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Abstract—LLM text decoding is key component for perceived
LLMs quality. We demonstrate two experiments showing that
decoding methods could be improved by manipulation of token
probabilities. First, we test few LLM on SummEval summary
scoring dataset, to measure reading comprehension. We compare
scores from greedy decoding to expected values over the next
token distribution1. We scale logits by large temperature to
increase the entropy of scores. This allows strong improvement
of performance on SummEval (in terms of correlations to human
judgement). We see improvement from 6-8% to 13-28% for 7B
Mistral and from 20%-46% to 37%-56% for Mixtral, beating
GPT 4 0314 result on two metrics. Part of the gain seems
related to positional bias. Secondly, we use probability-based tree
sampling algorithm, to examine all most probable generations for
given prompt.

I. INTRODUCTION

G
ENERATIVE LLMS are trained on large text corpora

as estimators of next token probability conditional on

prior text. Then sampling from such probability distribution is

performed, or token with largest probability is chosen (greedy

decoding). Typically, one introduces parameter T – called

temperature. Let li be the logit for i-th token. Then token

probability is as follows:

pi =
e

li
T

∑

j e
lj

T

(1)

Question arises: what the T should be? Typically T ∈ (0, 1],
with greedy decoding as limit in 0 and larger values corre-

sponding to greater diversity (but also greater randomness).

Research [1] shows that human generated text often does not

correspond to modelled highest probability. Human choice

of words is not guided by greatest probability, as “humans

optimize against stating the obvious”. The author of this ob-

servation, H. P. Grice in [2] gave following example: suppose

that I meet a man with a gas tank asking me to sell some gas

and I answer “There’s gas station over the corner”. I said only

1Source code released here: https://github.com/kzawisto/unused_
information_llm

a bit of information that doesn’t asnwer directly, while there’s

lots of implicit information not being said (gas station is open,

it seels gasoline and has it available and you can go there buy

some). Such concepts might be pretty foreign to LLMs: when

we asked Mixtral Instruct “How to get gasoline in Fresno”,

it gave us long instruction on finding gas station on a map,

choosing best gas station, operating the pump safely, paying

and so on, despite the fact that most of it is irrelevant to the

problem of getting gasoline in Fresno specifically.

Thus, a tradeoff arises. Probability maximization with small

temperature doesn’t give us natural, relevant responses. Large

T is not ideal either, introducing more randomness, as low

probability token might be either very informative or very

wrong. Is however a single fixed value of T sufficient, even

for specific use case?

We conjecture that decoding should be more dynamically

controlled to more fully utilize the information in the distri-

bution.

II. SUMMARY EVALUATION WITH EXPECTED VALUE

DECODING.

A. Expected value decoding.

Currently, greedy decoding is often used for label based

QA2. We want to find whether relative probabilities of few

most probable tokens are informative. We test whether greedy

decoding can be outperformed by calculation of expected

value. We evaluate our approach on SummEval [4] dataset. It

contains 1600 article summaries with human annotations for

relevance, fluency, coherence and consistency of a summary.

We compare our result against known LLM-based evaluations

([5], [6]). LLM is asked to evaluate relevance (or other feature)

on Likert scale (from 1 to 5). We use MCQ prompts from [6],

where LLM answer is A, B, C, D or E (A is 1 – worst, E is 5

2For example in LM Evaluation Harness, standard set of LLM benchmarks
[3]
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Fig. 1. Conceptual diagram of presented approach: instead of answering with most probable token, we calculate expected value for temperature T = 10 to
utilize residual information in next-token distribution.

– best). Let p(A), p(B)... be probability of token “A”, “B”...

Expected value score (that we use) is calculated as follows:

E(s) = p(A) + 2p(B) + 3p(C) + 4p(D) + 5p(E), (2)

while greedy score (a standard baseline) is:

smax = F
(

arg maxt∈{A,B,C,D,E}p(t)
)

, (3)

where F is mapping {A → 1, B → 2...}. E(s) depends on

T , as (1) shows, while smax does not. However, our initial

experiments show that for T ∈ (0, 1] these values are very

close to each other, E(s) ≈ smax. LLM is spuriously certain

about its answer and assigns near 100% probability to selected

answer. To fix that we increased entropy of score distribution

by setting very high T = 10 (i.e. we want for these scores to

have smooth continuous distribution over the [1, 5] interval).

Conceptual diagram is presented on Figure 1.

