
Handling Lot Sizing/Job Scheduling
Synchronization through Path Search Algorithms

Alain Quilliot and Aurélien Mombelli
LIMOS Lab.

UCA, CNRS and EMSE
Clermont-Ferrand, France

Email: alain.quilliot@uca.fr
LIMOS Lab.

Clermont-Ferrand, France

Abstract—We deal here with the synchronization of a resource
production process and the consumption of those resources by
machines used in order to run a set of jobs. Resources are
produced by a Resource Lot Sizer player, under some economic
costs and technical constraints. Both the Resource Lot Sizer
and the Job Scheduler interact through transfer transactions,
that involve specific constraints, making the synchronization
between both processes become an issue. Resulting decision
problem appears as a multi-stage Lot Sizing problem, arising in
contexts where the resource is some renewable energy (hydrogen,
electricity, . . . ) required by the jobs and stored inside tanks or
batteries embedded into the machines (vehicles or robots). We
first cast it into the MILP format, perform a structural analysis of
the transfer transactions and handle resulting MILP SLSS model
through Branch and Cut before reformulating it as a path search
problem set in a specific Transfer space and handling through a
filtered adaptation of the A* algorithm.

I. INTRODUCTION

LOT SIZING arises when one schedules production while
taking care of avoiding strong activation costs (see [3]).

A Lot Sizing strategy consists in concentrating production
on well-chosen periods in order to minimize those activa-
tion costs. Resulting problems look like Knapsack problems
involving a temporal dimension. One often handles them
through dynamic programming, that may yields FPTAS: Fully

Polynomial Time Approximation Scheme. Multi-dimensional
Lot Sizing (see [?]) means a heterogeneous production and
different kinds of capacity constraints (weight, volume, . . . ).
Multi-level Lot Sizing means several players acting on a same
system (a main resource producer and several subcontractors).
Those players may be partially independent from each others,
raising the collaborative issue and leading to cooperative
game or multi-objective reformulations (see [2]). In any case,
resulting problems are NP-Hard.

Now it may happen that such a process takes place in the
context of an interaction between the Lot Sizer player, that is
a Resource Lot Sizer, and a (several) Job Scheduler(s) who
uses resources in order to run jobs (production or services)
on parallel machines (vehicles or industrial robots). It is
specifically the case when the resource is energy (power,
hydrogen, biofuel, ...) loaded into batteries or tanks embedded
into the machines (see [4]). In such a case, both the re-
source lot sizer and the job scheduler interact through transfer

transactions, consisting in transferring resources (the energy)
from the resource production plant into the storage facilities
embedded into the machines. Both players must agree about
the production periods i and the job dates t when the energy
producer transfers some energy amount m to the job scheduler.
Such a transfer transaction ω = (i, t,m) usually involves its
own constraints and costs. According to this, we get a full
description of our process if we know, besides the production
vector z and the schedule of the jobs, the collection of all
transfer transaction ω = (i, t,m) which make both players
meet.

As the Lot Sizing problems, job scheduling problems have
been widely investigated in the past (see [3]). It may arise in
contexts related not only to energy management (see [2], [8]),
but also to real time cooperation between sensors and robots, to
the interaction between electric vehicles and recharge facilities
(see [4], [5]). It raises the centralized versus collaborative

issue (see [2] ) since involved players may be independent.
However, though both the Lot Sizing and job scheduling
problems have been extensively studied, few authors addressed
the synchronization issue that is at the core of the situation that
we just described above (see [1] ). Our main purpose here is
to address it.

We stick here to the centralized paradigm and focus on the
combinatorial issues related to synchronization and suppose
that the processing order of the jobs j = 0, . . . ,M − 1 on
the machine have already been decided. We denote by SLSS:
Synchronized Lot Sizing/Scheduling resulting problem that
may be viewed as containing the core of the synchronization
issue. We first make appear the central role played here by the
transfer transactions: We check that, for any feasible solution
of SLSS, related transfer transactions define a chain inside
some partially ordered set. This leads us to next design a
MILP: Mixed Integer Linear Programming setting of SLSS

that is centered on those transfer transactions and involve
complex no-antichain constraints. We check that, though those
no-antichain constraints are exponential, they may be sepa-
rated in polynomial time, opening the way to the handling of
SLSS through Branch and Cut. Yet, this approach remains time
consuming. Keeping on with the idea of taking advantage of
the specific structure of the transfer transactions as a partially

Communication Papers of the 19th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 131–138

DOI: 10.15439/2024F7665
ISSN 2300-5963 ACSIS, Vol. 41

©2024, PTI 131 Thematic Session: Computational Optimization



ordered set, we reformulate SLSS problem as a path search
problem inside some large size Transfer network. We deal with
this path search reformulation while designing a Path SLSS

algorithm that proves itself far more efficient than the MILP
setting and allows us to state that SLSS is pseudo-polynomial.
So the paper is organized as follows. We describe in Section
II the SLSS problem. In Section III, we study the structure of
the transfer transactions and set a transfer transaction driven
MILP formulation MILP SLSS of SLSS, that involves no-

antichain constraints. We explain in Section IV the way those
no-antichain constraints may be separated, allowing us to
deal with MILP SLSS through branch and cut. Section V
is devoted to our main contribution, that consists in a path
search reformulation of SLSS and its more efficient handling
through the design of a filtered A* like path search algorithm
([7]). This algorithm allows us to check that SLSS is pseudo-
polynomial. We conclude with numerical experiments.

