Multilayer Perceptron
(MLP) models have been used to predict temperature [9] and
precipitation with notable success. More recently, gradient-
boosting algorithms like CatBoost have demonstrated superior
performance in regression tasks related to weather prediction
[10]. Various concepts have been used for weather forecasting
based on weather station data: a 2D-convolutional LSTM in
[11], Temporal Convolutional Network (TCN) in [12], and
Copulas in [13], to name a few. Large convolutional neural
networks (CNNs) were used for global machine learning
weather forecasting [14].

c) Hybrid Approaches Combining Global and Local

Data: Several studies have explored hybrid approaches that
combine global forecast data with local observations to im-
prove prediction accuracy. These methods often involve the
use of statistical downscaling or machine learning models to
integrate diverse data sources. For instance, a study by [15]
demonstrated the effectiveness of combining a global climate
model with local weather station observations using an ML
model. Similarly, the other works [16]) highlighted the benefits
of integrating ERA5 reanalysis data with local meteorological
data to refine precipitation forecasts.

d) Application of U-Net for Spatial Predictions: The
U-Net [6] architecture, initially developed for biomedical
image segmentation, has been adapted for various geospatial
applications, including weather forecasting. U-Net’s ability to

capture spatial hierarchies and produce high-resolution output
maps makes it suitable for transforming coarse global forecast
data into fine-scale local predictions. Recent studies have
successfully employed U-Net to downscale climate model
outputs, demonstrating significant improvements in prediction
accuracy and spatial resolution [17].

e) Focus on Agricultural Applications: The intersection
of weather forecasting and agriculture has been a focal point
for research aimed at enhancing food security and optimiz-
ing resource management. Accurate local weather predictions
can help farmers make timely decisions regarding planting,
irrigation, and harvesting, thereby improving crop yields and
reducing losses. Multiple research papers ([18], [19]) have
emphasized the potential of combining local weather station
data with advanced modeling techniques to support precision
agriculture.

III. DATA

In this work, we utilize three data sets, each serving a
different purpose:

• HadISD [2], [1]: This data set is used to extract hourly
records from 27 weather stations situated randomly across
the area of the Czech Republic. These records contain
the variables we aim to predict (temperature, dew point,
wind speed), as well as additional variables like cloud
coverage, precipitation depth across multiple periods (1h,
2h, ..., 24h), and sea level pressure.

• GFS [20]: Unlike HadISD’s station-specific data, the GFS
(Global Forecast System) data set delivers broader area
weather predictions with various frequencies and forecast
lead times, encompassing a comprehensive range of at-
mospheric variables at various altitudes. This feature-rich
data set serves both as a baseline for our predictions and
as a source for enhancements, utilizing every available
feature across all altitude levels.

• ERA5-Land [21]: The ERA5-Land data set is a reanal-
ysis tool, meaning it does not provide real-time data
but rather offers a retrospective view of land variables
over several decades. As a reanalysis data set, ERA5-
Land integrates model data with historical observations
using the laws of physics to create a globally consistent
and comprehensive data set. This characteristic makes
it ideal for understanding past climate conditions but
limits its use for immediate weather events. We utilize
the ERA5-Land data set to train an additional model that
can generate features from the GFS data set. The details
of this technique will be discussed further in the text.

Having HadISD and GFS data sets, for our experiments,
we mapped a GFS rectangle to each HadISD station and
merged the data sets accordingly. The final combined data
set, consisting of GFS and HadISD data sets, contains 157
features, where 25 of them come from HadISD and 132 of
them are from GFS.

We identified the most significant features for our weather
prediction task by leveraging the CatBoost model (described
later) and computing its SHAP values [22]. These values were
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Fig. 1. Illustration of data flows in our experiments. The left schema illustrates a setup where we forecast local weather with the use of weather station
data and GFS forecasts. The right schema shows how we improve the accuracy of the forecast with the superresolution model estimating the ERA5-Land
reanalysis based on GFS data.

averaged across all target features (temperature, dew point,
wind speed) and all stations. Below are the identified features,
along with their origins and a brief explanation of each:

• Helicity (GFS, height above ground layer): Measures the
potential for rotation in the atmosphere, which can be
important for predicting severe weather events.

