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Abstract—We study heuristic algorithms for job shop schedul-
ing problems. We compare classical approaches, such as the
shifting bottleneck heuristic with novel strategies using decision
diagrams. Balas’ local refinement is used to improve feasible
solutions. Heuristic approaches are combined with Mixed Integer
Programming and Constraint Programming approaches. We
discuss our results via computational experiments.

I. INTRODUCTION

T
HE job shop scheduling problem (JSP) has long been a
challenging area in operations research, historically tack-

led through disjunctive integer programming formulations that
often yield poor linear programming relaxations. Constraint
programming (CP) has emerged as a more effective approach
for these problems, outperforming traditional mixed-integer
programming (MIP) models. Heuristics, including scheduling
and dispatching rules, have been extensively studied and
applied to provide feasible solutions that can be further refined
through local search algorithms. This paper explores the
integration of problem-specific heuristics into modern solvers,
with a focus on compound heuristic approaches utilizing
Decision Diagrams (DDs) and Balas’s local search methods.

Scheduling problems are known for having poor linear
programming relaxations. To quote [1]: “In spite of a great
deal of effort, the disjunctive integer programming formulation
of the job-shop problem appears to be of little assistance
in solving instances of even moderate size; furthermore, its
natural linear programming relaxation has been shown to give
very poor lower bounds for the problem.” Solving the problem
for a subset of machines/jobs seems to be the go-to mechanism
for finding a better lower bound, and the solvers rely mostly
on branching to improve the bounds.

On the other hand, primal heuristics for the problem abound
[2]–[4]. They are often referred to as scheduling or dispatching
“rules”. And, as these provide feasible solutions, it’s rec-
ommended to follow the heuristic with a local minimization
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algorithm. Also, approximation algorithms exist [5]. Balas [6]
gave an inspiring local search algorithm many years ago based
upon the critical path in a disjunctive graph representation of
a scheduling problem. This heuristic is easily conjoined to
modern MIP solvers.

Recent studies comparing constraint programming (CP)
to mixed-integer programming (MIP) models show that CP
clearly outperforms MIP in the realm of scheduling problems.
See [7], [8], and [9]. The formulas in those papers are fairly
standard and build on long-existing formulations [10]. We find,
though, that tools/mechanisms for mixing heuristics with CP
tools are lacking.

Recently, Decision Diagrams have shown to be a useful
approach to some types of optimization problems. These
perform a decomposition of the problem based on a sequen-
tial decision-making process. Bergman et al’s book [11] on
Decision Diagrams (DDs) is the starting point for our work.
We assume the reader’s familiarity with said book’s content.
We also assume familiarity with scheduling problems and
their triplet notation (as in [12]). At first sight, DDs appear
to be nothing more than a formal method for enumerating
all possible solutions to a problem, with the detection of
duplicated intermediates. However, their power is found in
two separate mechanisms: 1) the restricted form that uses
fixed memory to generate multiple feasible solutions, and in
2) how they can provide a relaxed form of the problem. This
is done by intelligently merging nodes as the tree of solutions
grows too wide. Solutions that go through one or more of
these relaxed nodes provide a useful dual bound.

A. Contributions

We develop heuristic approaches based on Balas’s work and
on Decision Diagrams. Our novel Decision Diagram models
for the JSP encourage minimizing stored symmetry, and thus
reducing computational effort.

We evaluate the effectiveness of Restricted Decision Di-
agrams compared to traditional heuristics for JSPs. Lastly,
we investigate the impact of warm-starting modern solvers
with a heuristic solution. We then discuss the conclusions of
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our computational experiments. We use GUROBI [13] and
CPLEX [14] for MIP solvers and also CPLEX’s constraint
programming solver when testing CP versions of the JSP.

II. FORMULATION BACKGROUND

A. Job shop scheduling

The scheduling problem denoted as Jm||Cmax refers to
a specific class of job shop scheduling problems (JSPs)
characterized by the goal of minimizing the makespan across
multiple machines. Formulas for it are common in existing
literature, e.g [10]. Formal description follows:

Let there be a set of n jobs {J1, J2, . . . , Jn} and a set
of m machines {M1,M2, . . . ,Mm}. Each job Ji consists of
a sequence of operations {Oi1, Oi2, . . . , Oim}, where each
operation Oij must be processed on a specific machine Mπi(j)

for some permutation map πi : [m]→ [m] and for a predeter-
mined duration pij without interruption. Each machine can
process only one operation at a time, and each operation can
be processed on exactly one machine as per its predefined
sequence in a job. The objective is to find a schedule, i.e., an
allocation of operations to time slots on each machine, that
minimizes the makespan Cmax, which is the time when the
last job completes processing.