B. Results

We evaluated Pearson correlation of scores to human judge-

ments, the scores being calculate either with greedy method

(3) or expected value method 2 with T = 10. We saw strong

improvement in metric correlation to human judgement. In

addition, E(s) scores from Mixtral 8x7B Instruct [7] beat

GPT3.5 and nearly match GPT4 results from [6], see Table

I.

Furthermore, strong improvements were produced for small

and quantized LLM too. We evaluated 3 LLMs, from 7B to

47B parameters and all metrics are consistently improved. We

compare scores for quantized and float16 Mixtral Instruct in

Table II. Surprisingly, quantized Mixtral performance is only

slightly worse than float16 version.

Up to 4.4 times improvement is achieved for Mistral v0.2

Instruct 7B from [8] (from 6.4% to 28.4% on relevance).

We show these results in Table III. In Table IV we show

result for SOLAR 10.7B Instruct [9]. While authors of the

model reported it to outperform much larger Mistral 7x8B

on some benchmarks, we see nothing similar for SummEval.

Consistently with Mistral results, for SOLAR the largest gain

was observed for relevance evaluation (from 19% to 43%). For

every model we show results for float16 inference and also for

model checkpoints quantized with use of GPTQ [10].

We see that summarization metrics, being relevant auto-

mated metrics for reading comprehension, strongly improve

with the number of parameters. Also, quantized 4-bit LLMs

are very strong performers proportionally to their size and

outperform similar size float16 models (for instance, quantized

Mixtral, having 24GB in parameters and Mixture-of-Experts

architecture strongly outperforms float16 SOLAR with 21 GB

of parameters). For this reason quantized LLMs might be

viable, cost-effective option for RAG and other similar use

cases. This phenomenon is similar to emergent abilities of

LLMs [11] where larger sizes lead to qualitative improvement

in LLM performance. In this case too, quantized LLMs [12]

retain large portion of their emergent capabilities.

Gains are particularly strong for relevance and consistency:

this is important for systems that rely on reading compre-

hension, like RAG expert systems. We used vLLM [13] and

Transformers [14] for implementation.

C. Positional bias.

Previously it was reported that LLM preference for candi-

date responses might be altered [15] by simply reordering the

responses in the prompt. This effect is called positional bias.

Our experimental setup might be affected by it, as we use

multi choice question answering prompts from [6].

We modified our approach as follows: we evaluate our score

for two nearly identical MCQ prompts that differ by the order

of answer candidates. One prompt has answer candidates in

A, B, C... order, the other in E, D, C... order. Having done

that, we average the scores for two prompts, doing that for

every example we evaluate.

We performed this experiment for Mistral 7B for relevance

evaluation and results can be found in Table V. Quite interest-

ingly averaging out positional bias produces strong improve-

ment for greedy decoding, while there’s no big difference for

E(s) decoding. Furthermore stronger improvement is found
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TABLE I
PEARSON CORRELATIONS TO HUMAN JUDGEMENT ON SUMMEVAL: MIXTRAL-INSTRUCT AND PRIOR RESULTS FOR OPENAI MODELS.

Metric GPT3.5 0301 [6] GPT4 0314 [6] ChatGPT [5] Mixtral E(s), T=10 Mixtral (greedy)

Fluency 0.431 0.600 0.384 0.392 0.222
Relev. 0.395 0.461 0.459 0.555 0.457
Consist. 0.484 0.618 0.516 0.506 0.397
Coher. 0.416 0.428 0.438 0.485 0.427

TABLE II
PEARSON CORRELATIONS TO HUMAN JUDGEMENT ON SUMMEVAL FOR MIXTRAL 8X7B V 0.1 INSTRUCT.

Metric Fp16, greedy Fp16, E(s) Int4, greedy Int4, E(S)

Fluency 0.222 0.392 0.235 0.405

Relev. 0.457 0.555 0.464 0.564
Consist. 0.379 0.506 0.293 0.470
Coher. 0.428 0.485 0.388 0.438

TABLE III
PEARSON CORRELATIONS TO HUMAN JUDGEMENT ON SUMMEVAL FOR MISTRAL 7B V 0.2 INSTRUCT.

Metric Fp16, greedy Fp16, E(s) Int4, greedy Int4, E(S)

Fluency 0.060 0.134 -0.045 0.061
Relev. 0.064 0.284 0.074 0.264
Consist. 0.061 0.252 0.076 0.249
Coher. 0.084 0.199 0.042 0.176

TABLE IV
PEARSON CORRELATIONS TO HUMAN JUDGEMENT ON SUMMEVAL FOR SOLAR 10.7B INSTRUCT.