II. THE SYNCHRONIZED LOT SIZING/SCHEDULING

PROBLEM

We consider:

• A Resource Lot Sizer: The time horizon of the resource
lot sizer is divided into N periods i = 0, . . . , N − 1, all
with equal duration p. Thus the starting time of period i

is equal to p.i. During a period i, this resource producer
may be active or idle. If it is active, then it produces
Ri resources, under a variable running cost CostRi . If it
is idle, then turning it into active induces an additional
activation cost CostAi . It is provided with a resource
storage facility, with capacity CP and initial load HP

0 .
It cannot produce if resulting load exceeds CP . This last
hypothesis will be discussed in Section II.B. It must end
with a load at least equal to HP

0 and while minimizing
its production cost.

• A Job Scheduler: It must sequentially perform M jobs
j = 0, . . . ,M − 1 on a single machine, according to
this order, within a time horizon [0, N.p] . Running a
job j requires ej resource units and tj time units. It is
provided with a resource storage facility, with capacity
CS and initial load equal to HS

0 . It must end with a load
at least equal to HS

0 while minimizing that makespan,
that means the ending time of job M − 1.

• Transfer Transactions: Because of its limited storage
capacity CS , the job scheduler must periodically receive
resources from the resource producer. Such a transfer

transaction (see Figure 1) takes place during a whole
period i, between the end of some job j and the beginning
of its successor j + 1, and involves the transfer of
m resources. It is denoted as ω = (i, j,m), where
m ≤ Inf(CP , CS). Performing ω = (i, j,m) requires a
full period i, during which production is forbidden. It also
requires from the job scheduler ϵj additional resources,
τj additional time and a potential waiting time to be
spent before the transfer transaction takes place. One must
understand those requirements as related to a kind of
detour (if the machine is a vehicle) or set up (if it is

Fig. 1. A Transfer Transaction

a robot). The consequence is that if ω = (i, j,m) defines
a transfer transaction and if we denote by Tj the starting
time of j, by V S

j the resource load of the job scheduler
at the time when j starts and by V P

i the resource load of
the resource lot sizer at the beginning of period i, then:

– The starting time p.i of period i must be at least
equal to Tj + tj + τj (augmented with a possible
waiting time), while the ending time p.(i + 1) of i

will coincide with the starting time Tj+1 of job j+1.
– The load V P

i+1 of the resource lot sizer at the begin-
ning of period i+ 1 must be equal to V P

i −m and
must be non negative.

– The load V S
j+1 of the job scheduler at the beginning

of job j + 1 must be equal to V S
j − ϵj + m must

not exceed CS ; Its load V P
j − ϵj at the beginning of

period i must be non negative.

Since those additional coefficients τj and ϵj most often
corresponds to some kind of detour, we suppose that the
following triangle inequalities hold for any j ≤ M − 1:
τj ≤ τj+1 + tj+1 and ϵj ≤ ϵj+1 + ej+1.
These inequalities mean that if the job scheduler has
no time left for a transfer transaction at the end of job
j, then keeping on with another job will not provide it
with the missing time.
In order to allow resources to be transferred before job
0 or after job M − 1 we introduce a fictitious job −1,
such that t−1 = 0, e−1 = 0, τ−1 and ϵ−1 being non
null additional coefficients, and another fictitious job M ,
with tM = e−M = τM = ϵM = 0.

Then solving the SLSS: Synchronized Lot Sizing/Scheduling

problem means, in a natural way, computing the resource
production periods, the starting times of the jobs, and the
transfer transactions that link both players in such a way that:

• All jobs are done.
• Capacity constraints, job resource requirements and final

state constraints are met.
• Some cost α.

∑

i

PCost + β.T is minimized, where

PCost is the production cost, T is the ending time of
the fictitious job M and α, β are time versus money

coefficients.

132 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



III. A Transfer Transactions DRIVEN A MILP MODEL

As told in the introduction, transfer transactions (i, j,m) will
be the leader component of any SLSS algorithmic solution.

A. The Transfer Transaction Partially Ordered Set

Let us first introduce some additional definitions:
Resource and Time Delays.

Let us recall that a transfer transaction ω = (i, j,m) starts at
time p.i and lasts one period. It starts just after the ending time
of job j, augmented with delay τj and with a possible waiting
time. Its ending time p.(i+1) coincides with the starting time
of j+1. Besides, it requires an additional resource ϵj , that the
job scheduler consums just before the transaction takes place.
A transfer transaction may take place just after the end of job
M − 1, at the very end of the process. It may also occur just
before the beginning of job 0 or, in other words, between the
fictitious job −1 provided with values ϵ−1 and τ−1 and job 0.

For any job pair (j1, j2) s.t. 0 ≤ j1 < j2 ≤M−1 we denote
by µ(j1, j2) = ϵj2 +

∑

j1+1≤j≤j2

ej the amount of resources

required between two transfer transactions respectively related
to j1 (just after j1) and j2 (just after j2). We call this
quantity the resource delay between j1 and j2. This definition
applies to j1 = −1. By the same way, we set, for any
j1 = −1, . . . ,M − 1 :

• µStart(j1) = (
∑

j≤j1
ej)+ϵj1 that expresses the resource

consumed between the beginning of the process and the
first transfer transaction in case this transfer occurs just
after j1. We call it the start resource delay induced by
j1. Notice that if j1 ̸= −1, then µStart(j1) = µ(−1, j1).

• µEnd(j1) = (
∑

j>j1
ej) that expresses the resource

consumed between the last transfer transaction in case
this transfer transaction occurs just after j1 and the
end of the process. We call it the end resource delay

induced by j1. Notice that µEnd(j1) might also be
written µ(j1,M) if we extend the definition of µ(j1, j2).