1) Mathematical Optimization Formulation: We will focus
on the disjunctive MIP formulation, which generally solves
the quickest using MIP solvers [10]. The idea is to model the
problem using binary variables to represent the sequencing
decisions between operations on the same machine. Here’s a
step-by-step formulation:

Variables:

• Sij : Nonnegative start time of operation Oij .
• Cij : Completion time of operation Oij

and easily collapsed into Sij + pij .
• Cmax: Maximum completion time (makespan).
• xijkl: Binary variable indicating operation Oij follows

Okl, only existing if both are on the same machine.

Constraints:

• Precedence Constraints: Ensure the correct order of op-
erations within each job.

• Disjunctive Constraints (Eqs. 1c, 1d): Ensure that no two
operations on the same machine overlap by enforcing that
one must precede the other.

Mixed Integer Programming Model:

min Cmax subject to (1a)

Sij ≥ Ci(j−1) ∀i ∈ [n], ∀j ∈ Ji, j > 1 (1b)

Sij ≥ Ckl −M(1− xijkl) ∀ij, kl : πi(j) = πk(l)
(1c)

Skl ≥ Cij −Mxijkl ∀ij, kl : πi(j) = πk(l) (1d)

Sij ≥ 0 ∀i, j (1e)

Cij = Sij + pij ∀i, j (1f)

Cmax ≥ Cij ∀i, j : Oij is final task of job i (1g)

xijkl ∈ {0, 1} ∀i, j, k, l : πi(j) = πk(l) (1h)

where M is a big-M multiplier, typically set to the one plus
the sum of the delays: 1 +

∑
ij pij . Those big-M constraints

may also be formulated using the solver’s indicator constraint
functionality.

2) Constraint programming formulation: See the full ex-
planation in [9].

Variables:

• Iij : Interval variable containing the start and end of
operation Oij with width as the duration= pij .

CP Formula:

min max
i∈[n]

(end_of((Iim))) subject to: (2a)

no_overlap({Iij | i ∈ [n]}) ∀j ∈ [m] (2b)

end_before_start(Iij , Ii(j+1)) ∀i ∈ [n], j ∈ [m− 1]
(2c)

Iij = IntervalVar(pij) ∀i ∈ [n], j ∈ [m] (2d)

B. Existing Work regarding scheduling via DD

Bergman et al. [11] discuss how a DD can solve schedul-
ing problems in general and give this example: the single-
machine makespan minimization with sequence-dependent de-
lays: 1|pij |Cmax. They don’t use a binary expansion tree; in-
stead, they represent the problem as a permutation of possible
orderings, known as a multivalue decision diagram (MDD), as
shown in Table I.

TABLE I: Bergman’s simple state operators
State Sj holds the j jobs already done

Transition Sj ∪ x where x ∈ [n] and x /∈ Sj

Cost the delay from Sj to Sj+1 via x

They do not give merge and split definitions for their
scheduling example. They do give merge operations for other
problems, namely, maximum independent set, maximum cut,
and maximum 2-SAT. They also discuss how some merge
operations might be possible for a scheduling problem if we
separate the jobs already done into two groups: those that are
surely done no matter what path arrives at a given state, and
those that are done in at least one path arriving at a given
state. This latter group is the "maybes". In [11]’s terms, the
two groups are “All” and “Some”. The maybes doesn’t exist
in a full expansion because, in that context, we don’t have any
nodes that represent more than one unique solution.

Hooker, in [15], expands on the above ideas for a more
complicated scheduling problem shown in Table II, minimiz-
ing tardiness given release dates and due dates 1|rj , dj |

∑
Tj .