Metric Fp16, greedy Fp16, E(s) Int4, greedy Int4, E(S)

Fluency 0.187 0.240 0.187 0.251

Relev. 0.192 0.427 0.165 0.364
Consist. 0.298 0.331 0.156 0,194
Coher. 0.305 0.362 0.200 0.267

for Fp16 model, than for Int4 model. Table VI shows few

more experiments for Nous Hermes DPO Mistral 7B model,

where either prompt candidates put in ascending (A, B, C...

order), reversed (E, D, C... order) or random order. NaN

correlations indicate that the model had predicted identical

result for all test examples. One new result here is that random

order is remarkably bad, with many correlations dropping by

30% or more. From human point of view prompt says exact

same thing, but this is not the same for LLMs, which cannot

generalize when the structure is altered. Also, NousHermes

Mistral, undergoing more extensive finetuning and alignment,

outperforms Mistral Instruct on metrics related to logical

reasoning, but underperforms on fluency and coherence.

This suggests that gains from E(s) method might be related

to positional bias, but details of it are not clear without further

research.

This looks related to spurious certainity of LLM we already

mentioned, our conjecture of temperature misconfiguration and

improved results for very high T = 10. LLM, when having no

good candidate hypothesis, seems to overreact to weak signals

- instance of this problem is positional bias. While averaging

out provides specific solution to positional bias, setting large

temperature provides general solution: as LLM might take

into account more candidate hypotheses, which presently are

dominated by overreaction to spurious signal.

These problems could be related to the use of softmax

function in attention heads. Neural net limitations with respect

to softmax and the rank of matrix under it were brought to

attention by [16] (which proposes high rank RNN). Similar

problems might reemerge in case of transformers and attention,

which use relatively small matrices for attention heads. For

softmax it does not matter whether signal is weak or strong,

only whether it is the strongest among provided candidates.

It is also true however, that weak signal supression can

be learned by the attention head in the pretraining process,

especially when bias matrices are added to Q and K – so it

is impossible to tell more without further study.

D. Statistical analysis.

We evaluate our results on 1600 samples from SummEval

dataset, calculating Pearson correlation to human judgement

evaluations on four metrics: fluency, relevance, consistency,

coherence. We recalculate correlations for 1600 ChatGPT-

evaluated samples provided by [5] and 1200 samples evaluated

by GPT3.5 0301 and GPT4 0314, provided by [6].

We evaluate statistical significance with use of bootstrap

method. We randomly shuffle series of human evaluation

metric xi and we do it 10000 times. For every random

shuffle x̂i and Pearson correlation coefficient r we calculate

x̄i = r√
1−r2

x̂i + xi. Clearly for large sample size Pearson

correlation corr(xi, x̄i) → r. We examine the empirical

cumulative distribution P (ρ|r, xi) of corr(xi, x̄i) .
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TABLE V
PEARSON CORRELATIONS TO HUMAN JUDGEMENT ON SUMMEVAL FOR MISTRAL 7B V 0.2 INSTRUCT - POSITIONAL BIAS ANALYSIS.

Metric Fp16, greedy Fp16, E(s) Int4, greedy Int4, E(S)

Relevance - standard. 0.064 0.284 0,074 0.264
Relevance - average. 0.245 0.295 0.161 0.307

TABLE VI
PEARSON CORRELATIONS TO HUMAN JUDGEMENT ON SUMMEVAL FOR MISTRAL 7B NOUS HERMES DPO FP16 - POSITIONAL BIAS ANALYSIS.

Metric Greedy, ascending Greedy, reverse Greedy, random E(S), ascending E(S), reversed E(S), random

Relevance 0.32 0.36 0,092 0.44 0.42 0.2
Consistency 0.38 0.33 0.17 0.5 0.42 0.3
Fluency 0.097 NaN 0 0.12 0.0001 0.015
Coherence 0.16 NaN 0.04 0.24 0.06 0.061

With this we seek to evaluate, whether the difference of

two sample correlations r1 for sample 1 and r2 for sample 2

is statistically significant. Significant difference of r1 and r2
would correspond to r2 being unlikely result if real correlation

for sample 2 was r1:

P (ρ < r2|r1, xi) < 5%

and

1− P (ρ > r2|r1, xi) < 5%,

according to p-value testing methods.