Considering the time instead of the resource, we set
∆(j1, j2) = τj2 +

∑

j1+1≤j≤j2

tj , that means the time required

between two transfer transactions respectively related to j1 and
j2. This definition applies to j1 = −1. We call this quantity
the time delay between j1 and j2. By the same way, we set,
for any j1 = −1, . . . ,M − 1 :

• ∆Start(j1) = (
∑

j≤j1
tj)+τj1 that expresses the minimal

time between the beginning of the process and the first
transfer transaction in case this transaction occurs just
after j1. We call it the start time delay induced by j1.

• ∆End(j1) = (
∑

j>j1
tj) that expresses the time required

between the last transfer transaction in case this
transfer transaction occurs just after j1 and the end of
the process. We call it the end time delay induced by j1.

We derive from those time delays the following informa-
tions:

• We set πm(j) =
⌈

∆Start(j)
p

⌉

. We easily check that πm(j)

means the first possible period for a transfer transaction
involving a job j ∈ {−1, . . . ,M − 1}.

• We set πM (j) = (N − 1)−
⌈

∆End(j)
p

⌉

. We easily check

that πM (j) means the last possible period for a transfer
transaction involving j ∈ {−1, . . . ,M − 1}.

A consequence of the triangle inequalities τj ≤ τj+1 + tj+1

is that the interval {πm(j), . . . , πM (j)} provides us with
the periods when a transfer transaction involving j may occur.

Also:

• For any j such that M−1 ≥ j ≥ 0, we denote by Φ(j) the
unique job j1 (it may not exist) such that j < j1 ≤M−2
and µ(j, j1) ≤ CS and that µ(j, j1 + 1) > CS .

• By the way, we denote by Φ(−1) the largest job j1 such
that µStart(j1) ≤ HS

0 and by Φ(M) the smallest j1 such
that µEnd(j1) ≤ CS −HS

0 .

A consequence of the inequalities ϵj ≤ ϵj+1 + ej+1 is that if
Φ(j) exists, then it tells us that at least one transfer transaction
must take place that involves j1 belonging to the period
interval {j + 1, . . . ,Φ(j)}. If such a transaction were not
existing, then moving ahead of Φ(j) or moving backward
from j would not allow make appear any feasible transfer
transaction, and the whole process would become infeasible.

Finally we denote by CTR = min(CP , CS) the maximal
value m that may be involved into a transfer transaction.
The Transfer Transaction Partially Ordered Set (Ω,≪).

We define Ω as the set of all (period/job) pairs (i, j) such
that τm(j) ≤ i ≤ τM (j), augmented with 2 fictitious pairs
Source and Sink. It contains all pairs (i, j) that may be
involved into a transfer transaction.

We set (i1, j1)≪ (i2, j2) if and only if a transfer transaction
related to period i2 and job j2 can be preceded by another
transfer transaction between period i1 and station j1 in the
sense of the time delays, that means if j2 > j1 and (i2− i1−
1).p ≥ ∆(j1, j2). We set Source≪ (i, j) and (i, j)≪ Sink

for any (i, j). We easily check that this relation≪ is transitive
and anti-reflexive and so defines a partial order relation on Ω.

The order relation ≪ induces on the set Ω an oriented
graph structure G≪. Any arc ((i1, j1), (i2, j2)) of G≪ may
be provided with a length L≪((i1, j1), (i2, j2)) as follows:

• If both (i1, j1) and (i2, j2) are different from Source and
Sink, then L≪((i1, j1), (i2, j2)) = µ(j1, j2);

• If (i1, j1) = Source then L≪((i1, j1), (i2, j2)) =
µStart(j2);

• If (i2, j2) = Sink then L≪((i1, j1), (i2, j2)) =
µEnd(j1).

Lemma 1: Given a feasible solution of SLSS. Then the

transfer transactions related to this solution define a path Γ
in the acyclic graph G≪, that connects Source to Sink and

is such that, for any arc ((i1, j1), (i2, j2)) of Γ:

• If (i1, j1) and (i2, j2) are both different from Source and

Sink, then: L≪((i1, j1), (i2, j2)) ≤ CS ;
• If (i1, j1) = Source then L≪((i1, j1), (i2, j2)) ≤ HS

0 ;

ALAIN QUILLIOT, AURÉLIEN MOMBELLI: HANDLING LOT SIZING/JOB SCHEDULING SYNCHRONIZATION THROUGH PATH SEARCH ALGORITHMS 133



• If (i2, j2) = Sink then L≪((i1, j1), (i2, j2)) ≤
CS −HS

0 .

Proof: TTw consecutive transfer transactions
(i1, j1,m1), (i2, j2,m2) involved into a feasible solution
of SLSS define an arc in the sense of (Ω,≪) because the
time between the end of i1 and the beginning of i2 must
be large enough in order to make possible processing the
jobs j1 + 1, . . . , j2. The bound imposed to the length of
((i1, j1), (i2, j2)) means that the resources needed in order
to process those jobs under the additional resource ϵj2
requirement cannot exceed the storage capacity CS . □

B. A MILP Formulation of SLSS

Let us recall that a ≪-Antichain of the partially ordered
set (Ω,≪) is any subset of Ω made of pairs (i, j) pairwise
incomparable in the sense of ≪. Then we set SLSS MILP

by first introducing the following variables:

• Transfer Transaction Variables

• {0, 1}-valued vector U = (Ui,j , i = 0, . . . , N −
1, j = −1, . . . ,M − 1): Ui,j = 1 means that some
transfer transaction (i, j,m) is part of the solution.