TABLE II: Hooker’s tardiness operations
State a tuple Sj = (V, U, f):

V holds up to j jobs surely done,
U holds jobs done on some route,
f is the running completion time

Transition (V ∪ x, U ∩ x,max(rx, f) + px)
where x ∈ [n] and x /∈ V

Cost the delay from Sj via x, the value of px
Merge (V ∩ V ′, U ∪ U ′,min(f, f ′))
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His paper demonstrates that these operations are sufficient
to ensure that the relaxed tree contains a path that represents
a dual (in this case, lower) bound. He also gives a mechanism
for proving any merge operation to be sufficient. He expands
his effort with a later paper, [16], where he includes merge
operations for sequencing with time windows, time-dependent
processing times, sequence-dependent processing times, and
state-dependent processing times. They all follow a pattern
very similar to the one given above.

Moreover, in [16], Hooker suggests optimizing the La-
grangian dual where he incorporates an additional penalty for
sequences that repeat operations – a common infeasibility in
a relaxed DD representation of a schedule. It was inspired
by [17]. The paper also includes a table of timed runs on the
CPW and Biskup-Feldman public datasets containing tardiness
problems. (We were unable to make this succeed in our
context. Perhaps it was due to some failure of our model to
meet the necessary assumptions, or it required an extremely
high number of iterations for convergence, or coding error.)

Building on Hooker’s work, [18] provides two recent papers
tackling multi-machine scheduling. In [18], they focus on a
tardiness problem with substantial state; (V, U, f, t, fu, tu, g).
f, t, fu, tu are all vectors, where f refers to running com-
pletion times per machine, t refers to running release times,
and the superscript u implies the same for the maybes (the
items included in some ancestral lines but not all). They show
that their merge operation is suitable using Hooker’s rules. It’s
given here:

(V ∩ V ′, U ∪ U ′, min(f, f ′), min(t, t′),

max(fu, fu′), max(tu, tu′), min(g, g′))

In their later work, [19], they build rules for uniform
scheduling over total tardiness, or Um|rj , stjj′ , dj |

∑
Tj .

They track the current machine as part of the state. This
leads to a notable limitation; their merge operation is only
allowed to merge nodes where the current machine matches.
They generally follow the patterns given above for tardiness
problems.

C. Decision Diagrams

See [20] for a recent review of decision diagrams (DDs) for
discrete optimization. We follow that survey for some details.

III. DD OPERATORS FOR THE JSP

In this section we present several different models that store
and transition state in DDs. All solve the JSP, but not at the
same efficiency. They are not the only possible models. For
merging state, additional information must be stored, and that
is covered in a separate section.

If we assign each operation a unique identifier, we have
all feasible solutions as the permutations of those identifiers.
Of course, most permutations are infeasible in that some
job’s operations may be out of order. Moreover, if we have
any permutation, either complete or partial, we can trivially
compute its completion times, feasibility, and, for partial sets,
a lower bound on the completion max. See Algorithm 1.

Algorithm 1 Cost from partial solution (CFP)

Require: X is a list of to-be-done operations.
Require: fM is machine completion times, 0 by default.
Require: O operations already done with times fO.

for x ∈ X do

2: s← fMmach(x)

if ∃ pre(x) then

4: if pre(x) /∈ O then

return Error: Missing Prerequisite
6: s← MAX(s, fOpre(x))

fOx ← s+ DELAY(x)
8: fMmach(x) ← s+ DELAY(x)

return MAX(fM )

Given a partial ordering and the next operation to be
concatenated to it, we can trivially compute the change in
completion times brought about by the additional operation.
We can also update the running Cmax if it is changed by this
additional operation.

A. The basic permutation model

Since we’re just storing a partial ordering, all we need
is a list. We make use of some helpers such as pre(x),
which returns the operation required right before x if there
is one. mach(x) returns the required machine for operation
x. delay(x) is the delay for operation x, commonly referred
to as pij . trailer(x) contains the sum of the operation times
that must follow operation x, where this could be either the
amount of work left on the job of x or the machine required
for x (or the maximum of both of those). Given a list of
operations with labels in [n], we get Table III.

TABLE III: JSP-for-MDD Model 0
State S := V , an ordered list of ops. done so far
Cost c(S, x) := CFP([V, x])

Transition ϕ(S, x) := [V, x] : x ∈ [n]\V , pre(x) ∈ V

If we make our model slightly more advanced, we can
cache the completion times for each operation (in f

O) and
each machine (in f

M ), we get Table IV.