Our estimates suggests that our results in Table I for con-

sistency evaluation and relevance evaluation with Mixtral are

significantly better that GPT model results, as far as statistical

significance is concerned.

In addition, almost all improvements of E(s) method over

greedy method provide significant difference in correlation.

Only exception is consistency evaluation for SOLAR for Fp16

model in Table IV, which is not statistically significant (the

difference is 3.3% while significance threshold corresponds to

3.4%).

III. TREE-BASED SAMPLING

To further develop our hypothesis we propose an LLM in-

ference analysis method that, for a given prompt, seeks to find

all probable completions that could be generated by nucleus

sampling - to give complete, nearly deterministic picture, what

LLM outputs could be for given prompt. As a foundation

we use tree-search based sampling algorithm. We use priority

queue mechanism, where most probable completions are eval-

uated first (like in Dijkstra algorithm). Tree sampling (a.k.a

beam search) is broadly implemented approach3 in generative

language models. Recently we saw very similar algorithm to

ours [17] applied to compiler optimization (highest probability

output produces superior compiler parametrization). Other

controlled beam search techniques used for improved natural

laguage generation can be found in [18], [19].
We utilize priority based tree sampling to find all possible or

most probable completions for nucleus sampling. Algorithm
1 shows this procedure in pseudocode. This algorithm has
exponential asymptotic complexity: every iteration produces
N new sequences without fixed lower bound for N (LLM

3Available in popular library Transformers [14].

tokenizers have tens of thousands of tokens), leading to
exponential divergence KN for K new tokens. One could
decrease N by adjusting T and p̂. We notice that for some
prompts N is small number and large values of N indicate
a qualitative change in the text generation (such as going
from direct answer to user query, to additional not needed
remarks). As an example of this we evaluate following prompt
for Mixtral instruct4:

<s> [INST]Please provide one original,

creative paraphrase for sentence

"My name is John Kennedy"

and write new line after it[/INST]

Answer:\n\n"

Outputs with their evaluated probabilities can be found in

Table VII. We used nucleus sampling threshold p̂ = 0.9 and

temperature T = 2 and we show outputs with p > 0.1%. Tem-

perature is large, and reason is that for smaller temperatures

only first, most probable output would be generated, while

now it is generated with 73% probability. Output distribution

is uneven, with top output 41 times more probable than second

most probable output and very fat tailed with with about 23%

of probability mass distributed among very unlikely outputs

(p < 0.1%).

We did not get any diversity of the paraphrase, despite

asking for it explicitly, we got only two options: “I go by

the name of Kennedy John” and “I go by the name of JFK”.

At the same time LLM becomes unpredictable in the tail

of the distribution as various additional comments follow

after requested text. Output is thus not diverse and diversity

we get provides little benefit: it might be a problem, when

long unpredictable output follows the answer, evading usual

stopping mechanisms of the inference (here we stop inference

on two new lines in a row.)

This type of behavior can be easily explained with reference

to the content of training corpora for LLM. Specific tasks

like “paraphrase this sentence” or specific sentences like “My

name is John Kennedy” are likely rare in the large internet

crawl corpora. At the same time, casual conversation is more

frequent, so LLM can generate diverse full sentence answers

(but this is not very useful for instruction-following tasks).

4The prompt contains no new lines, but line wrapping was added for clarity.

194 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Algorithm 1 Tree-crawling topP algorithm

Require:

t1...tn {Prompt input sequence.}

ϕ(t1..tn)→ li {LLM that maps token sequence to next-token log-probabilities}

p̂ ∈ (0, 1) {TopP probability threshold}

α {Minimum loglikelihood of completion.}

StopTokens {Tokens that terminate inference, such as newline or end-of-sentence.}

MaxSteps {Max number of LLM evaluations}

Ensure:

Queue← [(t1..tn, 0)] {Priority queue ordered by second argument}

Complete← [] {Generated sequences terminated on stop tokens.}

Incomplete← [] {Generated sequences terminated on minimum logprobability α}

i← 0
while Queue not empty and i < MaxSteps do

seqi, lproba← Queue.pop()
li ← ϕ(seq)
for all token, l ∈ TopPCandidates(li, p̂) do

el← (concat(seq, token), lproba+ l)
if token ∈ StopTokens then

Complete.append(el)
else if l + x ≥ α then

Queue.append(el)
else

Incomplete.append(el)
end if

end for

i← i+ 1
end while

return Complete, Incomplete

TABLE VII
TREE SAMPLING ALGORITHM OUTPUT FOR MIXTRAL INSTRUCT, COMPLETED SENTECES.