• Rational non negative vector m = (mi,j , i =
0, . . . , N − 1, j = −1, . . . ,M − 1): If Ui,j = 1 then
mi,j means related resources.

• Resource Lot Sizing Variables

• {0, 1}-valued vector y = (yi, i = 0, . . . , N − 1):
yi = 1 means that the production is activated at the
beginning of period i.

• {0, 1}-valued vector z = (zi, i = 0, . . . , N − 1) :
zi = 1 means the production active at period i.

• {0, 1}-valued vector δ = (δi, i = 0, . . . , N − 1):
δi = 1 means a transfer transaction at period i.

• Job Variables

• T : T = the ending time of the job M .
• {0, 1}-valued vector γ = (γj , j = −1, . . . ,M − 1):

γj = 1 means that a transfer transaction takes place
at the end of job j. (If j = −1 then it means that a
transfer transaction takes place just before job 0).

Then, the constraints of the SLSS MILP come as follows:

• Structural Constraints

Minimize
∑

i

(CostRi .zi + CostAi .yi) + α.T (∗)

∀j : T ≥
∑

i

Ui,j .(p(i+ 1) + ∆End(j)) (C.1)

y0 − z0 ≥ 0 (C.2)
∀i ≥ 1 : yi ≥ zi − zi−1 (C.3)
∀i ≥ 0 : zi + δi ≤ 1 (C.4)
∀i : δi =

∑

j

Ui,j (C.5)

∀j : γj =
∑

i

Ui,j (C.6)

∀(i, j) s. t.(i > τM (j)) ∨ (i < τm(j)) : Ui,j = 0 (C.7)
∀A,A ≪-Antichain :

∑

(i,j)∈A

Ui,j ≤ 1

(C.8 : No-Antichain Constraints)
∀j s. t.− 1 ≤ j ≤M − 1 :

∑

k∈{j+1,...,Φ(j)}

γk ≥ 1 (C.9)

∑

k∈{−1,...,Φ(−1)}

γk ≥ 1 (C.10)

∑

k∈{Φ(M),...,M−1}

γk ≥ 1 (C.11)

T ≥
∑

j

(tj + τj .γj) (C.12)

∀j : HP
0 +

∑

k<τM (j)

zk.Rk ≥
∑

k≤j

(γk.ϵk + ek)−HS
0 (R.1)

• Resource Amount Constraints

∀i, j : mi,j ≤ Ui,j .C
TR (TL.1)

∀i :
∑

j,k≤i

mk,j −
∑

k<i

zk.Rk ≤ HP
0 (TL.2)

∀i :
∑

k≤i

zk.Rk −
∑

j,k≤i

mk,j ≤ CP −HP
0 (TL.3)

∑

i

zi.Ri −
∑

i,j

mi,j ≥ 0 (TL.4)

∀j s. t. 0 ≤ j ≤M − 1 :
∑

i,k<j

mi,k +HS
0 ≥

∑

k≤j

(ek + γk.ϵk) (TL.5)
∑

i,j

mi,j ≥
∑

j≤M−1

(ej + γj .ϵj) (TL.6)

∀j s. t. − 1 ≤ j ≤M − 1 :
∑

i,k≤j

mi,k ≤ CS −HS
0 +

∑

k≤j

(ek + γk.ϵk) (TL.7)

Theorem 1. The MILP program SLSS MILP model solves

the SLSS problem in an exact way.

Proof. (*) clearly means the objective function of SLSS, while
one easily checks that (C.1, C.2, C.3, C.4, C.5, C.6, C.7,
C.8, C9, C10, C11, TL.1, TL.2, TL.3, TL.6) are necessary.
(C.12): T is at least equal to the running times of the jobs and
the transfer transactions. (R.1): For any job j, the resources
produced before j + 1 augmented with the initial resources,
must be enough for jobs 0 to j+1. (TL.4): We must globally
produce at least as much as we transfer. (TL.5): For any j,
the resources needed in order to perform jobs 0, . . . , j together
with the related transfer transactions must not exceed available
resources (the triangle inequalities are involved). (TL.7): For
any j, the resources of the job scheduler after running j must
not exceed CP .

134 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



Conversely, we get sufficiency by first checking that con-
straints (C.5, ..., C.8) imply that the transfer transactions deriv-
ing from U define a chain in (Ω,≪). Constraints (C.9, C.10,
C11) make this chain consistent with Lemma 1. Let us denote
it by Γ = {(i1, j1), . . . , (iQ, jQ)} and let us introduce vari-
ables Tj , V

S
j , j = 0, . . . ,M − 1, V̂ S

q , q = 1, . . . , Q, V P
i , i =

0, . . . , N − 1, V̂ P
q , q = 1, . . . , Q, respectively representing the

starting time of job j, the resources stored by the job scheduler
at time Tj , the resources stored by the job scheduler just before
the qth transfer transaction takes place, the resources stored
by the resource lot sizer at the beginning of period i and the
resources stored by the resource lot sizer just before the qth

transfer transaction takes place (at the beginning of period
iq). Then it is enough to follow Γ in order to provide those
variables with values defining a feasible schedule.