TABLE IV: JSP-for-MDD Model 1
State a tuple S := (V, fO, fM )
Cost c(S, x) := max(fM

mach(x), f
O
pre(x)) + delay(x)

Transition ϕ(S, x) := (V ∪ {x},
f
O
x ← c(S, x), fM

mach(x) ← c(S, x))

It’s implied that (V, fO, fM ) are independent for every state
– copied from the parent state and then modified/extended.
When storing the states in each layer, it’s useful to store
duplicate states only once. When comparing these states, all
fields of the tuple must be compared. Notice that only states
within a given layer will have equal cardinality for V (unless
states are merged in some way that violates that, as discussed
in the merge section below).
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B. A model to detect more symmetry

When growing a tree of possible solutions, such as is done
by decision diagrams, one may arrive at equivalent solutions
through differing paths. In this context such solutions are
symmetrical. With a goal of keeping the tree of possible
solutions as small as possible, DDs benefit from any reduction
in state space. We want to avoid symmetry in the storage of
our accumulated state.

The above model is not bad, but notice (Table V) that
many of the stored completion times can never eclipse any
machine’s finish time. Sometimes those may happen in some
other order and still produce the same state; we redesign the
state to capture that symmetry.

TABLE V: JSP-for-MDD Model 2
State a tuple S := (V, VL, f

O, fM );
Cost c(S, x) := max(fM

mach(x), f
O
pre(x)) + delay(x)

Transition ϕ(S, x) := (V ∪ {x}\pre(x), VL ∪ pre(x),
f
O
x ← c, fM

mach(x) ← c)

VL refers to those operations that are long-done, those that
will never need to be used as an immediate prerequisite.
For hash and comparison we ignore the completion times of

operations in VL. If pre(x) /∈ fO you can return zero, although
tracking some completion time for items in VL can be handy
for generating the final schedule at the end.

In Table VI, we show the number of nodes for full expansion
averaged over 10 random problems to demonstrate that the
number of nodes expanded is reduced by capturing more
symmetry:

TABLE VI: Node expansion demonstration
Model 1 Model 2

Valid nodes, 4x5 JSP 1245k 793k
Duplicates 1017k 776k

Valid nodes, 3x10 JSP 726k 528k
Duplicates 638k 504k

C. Modeling disjunctives directly

While the MILP formulation described above relies on
real variables for start and completion times, the values for
these variables can be fully determined from a fixed set of
binary variables, denoted as x. This is common in scheduling
problems. Consequently, this can be directly modeled as a
binary decision diagram (BDD), as opposed to the multivalue
or MDDs mentioned earlier. For each disjunction, a binary
variable xi determines whether the path is forward or reverse.
In this context, forward implies that i < j in an adjacency
matrix representation of the disjunctive graph of the problem,
as explained in [6]. Following the approach in that paper,
it is assumed that the process begins with a feasible set of
disjunctives, all oriented forward.

This approach encompasses a significantly larger number
of variables and consequently necessitates many more lay-
ers compared to MDDs. For example, the well-known JSP
problem abz5 involves 100 operations but 900 disjunctives.
(The number of dijunctives matches the number of binary

variables shown in the Gurobi log, but it can also be easily
computed from the number of bidirectional arcs in 10 cliques
of 10 nodes each: 10n(n−1).) Grouping these bits into bytes
could reduce the number of layers by a factor of eight while
simultaneously increasing the width of each layer by the same
factor. Additionally, this method might potentially reduce the
256 possible expansions by eliminating common 3- or 4-cycle
problems from the possible values, although this approach has
not yet been explored.

Given a disjunctive model, including invalid models with
cycles, we can always find the longest path through that model
in polynomial time or less. That’s done trivially with a flow LP
or an adjacency matrix selection LP. The challenge is to reduce
the number of LP calls needed, as one for each state (or every
other state as shown below) gets expensive. This approach
was generally unhelpful although it did work correctly; it’s
included here in Table VII for contrast.

TABLE VII: Basic BDD-with-LP for layer j
State V holds the reversed disjunctives’ index

Transition V ′ = [V, j] if x = 1 else V ′ = V
Cost LP(V)

With this approach, each node is unique; there is no du-
plication and no reduction in possible values as you progress
through the layers. You cannot cull states that have cycles in
their graph as later reversals may eliminate those cycles. As
with all DD approaches, it would be worth it to cull via some
known primal bound, heuristically determined.