Probability LLM output

0.73 I go by the name of Kennedy John."
0.018 I go by the name of JFK"
0.005 I go by the name of JFK" is a creative paraphrase for "My name is John Kennedy."
0.005 I go by the name of JFK" is a creative paraphrase for the sentence "My name is John Kennedy."
0.003 I go by the name of JFK" is a creative paraphrase of "My name is John Kennedy."
0.002 I go by the name of JFK" is a possible creative paraphrase for "My name is John Kennedy."
0.001 I go by the name of JFK" is a possible paraphrase for "My name is John Kennedy."
0.001 I go by the name of JFK" followed by, "What an honor to make your acquaintance!"

Results point to causes of few problems of LLMs that

we believe to be fairly widespread in applications based on

prompting LLM and parsing their output.

1) Repetitive output – LLM output might be often identical,

as there is single completion with very large probability.

LLM might sometimes provide little advantage com-

pared to retrieval based or rule based system.

2) Stopping instability – when LLM completes desired

output, many different unwanted follow-up comments

might be produced, disturbing rule based inference stop-

ping mechanism.

3) Uncontrollability – when LLM is asked to do something,

it can ignore instruction.

4) Hallucination - false or otherwise unwanted outputs

might be produced by LLM in rare cases, while being

undetected in tests using standard decoding.

These issues are rarely detected by commonly used

accuracy-based benchmarks. There are some generic auto-

mated metrics such as MAUVE for diversity [20], but goal of

our method is to analyze these issues in specific use cases and

provide guidelines on configuration and further analysis. Our

algorithm allows to analyze influence of modified prompts and

system configuration on output probabilities, allowing greater

degree of reliability and objectivity in the development, as dif-

ferent prompts, LLMs or sampling algorithm can be compared.

On more general terms it seems that decoding heuristics like
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TopP seem to fail our expectations, where entropy is extremely

small or extremely large. Instead other approaches might be

investigated: a) Scaling T for entropy extremes of next-token

probability distribution. b) Taboo sampling – tree sampling

with penalty for token and substring repetition. c) Stopping

generation for large entropy spikes (as that would likely result

in unwanted output). This might allow new improvements

in few important KPI for LLM, such as output diversity,

controllability and safety.

Among related work we may mention Mirostat [21], a

sampling algorithm similar to TopP. Fixed perplexity objective

allows to avoid both incoherence for large p and repetition

for small p, while similar approach of [22] seeks to generate

text with locally constant information content. Also vLLM

[13] implements repetition penalty to stabilize low p infer-

ence. Another tradeoff however remains, as high Shannon

information makes no difference between highly informative

word in human terms and unwanted token overrepresented in

the training dataset (as Shannon information is defined as the

inverse of probability). In addition, prioritizing largest possible

probability is very useful for some use cases, such as multi-

choice QA [3] or LLM for source code generation (see Fig. 7

in [23]) or compiler configuration [17]. Balancing this tradeoff

for humal language is a problem with no general solution yet

known to us. We thus seek to provide a tool for analyzing spe-

cific problems, such as prompting, interaction between LLM

and rule based scripts or stopping LLM inference reliably.

IV. CONCLUSIONS

We show LLM decoding method that improves performance

for answers given on quantitative scale: such as “evaluate

relevance of summary on a scale from 1 to 5”. On SummEval

summary evaluation dataset the method produces strong im-

provements, with open source LLM nearly matching much

larger GPT3.5 and GPT4, with GPT4 0314 outperformed

on relevance and coherence. Such improvement supports our

hypothesis that the temperature might be not optimally con-

figured in standard LLM decoding, as token probabilities

do not reflect real world probabilities and small and large

temperatures serve different purposes.

We demonstrate new LLM analysis method using priority

based tree sampling algorithm, useful for study of some niche

problems in LLM, such as the diversity and controllability of

the output.

We show reading comprehension metrics for few different

LLM with sizes 7B, 10.7B and 47B with float16 (half preci-

sion) inference and 4 bit GPTQ quantization. Summarization

metrics strongly improve with the number of parameters, and

quantized 4-bit LLM are effective in proportion to their size

(which is of interest for RAG on low-powered systems).
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