• Temperature (GFS, surface): A fundamental parameter,
that influences various atmospheric processes and weather
conditions.

• Precipitable water (GFS, atmosphere single layer): Rep-
resenting the total atmospheric water vapor, is essential
for forecasting precipitation and humidity levels.

• Dew point (HadISD): Dew point temperatures from
station data indicate the atmospheric moisture content,
aiding in humidity and fog predictions.

• Minimum temperature (GFS, height above ground):
Minimum temperature above ground level might help in
identifying cold spells and frost conditions.

• Temperature (HadISD): Observed temperatures from
station data, a direct measurement of local weather con-
ditions, is crucial for accurate forecasting.

IV. EXPERIMENT DESIGN

The model takes the last 24 hours of weather data from
the station and the weather forecast for the next 24 hours for
the corresponding grid. Based on this, the model creates a
prediction of selected weather parameters 24 hours from now.
The left side of Figure 1 illustrates the idea.

The training data set is constructed from weather data from
selected weather stations combined with its GFS rectangle for
the year 2022. The next step is to split the whole history of
station data and GFS predictions into time windows containing
inputs and corresponding target values from the HadISD
station. For the validation of the model, we used data from
2023.

As the experimental results below show, the models can
improve the accuracy of the local prediction. Since the GFS
data set has low spatial resolution and is known to have limited
accuracy in predictions, we decided to explore possibilities to
incorporate another data set, with better accuracy and higher
spatial resolution. The ERA5-Land data set [21], [23], which is

suitable for our case, is a reanalysis of past weather conditions
and it is assessed to be a good approximation of the actual
weather. However, the ERA5-Land predictions are available
with considerable delay and thus it is not possible to use it
directly.

To tackle this issue, a model to estimate the ERA5-Land
values was developed. We use a subset of the GFS data set
as coarse grid input and a U-Net architecture to create a fine-
grained grid estimating ERA5-Land. In the training process
of the U-Net superresolution model, GFS predictions and
corresponding ERA5-Land data for the years 2015 to 2021 are
utilized. The data were split time-wise to prevent information
leaks. The earlier 80% are used for training and the remaining
20% are used for validation. The incorporation of the ERA5-
Land data set into our AI forecast is illustrated on the right
side of Figure 1.

V. METHODOLOGY

Our experiments can be divided into two stages. The aim
of the first stage was to train a model that could transform
GFS predictions to be closer to ERA5-Land. The variables
we focused on included temperature, dew point, and the u
and v components of wind.

We approached this problem as an image-to-image trans-
lation task. For this purpose, we employed the U-Net [6]
convolutional neural network. The name is inspired by its U-
shaped architecture shown in Figure 2. It can be described
as a symmetrical encoder-decoder architecture, consisting of a
contracting path to capture context and a symmetric expanding
path that enables precise localization, further enhanced by the
usage of skip/shortcut connections.

First, GFS data are interpolated to match the grid of ERA5-
Land. Both are then cropped to 128x64 pixels, which is
enough to cover the Czech Republic, and the dimensions are
divisible by 16, which is required by U-Net. The variables are
concatenated in the channel dimension and normalized. U-Net
is trained with 4 input channels and 4 output channels, as well
as other hyperparameters listed in Table I. Example prediction
is shown in Fig. 3. The output of a trained U-Net is then
denormalized, and time series for each station is generated by
interpolating the variables at specific coordinates of the station.
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Fig. 2. U-Net architecture [6] used to estimate ERA5-Land like weather
forecasts from GFS predictions. The exact hyperparameters of the U-Net
architecture are outlined in Table I.