D. Merging state

Both Model 1 and Model 2 support merge operations.
Following [15] and [18], we add additional fields to the state:
Vs and fs, where s stands for “some”, meaning that some
ancestral path covered the items in this set. For merging Model
1 state, S′ ← S ⊕ S:

fM ′

i ← min(fMi , fMi ) ∀i ∈M (3a)

V ′ ← V ∩ V (3b)

fO′

x ← max(fOx , fOx ) ∀x ∈ V ′ (3c)

V ′

s ← (V ∪ V )− V ′ (3d)

fs′x ← max(fOx , fOx , fsx, fsx) ∀x ∈ V ′

s (3e)

Hooker [15] gives two criteria for a valid merge: any
possible control values leaving S′ must be a valid relaxation
of the same control leaving S, and both S and S must be
relaxed/interchangable. The latter criteria holds from the lack
of order-dependent operations in the above formulation. The
former criteria holds in that we always take the minimum score
for our Cmax = max(fM ′

i ), and we always use the worst-
case prerequisite completion time when pulling items from
fO. Model 2 is merged similarly with VL receiving equivalent
treatment to V .

We used the merge operation to validate that Bergman’s
branch-and-bound algorithm [11] worked for JSP. It did not
scale well, though. We were unable to make the relaxed DD
give a better lower bound than the linear polytope of the
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disjunctive formulation, so we do not include this in our
computational results below. As part of that, we pruned nodes
that exceeded the current primal bound, which is known as
LocB pruning in this context [21]. See the other thoughts on
the algorithm in the appendix.

IV. A SIMPLE LOCAL SEARCH REFINEMENT

In Balas’ original paper [6] about solving JSP via disjunctive
graph iteration, he included this special proposition:

Proposition of Balas 1969:

Let Ch be a critical path in Gh [which is a DAG].
Any graph Gk obtained from Gh by complementing
one arc (i, j) ∈ Ch is circuit-free.

Balas’ proof: We know that (i, j) must be the longest path
from i to j as it is part of Ch. However, it is also the shortest
path from i to j or we would have chosen the longer path.
Because i to j is the only path, we can reverse it without
creating a circuit.

That leads us to this refinement algorithm as a local search
method (Alg. 2):

Algorithm 2 Balas Local Refinement 1 (LNS1)

Require: g = (V,A) is a DAG of the fixed conjunctive arcs.
Require: We ≥ 0 for e ∈ A as the weight of each arc.
Require: sparent is the s value from the caller.

p← LONGEST_PATH(g)
2: s←

∑
(u,v)∈p Wuv

if s > sparent then

4: return s // remove this to search more space
for e ∈ p do

6: if not e.fixed then

g ← REMOVE_ARC(g, e)
8: g ← ADD_FIXED_ARC(g, e.v, e.u,Wvu)

t← RECURSE(g,W, s)
10: if t < s then

s = t // can also track swaps here
12: g ← REMOVE_ARC(g, e.v, e.u)

g ← ADD_FIXED_ARC(g, e)
14: return s // return swaps also if desired

V. COMPUTATIONAL EXPERIMENTS

A. Use as a Heuristic

In this section we show how a restricted Model 2 compares
to other common heuristics including MOR, MWR, and the
shifting bottleneck [22]. We include multiple widths for the re-
stricted DD, but this parameter does not substantially improve
the bound it computes; see [15].

Observation: The restricted DD always produces at least
one feasible solution. Given any partial solution that is feasi-
ble, the remaining operations can always be added in a feasible
order. Note that this does not hold if you filter the nodes in
the DD with anything additional to the maximum width filter.
For example, if you filter nodes whose Cmax exceeds some
threshold (in addition to reducing row width), you may filter
all possible paths toward the conclusion of the DD.

In Table VIII, we run each heuristic over twenty random
10 × 10 JSP instances, making use of Gurobi [13], CPLEX
[14], and Job Shop Library [23]. W refers to the maximum
width of the DD. Overage is how far the final bound was above
the optimum. We use default solver settings with the exception
of Gurobi’s AggFill=10 and GomoryPasses=1, which was
recommended by their tuner for these problems. The random
instances are integer and similar to those published with [22]).