IV. A BRANCH AND CUT FOR THE SLSS MILP MODEL

Applying a MILP library to SLSS MILP means designing
a procedure in order to separate the No Antichain constraints
(C.8), that means in order to dynamically generate and insert
new No Antichain constraints as soon as a current solu-
tion of the rational relaxation of SLSS MILP appears, that
does not meet those constraints. Let U be some rational
(or integral) vector satisfying (C4, C5, C6, C7). Separating
(C.8) means searching for an antichain A in (Ω,≪) such
that

∑

(i,j)∈A Ui,j > 1. Theoretically (see [6]) it can be
done in polynomial time by application of a feasible network
flow procedure. However, the arcs of G≪ are too many
for an efficient application of such a separation procedure.
Instead, we proceed in a heuristic way, through partial tree
search. Related backtracking nodes correspond to sequences
{(i1, j1), . . . , (ik, jk)} ordered according to decreasing Ui,j

values and whose elements define an antichain in Ω. In order
to speed the process, we arbitrarily impose an upper bound on
the number of backtracking nodes created this way and use
this upper bound as a control parameter. If U is integral, then
we only need to scan the transfer transactions and check that
2 consecutive transfer transactions agree with ≪.

V. HANDLING SLSS AS A PATH SEARCH PROBLEM

Let us come now to our main contribution. We are going to
show that SLSS may be reformulated as a path search problem
in an acyclic large state network. This will allow us to handle
it while adapting the well-known A* algorithm (see [7]) for
the computation of robot trajectories inside state spaces. This
approach will prove itself to be far more efficient that the
MILP based approach.

A. The SLSS Path Search Formulation

We saw in Section III.A that the transfer transactions in-
volved in any feasible SLSS solution define in the graph G≪

a path Γ from Source to Sink such that if (i1, j1) and (i2, j2)
are consecutive in Γ, then: (P0)

• If (i1, j1) ̸= Source and if (i2, j2) ̸= Sink then
µ(j1, j2) ≤ CS

• If (i1, j1) = Source then µStart(j2) ≤ HS
0

• If (i2, j2) = Sink then µEnd(j1) ≤ CS −HS
0

Such a path Γ = {Source, (i1, j1), (i2, j2), . . . , (iQ, jQ), Sink}
does not fully characterize a SLSS feasible solution.
But we are going to show that it will do it as
soon as we are able to provide it with well-fitted
sequences w = {wq, q = 0, 1, . . . , Q,Q + 1} and
W = {Wq, q = 0, 1, . . . , Q}, with the meaning:

• For any q = 1, . . . , Q, wq means the resources globally
stored together by the resource lot sizer and the job sched-
uler at the end of period iq . For any q = 1, . . . , Q − 1,
Wq denotes the resource produced between period iq and
period iq+1.

• w0 = HP
0 +HS

0 = the initial resources and W0 means the
resources produced before period i1. WQ = the resources
produced after period Q.

• wQ+1 ≥ HP
0 +HS

0 means the final global resources.

Then we may characterize the SLSS solutions according to
the following statements:

Theorem 2. Given a path Γ =
{Source, (i1, j1), (i2, j2), . . . , (iQ, jQ), Sink} that

meets (P0), together with non negative values

wq, q = 0, 1, . . . , Q,Q + 1 and Wq, q = 0, 1, . . . , Q.

They may be extended into a feasible solution of SLSS iff:

1) w1 = w0 +W0 − µStart(j1);
w0 = HP

0 +HS
0 ;

W0 ≤ CP −HP
0 ;

W0 is a feasible production for periods in {0, . . . , i1 −
1}. (P1)

2) For any q = 1, . . . , Q− 1: (P2)

• Wq ≤ min(CP , CS + CP − wq) is a feasible

production for periods in {iq + 1, . . . , iq+1 − 1};
• wq+1 = wq +Wq − µ(jq, jq+1);
• µ(jq, jq+1 ≤ Inf(wq, C

S).

3) WQ ≤ min(CP , CS+CP−wq) is a feasible production

for periods in {iQ + 1, . . . , N − 1};
wQ+1 = (wQ +WQ − µEnd(jQ) ≥ HP

0 +HS
0 ; (P3)

Proof. Lemma 1 tells us that we may derive from path Γ
starting times values Tj , j = 0, . . . ,M − 1 for the jobs j, that
are consistent with the time requirements of SLSS. Let us
suppose that we know the values ŵS

q , q = 1, . . . , Q, ŵP
q , q =

1, . . . , Q denoting the resources available for respectively the
job scheduler and the resource lot sizer just after the qth

transfer transaction takes place (at the end of period iq).
Then we easily deduce the resources V S

j , j = 0, . . . ,M − 1
available for the job scheduler at time Tj , and the resources
V P
i , i = 0, . . . , N − 1 available for the resource producer at

time p.i. So the key point becomes distributing global resource
quantities wq among the job scheduler and the resource lot
sizer, and get quantities ŵS

q , q = 1, . . . , Q, ŵP
q , q = 1, . . . , Q

that mean the resources available for respectively the job
scheduler and the resource lot sizer at the end of period iq ,
in such a way that resulting quantities V S

j , j = 0, . . . ,M − 1

ALAIN QUILLIOT, AURÉLIEN MOMBELLI: HANDLING LOT SIZING/JOB SCHEDULING SYNCHRONIZATION THROUGH PATH SEARCH ALGORITHMS 135



and V P
i , i = 0, . . . , N − 1 meet the resource requirements of

SLSS. We get it by applying the following rule: For every q,
we complete the pair (iq, jq) with a transfer value mq in such
a way that either we completely fill the storage device of the
job scheduler (ŵS

q = CS) or, if it is not possible, we make
the storage facility of the resource lot sizer become empty
(ŵP

q = 0). Then, it becomes a matter of routine to check that
resulting V S

j , j = 0, . . . ,M − 1 and V P
i , i = 0, . . . , N − 1

meet the resource requirements of SLSS.