TABLE I
U-NET TRAINING HYPERPARAMETERS

Hidden dimensions [32, 64, 128, 256, 512]
Batch size 16
Optimizer Adam
Learning rate 1× 10

−3

Loss function MAE

The goal of the first stage was to create more reliable
features by utilizing the GFS and ERA5-Land data sets for
subsequent weather forecasts at specific stations. This process
effectively generates 4 new features, which are then incorpo-
rated into the data set used for station forecasts.

The second stage involved comparing models on our en-
hanced station data set, which was augmented by the U-
Net-generated ERA5-Land predictions. Since we are dealing
with time series data, we utilized the LSTM (Long Short-
Term Memory) network [5], known for its ability to capture
long-term dependencies and patterns in sequential data. The
LSTM model is based on a sequence-to-sequence (seq2seq)
architecture. The model consists of an encoder that encodes
the input time series sequence into a fixed-length vector rep-
resentation and a decoder that generates the predicted output
sequence based on the encoded representation. The encoder
takes an input sequence of a given length and produces hidden
states and cell states that capture the temporal dependencies
in the data. The decoder takes the last hidden state of the
encoder as its initial hidden state and generates the output
sequence recursively. The input sequence consists of four
previous time steps of a 10-time series, selected based on
SHAP [24] analysis of a CatBoost model. The LSTM seq2seq
model takes this input and regressively generates predictions
for the next four time steps, effectively making a 24-hour
forecast for the desired quantities.

Alongside LSTM, we also examined MLP (Multi-Layer
Perceptron) [3] and CatBoost [4] models. MLP, a class of
feedforward artificial neural networks, consists of multiple
layers of nodes, with each node connected to every node in the

subsequent layer. It is particularly adept at capturing complex
relationships in the data through its dense connections and
non-linear activation functions. MLPs are typically composed
of an input layer, one or more hidden layers, and an output
layer. Each node (or neuron) in a layer applies a weighted
sum of the inputs followed by a non-linear activation function,
which allows the model to learn and represent complex func-
tions. MLPs are effective in scenarios where the relationship
between inputs and outputs is highly non-linear and intricate,
making them suitable for various predictive modeling tasks in
weather forecasting.

CatBoost, a gradient-boosting algorithm, is well-suited for
this task because it handles categorical data well and mitigates
the problem of overfitting. It builds an ensemble of decision
trees where each new tree is trained to correct the errors of
the previous ones, leading to improved accuracy. CatBoost
is particularly effective in scenarios where the relevance of
historical data might vary, providing robust predictions even
when the importance of past data fluctuates. One of its key
advantages is its ability to handle categorical features natively,
without requiring extensive preprocessing or encoding, which
simplifies the model training process and enhances perfor-
mance. Additionally, CatBoost incorporates ordered boosting
and other advanced techniques to reduce overfitting and im-
prove the generalization of the model.

For each of these three models, we developed two versions:
(a) one trained on GFS and station data, and (b) another
trained on GFS, ERA5-Land predictions, and station data.
This protocol was designed to assess the impact of ERA5-
Land predictions, which we hypothesized might play a crucial
role in enhancing the accuracy and reliability of the weather
forecasts. The Figure 1 illustrates both versions.

VI. EXPERIMENTAL RESULTS

Table II summarises our results. We present results for three
models in two versions, as mentioned above. In addition, two
additional baseline techniques were added for comparison:
using the GFS forecast directly and assuming the weather
in 24 hours will be the same as the current conditions. The
forecast results are presented for three weather parameters:
Temperature, Dew Point, and Wind Speed, all measured at
a height of 2 meters above ground. The tables show the
mean absolute error (MAE) of all examined methods for all
target parameters. The metric is calculated over all 27 selected
weather stations for predictions in the year 2023.

Table II shows that the direct GFS forecast has the second
worst accuracy. It is on average more than 2◦C off the actual
measured temperature. Using actual current weather achieves
slightly worse accuracy with 2.5◦C average absolute error.
Similar results are seen for the Dew Point and Wind Speed.