TABLE VIII: Avg. heuristic overages for 20 random

Heuristic Time Overage After LNS1

Gurobi, MIPGap=0.25 0.27s 11.1% 9.18%
Shifting Bottleneck 4.0s 15.8% 15.3%

Restricted DD, W=200 0.25s 18.5% 14.6%
Restricted DD, W=400 0.50s 16.8% 12.5%
Most Work Remaining (MWR) 26.9% 16.1%

Most Ops. Remaining (MOR) 20.1% 14.1%
Shortest Proc. Time (SPT) 90.0% 40.1%

TABLE IX: Avg. heuristic overages for 18 from JSPLIB
Heuristic Time Overage After LNS1

Gurobi, MIPGap=0.25 1.6s 7.77% 5.85%
Gurobi, MIPGap=0.40 0.12s 25.8% 12.5%

Shifting Bottleneck 22.8% 21.9%
Restricted DD, W=200 14.4% 11.9%
Restricted DD, W=400 11.6% 9.70%

Most Work Remaining (MWR) 31.4% 19.8%
Most Ops. Remaining (MOR) 29.9% 23.6%

Shortest Proc. Time (SPT) 80.8% 39.7%

Interestingly, (Table IX) the DD approach worked better on
the real-world problems found in JSPLIB [24] – it’s eighteen
10 × 10 problems. Similarly, the small 0.25 MIPGAP for
Gurobi was much more difficult to achieve on the JSPLIB
problems.

The comparison is a little bit unfair, in that the Restricted
DDs generate many feasible solutions for the LNS1 whereas
the top four only produce a single solution to be refined.
However, it shows that the local refinement eliminates the need
for the shifting bottleneck heuristic.

We recognize that there are more sophisticated versions of
the shifting bottleneck algorithm, e.g. [25]. There are also a
variety of other local search mechanisms designed for JSP
that are far more sophisticated and far-reaching, typically
built on taboo search, e.g. [26], [27]. We did not consider
simulated annealing nor any evolutionary algorithm as part of
this research either, though papers on those approaches for JSP
abound.

Regarding Gurobi NoRel: We ran Gurobi’s NoRel heuris-
tic for 4 seconds on the same 20 problems. It failed to find
any solutions on 80% of the problems, but on the other four,
it found solutions within 3% of optimal. Note that Gurobi can
solve a 10x10 disjunctive program in 2 to 8 seconds on our
test machine, so running a 4-second heuristic for it would not
make sense generally. The NoRel runtime has to be specified
as an input.
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Regarding runtimes: Note that the Shifting Bottleneck
(SB) without readjustment of machines in M0 plus the LNS
at the end still achieves 18%. This takes about two seconds
to run whereas the other takes 4 seconds per 10x10. SB can
be modified to solve subproblems in parallel, which was not
a part of our implementation. We rely on Gurobi to solve
the 1|rj |Lmax subproblems in the SB. This takes up 90%
of the runtime for it. Generally, though, when using SB one
would use Carlier’s approximation [28] for the Lmax instead
of solving it via a MIP solver (and probably still run them in
parallel). See other ideas here: [5], [29]. With our DD written
in Go, the 10x10 on a max-width of 400 takes half a second to
run and half that time for the 200 width (using no parallelism).
Most of that time is in comparison to previous nodes on the
same row. Better hashing would improve that time. The LNS1
adds some additional time to that as it runs on each resulting
node. This is not included in the time measurement listed
above. The dispatching rule approximations obviously use a
trivial amount of time.

Most of the items arriving at the bottom row of a DD tend to
be similar, which comes from the sort-and-truncate approach.
It needs some other selection criteria toward the top of the
tree so that it keeps more diversity early on, which should
give it better chances of enabling a good/unique neighborhood.
The DD is quite sensitive to changes in the running Cmax

computation. For example, you can use the Cmax-so-far or
you can add to the trailer for the remaining items to be done
on each machine or you can add the work remaining on the
job. Those selections all change results quite drastically. The
run recorded above does not add a trailer, as going without
seemed slightly better on average.

B. The value of a starting point

Here we demonstrate the value of using a heuristic to select
a starting solution when solving the JSP to its optimum. In
Table X we run each solver over the same 20 instances used
above but give it a single starting point. The starting points are
derived using MOR followed by the refinement of the LNS1
algorithm described above.