A Path Search Formulation of SLSS.

Theorem 2 suggests us the construction of the following
Augmented Transfer oriented graph GAugment,≪:

• The nodes of GAugment,≪ are pairs (x,w), where x is
a node of G≪ and w is a resource value such that 0 ≤
w ≤ CS +CP ; We define the node (Source,HS

0 +EP
0 )

as a source node and any node (Sink, w ≥ HS
0 +HP

0 )
as a sink node.

• We say that ((x1, w1), (x2, w2)) defines an arc of
GAugment,≪ if (x1, x2) is an arc of G≪ that meets (P0)
and if w2 may be written w2 = w1+W−µ(j1, j2), W be-
ing a feasible production for periods in i1+1, . . . , i2−1,
in a way that meets (P1, P2, P3) of Theorem 2.

• The cost CostAugment((x1, w1), (x2, w2)) of such an
arc is α.PCost(W ) + β.(i2 − i1), where PCost(W )
is the production cost induced by W . In case x1 =
Source or x2 = Sink , then this formula has to be
respectively adapted as α.PCost(W )+β.∆Start(j2) and
α.PCost(W ) + β.∆End(j1).

Then we get a SLSS Path Reformulation: {Compute a
shortest path (in the sense of CostAugment )
in GAugment,≪ from the source node to the sink nodes.}

B. An A* Based Algorithm

Above SLSS path reformulation suggests us to deal with
SLSS while relying on a standard path search algorithm for
acyclic graphs. However, we must take care on the 2 following
specific features of our path model:

1) Every time we are working with some node
(i1, j1, w1) of GAugment,≪, we must generate
arcs ((i1, j1, w1), (i2, j2, w2)), together with values
W = w2 − w1 + µ(j1, j2) and related cost values
PCost(W ). But computing these cost values requires
the resolution of some local lot sizing problem.

2) Depending on the context, values w may be large,
possibly infinite. So we need filtering devices.

Computing the Cost Values through a Pre-Process.

We deal with the first issue while performing a dynamic
programming pre-process that yields a table TAB, indexed
on the pair i1, i2,−1 ≤ i1 < i2 ≤ N . For any such a pair,
TAB[i1, i2] contains a list of 3-uples (W,PCost(W ), Sol)
where W means the resources produced during periods
i = i1 + 1, . . . , i2 − 1, PCost(W ) means their optimal
production cost, and Sol some related production schedule.
This dynamic programming pre-process is implemented

according to a backward driven strategy: It involves a main
loop indexed on the 2-uples (i2, w

P
2 ) and an internal loop

indexed on the 2-uples (i1, w
P
1 ) such that i1 < i2, and

works in pseudo-polynomial time. We may speed it by
noticing that if i2 ≤ N − 2, then we may restrict ourselves
to pairs i1, i2) such that it is possible to compute j1, j2 with
i1 ≥ τm(j1) and i2 ≤ τM(j2). So, every time we generate a
decision value W , we get its cost value PCost(W ) through
a direct access to the table TAB. We notice that if CS

and CP are bounded by polynomial functions of N and
M then the construction of TAB can be performed in
polynomial time, which also means that in the general case,
this construction can be performed in pseudo-polynomial time.

Introducing Filtering Devices: A Lower Bound.

As for the second issue, we may reduce the number of nodes
explored during our path search by performing some kind of
rounding (for instance modulo the first k bits, as usually done
in order to design FPTAS algorithms). But the most natural
way is to rely on a lower bound procedure, that, with some
node (i1, j1, w1) of GAugment,≪ is going to associate a lower
bound LB(i1, j1, w1) of a shortest path from (i1, j1, w1) to
the sink nodes in GAugment,≪. We get such a lower bound
by first computing a lower bound TransMin

j1
on the number

of transfer transactions that will remain to be performed after
period i1. We see that we may define TransMin

j1
as follows:

TransMin
j1,w1

= ⌈
(HS

0 − w1 +
∑

j>j1
ej)

CTR
⌉,

Next we notice that we get a lower bound on the additional
time T AddMin

j1,w1
that will to be spent by the job scheduler

because of those transfer transactions by setting:

• τMin
j1

= the smallest value τj , j ≥ j1 + 1;
• T AddMin

j1,w1
= τMin

j1
· TransMin

j1,w1
.

We deduce a lower bound TMin
j1,w1

on the time that the job
scheduler will have to spend after the end of period i1 before
achieving its own process by setting:

TMin
j1,w1

= (
∑

j>j1

tj) + T AddMin
j1,w1

.

By the same way, we check that achieving this process will
require during the periods i1, . . . , N − 1 the production of at
least WMin

j1,w1
resource, where WMin

j1,w1
is defined by:

• ϵMin
j1

= the smallest value ϵj , j ≥ j1 + 1;
• WMin

j1,w1
= HP

0 +HS
0 +µEnd(j1)+ϵMin

j1
·TransMin

j1,w1
−w1.

Then we may retrieve from TAB[i1, N ] a value PCostMin
i1,j1,w1

equal to the smallest cost value related to some production W

such that W ≥WMin
j1,w1

;
Lemma 3: LB(i1, j1, w1) = β · TMin

j1,w1
+ α.PCostMin

i1,j1,w1
is

a lower bound for the cost of a shortest path from (i1, j1, w1)
to the sink nodes in GAugment,≪.
Proof. It derives in a straightforward way from the construction
of the quantities TMin

j1,w1
and PCostMin

i1,j1,w1
. □

Exact and Heuristic Dominance Rules.