The results for our models show that we can greatly improve
over the GFS forecasts as well as the last value prediction.
The models built on top of the GFS predictions and weather
recorded by a weather station achieve better accuracy. The best
model, CatBoost, achieves mean absolute errors of 1.07◦C
in Temperature, 1.04◦C in Dew Point, and 1.01 m/s in
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TABLE II
ACCURACY OF PRESENTED METHODS AND COMPARISON TO BASELINE MODELS. THE VALUES SHOW THE MEAN ABSOLUTE ERROR BETWEEN THE

MODEL FORECAST AND ACTUALLY MEASURED VALUE. ALL FORECASTS ARE 24 HOURS INTO THE FUTURE.

Method Temperature

2m above ground
MAE [◦C]

Dew Point

2m above ground
MAE [◦C]

Wind Speed

2m above ground
MAE [m/s]

Last value (persistence) 2.53 2.54 1.83
Direct GFS Prediction 2.18 1.38 2.04

LSTM with GFS 1.20 1.14 1.12
MLP with GFS 1.16 1.13 1.09

CatBoost with GFS 1.07 1.04 1.01
LSTM with GFS and estimated ERA5-Land 1.15 1.23 1.12
MLP with GFS and estimated ERA5-Land 1.14 1.15 1.05

CatBoost with GFS and estimated ERA5-Land 1.06 1.02 1.01

Fig. 3. Example of ERA5-Land data estimated by U-Net superresolution model from GFS predictions. The top row shows the GFS forecast, the middle row
is the output of our U-Net model and the bottom row is ground truth ERA5-Land data.

TABLE III
MAE OF GFS FORECASTS AND U-NET MODEL ESTIMATING ERA5-LAND

Variable GFS to ERA5-
Land

Estimated ERA5-
Land to ERA5-Land

Temperature [◦C] 3.03 1.10
Dew Point [◦C] 2.77 1.09
Wind Speed E-W [m/s] 1.47 0.46
Wind Speed N-S [m/s] 1.51 0.47

Wind Speed. Which represent around 50% improvement for
Temperature, Dew Point, and Wind Speed respectively over
GFS predictions.

The models incorporating the estimated ERA5-Land data
set achieve slightly better results. Similar to no ERA5-Land
data set, the CatBoost model achieves the lowest error. The
mean absolute error for the Temperature is 1.06◦C for the 24-
hour forecast. The Dew Point forecasts show a mean absolute
error of 1.02◦C and the Wind Speed forecasts show a 1.05
m/s error.

Comparing the three selected ML-based models, the best
accuracy is achieved by the CatBoost model. The difference
in accuracy between MLP and LSTM is not so significant.

Figure 3 illustrates the results of the U-Net architecture
when estimating the ERA5-Land weather reanalysis from GFS

forecasts. We illustrate the results using the temperature, the
dew point, and wind speed. The wind speed is shown as
south-north and east-west components of the speed vector.
The top row shows the original GFS forecasts, the bottom row
shows the ERA5-Land targets and the middle row represents
the U-Net estimate. Table III shows the mean absolute error
between our estimated ERA5-Land values and the ground
truth values. For comparison, the table also shows the mean
absolute error between GFS and ground truth ERA5-Land
values. The numbers show about 60% to 70% improvement
in the estimation of the ERA5-Land value. This improvement
supports the results presented earlier when the introduction
of estimated ERA5-Land data improved the accuracy of the
forecast.

VII. CONCLUSION

The experimental results confirm the viability and effec-
tiveness of the proposed methodology in generating highly
accurate localized forecasts. The AI-driven 24-hour predic-
tions, which integrate GFS data with local measurements,
demonstrate markedly superior accuracy compared to GFS
alone. This enhanced precision empowers farmers to refine
their planning processes, potentially leading to improved crop
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yields, more efficient fertilizer application, and strengthened
food security.

Our findings indicate that the inclusion of estimated ERA5-
Land data does not contribute significantly to model accuracy
improvements.

Moving forward, research efforts will concentrate on min-
imizing the volume of historical data required from weather
stations. These refined techniques will be implemented across
approximately 200 weather stations in Czech and Slovakian
vineyards1.
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