TABLE X: Solve time with single warmstart

Solver on 10x10 Time/problem With warmstart

Gurobi, big-M 2.1s 1.9s
Gurobi, indicator 4.0s 3.6s

CPLEX MP, big-M 3.4s 3.8s
CPLEX MP, indicator 130s 110s

CPLEX CP 1.17s 1.16s

Solver on 12x12 Time/problem With warmstart

Gurobi, big-M 36s 43s
CPLEX MP, big-M 66s 60s

CPLEX CP 5.3s 5.5s

We conclude from this table that you should be using a
constraint solver for exact solutions on this, and that the big-

M path is more optimized than the indicator constraint feature,
and that warm-starting it is unnecessary. Runs were made with
Gurobi 11.0.2, CPLEX 22.1.1 on a i7-8750H processor.

Gurobi supports a heuristic parameter for controlling the
percentage of time spent in heuristics. The default is 5%. We
explored other values from 0% through 50% but could find
no other value to improve the average time. Increasing the
parameter by 5% generally added 5% to the runtime.

C. The value of LNS via callback

We demonstrate (Table XI) the value of calling LNS1 in the
MIP node callback (CB). We take the ordering given by the
start time variables (S) and run the local search on that. We can
actually just submit the solution given by the ordering instead
of running a local optimizer on it – herein called “Nearest”.

TABLE XI: LNS1 in MIP-node callback
Solver Default LNS1 Wins Nearest Wins

Gurobi 2.1s 2.6s 5.6 2.1s 6.7

Note that we subtract the time of the callback itself, in
that it is assumed that we can come up with more efficient
implementations of it or curtail the calls to it as it becomes
unlikely to assist. This optimization of how often the heuristic
is called is a separate issue. Writing our LNS algorithm in a
heuristic form that is fast enough to justify its use is nontrivial.

CPLEX, as documented, supports heuristic callbacks. How-
ever, in attempting to use them with version 22.1.1 on Linux,
accessed via the Python docplex wrapper, we were unable to
determine whether or not the solver was utilizing the provided
heuristic solutions. No errors were given, but the incumbent
scores were not updating as expected, so we did not include
the numbers for it. We also have interesting numbers for FICO
Xpress, but their license prohibits publishing.

D. Using our state model for A*

Unfortunately, Model 2 alone does not seem to be sufficient
to allow solving a 10x10 via A*. We note that there are
other efforts to make A* utilize relaxation features of the DD
approach such as [30]. The nearness of the running Cmax to
reality is of critical importance in A*-search. It is possible to
improve the trailer estimate by solving 2 of ten machines:
see [31]. This is fairly quick, especially as the problems
progress and most tasks have release times available. However,
empirically, it’s not enough accuracy to make the A* approach
feasible.

VI. CONCLUSION

Conclusions from our experimentation:

1) Relaxed decision diagrams are useful as a simple JSP
heuristic. They are not difficult to write/use and run fast.
They produce better results than other common (simple)
heuristics on real-world problems.

2) Passing a start point to the solver is not useful at 14%
away from optima. Perhaps it would be worth it if you
were using some more sophisticated heuristic that could
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generate starting points within just a few percentage
points from optima.

3) Running Balas’ critical path refining, the LNS1, does
generally improve a given feasible solution. It is fast to
run and generally worth it.

4) The big-M handling in Gurobi and CPLEX is superior to
their indicator constraint handling at present. It may be
that our M value was small enough to tip that balance.

5) For problems where feasible solutions are rare, it may be
helpful to find a nearby feasible solution in the callback
if it can be done quickly. This computation is very fast
for the JSP. It did help significantly on some of the test
problems. Especially consider it if you use FICO Xpress.

Ideas for future work:

1) The selection of keeper nodes in the restricted DD is of
critical importance. Using a basic rule like keeping the
smallest 200 is a general failure – most of the nodes
with the optimum are weeded out early on. That’s the
curse of these scheduling problems – the conflicts on the
attractive solutions don’t show up until late in the game.
If we had some kind of machine learning approach that
could identify bad nodes early on, we would have a
higher chance of retaining the good nodes (or vice-
versa). Node selection ideas from modern solvers may
also apply [32].