We enhance our algorithm by introducing dominance rules:

136 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024



• Exact Dominance Rule: If at some time during the
search process we deal with two nodes σ1 = (i1, j1, w1)
and σ2 = (i2, j2, w2) of GAugment,≪ such that
(i1, j1, w1) = (i2, j2, w2) and CostG Augment(σ1) +
LB(σ1) ≤ CostG Augment(σ2) +LB(σ2), then we may
kill σ2.

• Heuristic Dominance Rule: We may reinforce above
rule by setting that σ1 = (i1, j1, w1) dominates σ2 =
(i2, j2, w2) if:

– CostG Augment(σ1) + LB(σ1) ≤
CostG Augment(σ2) + LB(σ2)

– i1 ≤ i2, j2 ≤ j1 and w1 ≤ w2.

If at some time during the search process we deal with
two nodes σ1 = (i1, j1, w1) and σ2 = (i2, j2, w2) of
GAugment,≪ such that σ1 dominates σ2 , then we kill

σ2. Yet this rule is only a heuristic dominance rule. Yet,
numerical experiments will show its efficiency.

The Algorithm A* SLSS: So we design our algorithm
A* SLSS as an adaptation of the well-known A* (see [7]) algo-
rithm for path search in very large networks. At any time dur-
ing the A* SLSS resolution process, we are provided with an
expansion list LS of nodes σ = (i, j, w)of GAugment,≪, given
together with related cumulative costs CostG Augment(σ) and
future cost estimations LB(σ). Those nodes are ordered ac-
cording to increasing Eval(σ) = CostG Augment(σ)+LB(σ)
estimation values. Then we pick up the first element σ1 =
(i1, j1, w1) in LS, called the pivot node, and we expand it: we
generate all decisions (i2, j2,W ) such that (i1, j1)≪ (i2, j2),
(P0) holds and W ∈ TAB[i1, i2] that are valid in the sense
that they meet (P1, P2, P3) of Theorem 2. For every such
a decision, we generate resulting state σ2 = (i2, j2, w2)
and insert it into LS while meeting the dominance rules
(depending on the rules, it will yield an exact or heuristic
algorithm). We stop when the pivot state σ is a sink node.

Resulting A* SLSS algorithm may be summarized:

Algorithm A* SLSS

Initialization:

• LS = {source}, sink being the source node
of GAugment,≪, provided with Eval(sink) =
LB(sink) estimation value; NotStop;

• Curr Sol = current partial solution set = Nil;

While NotStop and LS ̸= Nil do

1) Denote by Pivot the head of LS;
2) Remove it from LSand insert it into Curr Sol;
3) If Pivot = (i1, j1, w1) is a sink node then Stop

Else

Generate all valid decisions Dec =
(i2, j2,W ) that apply to Pivot;
For any such a decision Dec do

• Compute resulting node σ2 =
(i2, j2, w2), together with its value
Eval(i2, j2, w2);

• If σ2 is dominated by no node σ0

in LS then insert it into LS, while

keeping LS from containing a node
σ0 dominated by σ2;

If Stop then Retrieve from Pivot and Curr Sol a
full path Γ solution of SLSS;

Depending on the dominance rules that we apply here, we
obtain two algorithms A* SLSS and Heur A* SLSS .

Theorem 3. When implemented with the weak dominance

rules, above algorithm A* SLSS solves SLSS in an exact way.

In any case, it works in pseudo-polynomial time.

Proof. The first part of this statement derives from Theorem
2 in a straightforward way. This algorithm is nothing more
than the A* algorithm applied to the state network whose
nodes are all states σ = (i, j, w), and arcs corresponds to
transitions (σ1 = (i1, j1, w1)← (σ2 = (i2, j2, w2)) according
to decisions (i2, j2,W ). As for the second part, we see that
if CS and CP are bounded by polynomial functions of N

and M then the number of nodes of the graph GAugment,≪

is also bounded by a polynomial function of N and M ,
while TAB may be computed in pseudo-polynomial time. We
conclude.

VI. NUMERICAL EXPERIMENTS

Purpose: Evaluating the behavior of the A∗ algorithm, with
respect to SLSS MILP, considered as a benchmark.
Technical Context: Algorithms were implemented in C++ on
an Intel i5-9500 CPU at 4.1GHz. CPU times are in seconds.
We used the CPLEX20 library for the MILP models.

A. Instance generation

Production and consumption coefficients: In order to mimic
what may be a power market, we cluster production periods
into #SP super-periods of same length. Each super-period
is assigned symbolic mean production and cost values Rcl,
Costcl in {Low,Medium,High}. Then, integral production
and variable cost values are randomly generated for every pe-
riod according to those mean super-period values. We generate
activation costs in such a way that the activation cost represents
around a third on the global production cost.
Storage capacities and scaling coefficients α, β: In order to
control the relation between the number of transfer transac-
tions and the number of activation decisions, we impose the
quotient CP

CS to remain inside an interval [0.5, 3]. We do in such
a way that µ(−1,M)

CTR evolves like M , so that we may control
the number of jobs between transfer transactions (in average
close to 5). We do in such a way that the respective weights
of the production and the scheduling parts of the global cost
remain integral and comparable.
Tables I and II present a package of 12 instances.

B. Outputs

• Tables III and IV : This table is devoted to the
SLSS MILP model. It provides the objective value obj

of SLSS MILP, its linear relaxation relax, the number
A − Cuts, of No-Antichain cuts generated during the
process, related CPU times CPU .