2) Another idea for retaining nodes is to try to keep a
diverse set using some kind of diversity measure that
would increase the likelihood of keeping the optimum
path.

3) Relaxed decision diagrams produce many infeasible so-
lutions. Order them and you can expand these infeasible
paths until you arrive at the first and best feasible solu-
tion, a best first approach similar to A*. We attempted
this. However, there are so many infeasible solutions to
weed through that this is generally not a viable approach
for problems at scale. If we had some equivalent to cuts-
for-LP, perhaps we could cut out subtrees in a way that
allowed us to arrive at the best solution much faster.

APPENDIX

A. Notes on existing algorithms for exact solutions via DD

[11] presents two general algorithms for finding an exact
solution to any program representable by a DD. The first
mechanism is what they term “compiling DDs by separation”,
condensed form of the algorithm given in [33].

Algorithm summary: Begin with a relaxed decision diagram
(DD) and identify the optimal path through it. If this path
violates any constraints, separate the relaxed nodes on that
path into two or more replacements. Adjust the inputs feeding
into the violating node so that some go to each replacement.
Similarly, replicate the outputs of the violating node to each
replacement. Continue this process until the optimal path is
feasible.

The process requires a split or "separation" operation, which
essentially undoes the merge operation, though the necessary

bookkeeping for this may be expensive. If no split operation is
available, a possible solution is to backtrack to the parents of
the merged nodes and regenerate their children. Additionally,
we assume that the arcs store and maintain the variable value
(also known as the control) and the cost of traversing them.
This assumption differs from our previous experiments, where
we kept only the fringe nodes with the running cost in the
state. Furthermore, decision diagram (DD) creation generally
employs node reduction (combining identical nodes), and this
reduction must be maintained after adding additional nodes
to the graph. If all identical nodes are on the same layer, the
check is reasonable; otherwise, it becomes too expensive.

The second algorithm represents a branch-and-bound (BnB)
approach, where you branch on a cutset of exact nodes,
making a new subtree pair, both relaxed and restricted, for
the decedents of each node in the cutset. Cutset refers to a
set of exact nodes such that any path through the tree goes
through one and only one of these nodes (before hitting any
relaxed nodes).

Algorithm summary: While there are nodes in the queue,
remove node u. Update the primal bound, which is the cost
to node u plus a heuristic from it to the end, potentially
determined by a restricted tree. Construct a relaxed decision
diagram (DD) with u as its root. If the best relaxation is worse
than the primal bound, exclude the entire u subtree. Otherwise,
add the exact cutset of u to your queue and repeat the process.

Some general notes on this algorithm:

1) The processing of these subtrees is parallelizable (as
noted in the reference).

2) It does not require a split operation, although it does
require a working merge operation for building the
relaxed trees.

3) It doesn’t require a restricted tree if you have some other
heuristic mechanism that completes partial solutions,
as that may also provide a reasonable primal bound,
especially if it’s refined by a fast local search as the
final step of the heuristic.

4) It doesn’t make any use of the dual bound for subtree
exclusion. This is its fundamental weakness.

5) Empirically, it’s highly unlikely that to be able to ex-
clude the whole relaxed tree based on its best node being
worse than the current overall primal bound. Hence, you
can simply return the cutset as soon as it is discovered.
This eliminates the need for a merge operation.

The algorithm makes use of two things from the relaxed
DD: its best path cost and its exact cutset. [11] gives three
algorithms for selecting the cutset: take the first layer, take the
last layer before any nodes are merged, or take the “frontier”,
meaning all the exact nodes that have at least one relaxed
child. From that, we make these observations:

1) If we merge many nodes into one, that node has a high
likelihood of being very relaxed. Thus we will keep it,
as it has a good score, which will in turn lead to the
best path through the relaxed tree being a poor estimate
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of reality. Hence, again we will keep that tree’s cutset,
as our primal bound won’t be able to exclude it.

2) If we take some layer before we merge any nodes, our
cutset will be very shallow. Shallow nodes have lower
likelihood of being excluded by constraints, assuming
most constraints incorporate more than the first few
variables. Moreover, it is utilizing less of our DD.

3) If we choose merge a lot in hopes of not over-relaxing
any one path, we will force our cutset to be more shal-
low, thus getting less advantage from our DD expansion.
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