ALAIN QUILLIOT, AURÉLIEN MOMBELLI: HANDLING LOT SIZING/JOB SCHEDULING SYNCHRONIZATION THROUGH PATH SEARCH ALGORITHMS 137



TABLE I
INSTANCE PARAMETERS TABLE

id 1 2 3 4 5 6
N 20 30 40 60 70 80
M 10 10 15 20 20 25
p 2 3 4 2 3 4

#SP 2 2 3 4 5 5

TABLE II
INSTANCE PARAMETERS TABLE

id 7 8 9 10 11 12
N 100 110 120 140 150 160
M 30 30 35 40 40 40
p 2 3 4 2 3 4

#SP 5 5 5 4 5 5

• Table V and VI : This table is devoted to the path search
approach. It provides resulting number TT of transfer
transactions, together with CPU times Path − CPU

induced by the A∗ algorithm. It also provides the same
values HF − TT and HF − Path − CPU , together
with the cost value HF − obj, obtained by introducing
the strong (heuristic) dominance rules of Section V, that
means by applying the Heur A* SLSS Algorithm.

Comments: The MILP model is time consumming, due to the
gap induced by the relaxation of its integrality constraints. The
A∗ algorithm significantly outperforms the MILP model. The
heuristic dominance rule of Section V.B induces a very small
gap with respect to optimality (it reach optimality in 10 among
the 12 instances, and the gap for the 2 remaining instances
8 and 12 hardly reaches 2%, while speeding in average the
search process by 40%.

VII. FUTURE WORK

Future research will be oriented towards: 1) the SLSS

extensions that make the parallel machine scheduling decisions

TABLE III
MILP RESOLUTION

id 1 2 3 4 5 6
obj 186 202 238 386 402 456

A− Cuts 158 179 326 595 554 818
relax 103.6 131.8 147.8 270.8 285.6 321.6
CPU 31.8 20.0 32.6 998 1997 1024

TABLE IV
MILP RESOLUTION

id 7 8 9 10 11 12
obj 558 596 650 684 758 781

A− Cuts 357 882 1071 17431 1928 2235
relax 376.6 388.2 360.0 452.5 564.0 536.1
CPU 3079 2889 5906 10058 11647 7945

TABLE V
A* ALGORITHM RESOLUTION

id 1 2 3 4 5 6
TT 3 4 3 5 7 6

Path− CPU 2.1 3.2 1.9 15.8 57.4 45.6
HF − obj 186 202 238 386 402 456
HF − TT 3 4 3 5 7 6

HF − Path− CPU 1.8 2.6 1.5 10.9 43.5 25.6

TABLE VI
A* ALGORITHM RESOLUTION

id 7 8 9 10 11 12
TT 5 8 6 9 7 10

Path− CPU 38.3 148.7 61.8 598.9 265.6 677.7
HF − obj 558 608 650 684 758 802
HF − TT 5 9 6 9 7 10

HF − Path− CPU 28.1 83.2 42.6 395.8 137.4 400.6

be part of the problem; 2) the collaborative issue, when
several job schedulers interact with the Lot Sizer player; 3)
the management of uncertainty.

ACKNOWLEDGMENT

Present work was funded by French ANR: National Agency
for Research, Labex IMOBS3, and PGMO Program.

REFERENCES

[1] F. Bendali, J. Mailfert, E. Mole-Kamga, A. Quilliot, H. Toussaint, Pipe-

lining dynamic programming process in order to synchronize energy

production and consumption, Proc. 2020 FEDCSIS WCO Conf., p
303-306, 2020. doi.org/10.15439/978-83-955416-7-4.

[2] Biel K., Glock C. H.: Systematic literature review of deci-
sion support models for energy-efficient production planning. Com-

puters and Industrial Engineering, 101, pp. 243-259, (2016).
https://doi.org/10.1016/j.cie.2016.08.021.

[3] Clark A. Almada-Lobo B., Almeder C.: , J.: Lot sizing and
scheduling: Industrial extensions and research opportunities. Inter-

national Journal of Production Research 49-9, p 2457-2461 (2011).
https://doi.org/10.1080/00207543.2010.532908.

[4] Erdelic T., Caric T., Lalla-Ruiz E.: A Survey on the Electric Ve-
hicle Routing Problem: Variants and Solution Approaches.Journal

of Advanced Transportation Volume 2019. Article ID 5075671;
https://doi.org/10.1155/2019/5075671.

[5] S. Fidanova, O. Roeva, M. Ganzha, Ant colony optimization algorithm

for fuzzy transport modelling, Proc. 2020 FEDCSIS WCO Conference,
p 237-240, 2020. doi.org/10.15439/978-83-955416-7-4

[6] Franck A.: On chain and antichain families of a partially ordered set.
Journal of Combinatorial Theory. Series B 29-2, p 176-184 (1980).
https://doi.org/10.1016/0095-8956(80)90079-9.

[7] Hart P. E., Nilsson N. J., Bertram R.: A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transac-

tions on Systems Science and Cybernetics, 4-2, p 100-107 (1968).
https://doi.org/10.1109/TSSC.1968.300136.

[8] Irani S, Pruhs K.: Algorithmic problems in power management. ACM

SIGACT News 36-2, p 63-76 (2005). DOI:10.1145/1067309.1067324.
[9] K. Stoilova, T. Stoilov, Bi-level optimization application for urban traffic

management, Proc. 2020 FEDCSIS WCO Conf., p 327-336, 2020.
doi.org/10.15439/978-83-949419-5-6.

138 COMMUNICATION PAPERS OF THE FEDCSIS. BELGRADE, SERBIA, 2024


