
 

Abstract—Compressed Sensing (CS) offers a promising solu-

tion to reduce MRI acquisition times, addressing challenges of 

prolonged scans and patient discomfort. This paper presents a 

new method for compressing and reconstructing MRI images 

using k-space gradients.  A hybrid under-sampling approach 

allocates 80% of measurements to random sampling and 20% 

to deterministic  sampling near the k-space center.  Addition-

ally,  it  explores the impact of  reducing kx samples by 15%, 

25%, and 50% on image quality. Reconstruction uses a nonlin-

ear conjugate gradient method, with image quality assessed via 

a similarity index Q. Results show the proposed CS approach 

effectively compresses MRI data while preserving essential im-

age quality, optimizing protocols and reducing scan times.

Index Terms—Compressed Sensing (CS), MRI reconstruc-

tion, Nonlinear conjugate gradient descent, Image quality as-

sessment, Frequency domain (k-space)

I. INTRODUCTION

HERE are  a  lot  of  researches  that  explore  advanced 

techniques in MRI to enhance imaging speed, resolu-

tion, and diagnostic accuracy. Larkman and Nunes [1] pro-

vide a  comprehensive  review of  parallel  MRI techniques, 

which significantly reduce scan times by simultaneously ac-

quiring multiple lines of k-space. Griswold et al. [2] intro-

duce  the  GRAPPA  method,  a  powerful  parallel  imaging 

technique  that  improves  image  quality  without  increasing 

acquisition time. Kazmierczak et al. [3] and Yoon et al. [4] 

demonstrate  improved  lesion  detection  and  arterial  phase 

imaging  using  innovative  MRI  sequences  like  CAIPIR-

INHA  and  triple  arterial  phase  techniques,  respectively. 

Hope  et  al.  [5]  focus  on  optimizing  gadoxetate-enhanced 

imaging with high spatio-temporal resolution sequences to 

capture arterial phases more effectively.

T

Compressed  Sensing  (CS)  has  emerged  as  a  promising 

approach in medical imaging, particularly in MRI, where it 

enables efficient image acquisition by reconstructing high-

quality images from a reduced number of samples. The need 

for accelerated imaging techniques is driven by the desire to 

decrease scanning times, reduce patient discomfort, and im-

prove workflow in  clinical  environments.  CS exploits  the 

sparsity of image data in a transform domain, allowing sig-
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nificant reductions in data acquisition without compromis-

ing image quality [6-11]. 

The objective of this work is to demonstrate the efficacy 

of CS in MRI data compression and reconstruction, provid-

ing a foundation for further research into advanced CS algo-

rithms that could optimize MRI acquisition protocols [12-

18]. In this study, we applied 80% of the measurements to 

random  under-sampling  and  20%  to  deterministic  under-

sampling near the center of k-space to MR imaging. A fixed 

compression ratio of 0.2 was used to retain only 20% of the 

original image data, reflecting a realistic compression sce-

nario.  Although kx data is typically acquired quickly in a 

single shot per TR, the impact of reducing kx samples by 

15%, 25%, and 50% on image quality is also explored. The 

transformation of MRI data into k-space and subsequent re-

construction  using  a  nonlinear  conjugate  gradient  descent 

approach were critical steps in this process. The quality of 

the reconstructed images was quantitatively assessed by cal-

culating a quality index Q, which considers the mean inten-

sity, variance, and covariance between the original and re-

constructed images. This index enables a detailed evaluation 

of the effectiveness of CS in maintaining image fidelity and 

highlights the potential of CS for improving MRI efficiency 

in medical diagnostics.

II. METHOD

m(x, y) is assumed to be a MRI image. To obtain m(x, y) 

using the 2D-Fourier transform:

v (k x , k y )=∑
n
x

N
x
−1

∑
n
y

N
y
−1

m (nx , n y )e
−i (k x x+k y

y ) (1)

where Nx and Ny are in x and y axes. We uses the Cartesian 

trajectory for 2D imaging,  and the power-law follows the 

encoded information density of the k-space.

A high degree of sparsity is required for MR images since 

it implies that a small amount of information can convey the 

substance of the data. The sparsity of these images can be 

represented using a variety of transform techniques, includ-

ing DWT, DCT, and FFT. Only 2D Cartesian sampling is 

the subject of this investigation. It has been discovered that 

the artifacts  will  appear as coherent  replicas of the image 

structure when standard Cartesian under-sampling is used. 
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Fourier basis  functions'  low-frequency components are lo-

cated in k-space's origin. Thus, by collecting encoded infor-

mation surrounding the origin of k-space, we can improve 

the performance of MR image reconstruction.

For a given value of the under-sampling ratio r (0 < r < 

1), we divided the number of measurements in the (ky) di-

mension in half: Eighty percent of the measurements are for 

random under-sampling, while twenty percent are for spe-

cific under-sampling made at the k-space origin (see Algo-

rithm 1).

Algorithm 1. Our proposed MRI measurement

Step 1: Set up for RF excitation

Step 2: Define r = M/N, and select its component r1 for 

random sampling and r2 for regular sampling such as r = 

r1 + r2
Step 3: Determine the number of ky patterns (N1) and their 

coordinates < kx, ky > in k-space using random sampling 

based on r1
Step 4 Determine the number of ky patterns (N2) and their 

coordinates < kx, ky > from the center of k-space to the 

periphery based on r2
4.1 Initialize i = 1

4.2 Select one ky pattern starting from the center towards 

the periphery.

4.3 If the selected pattern overlaps with any pattern from 

the random sampling (Step 3), repeat Step 4.2.

4.4 If the pattern is unique, increment i by 1. Proceed to 

Step 5 if i>N2 

4.5 Choose kx samples in 100%, 85%, 75%, and 50% of 

the total number of kx
4.6 Jump to 4.2

The  proposed  MRI  measurement  algorithm  focuses  on 

optimizing the sampling process in  k-space to improve im-

age reconstruction efficiency while reducing scan time. The 

algorithm begins with setting up RF excitation and defining 

a compression ratio r=M/N, which is split into two compo-

nents:  r1  for random sampling and  r2  for regular sampling, 

ensuring r=r1+r2. It first employs random sampling to deter-

mine the N1 patterns in k-space, based on r1. Subsequently, 

the algorithm shifts to a regular sampling strategy to select 

N2 patterns starting from the center of k-space and moving 

towards the periphery, as dictated by r2. This step includes a 

check to avoid overlap with previously selected random pat-

terns, ensuring uniqueness in sampling. If a conflict is de-

tected,  the  algorithm  re-selects  until  a  unique  pattern  is 

found.  It  then  increments  the  count  until  iii exceeds  N2, 

moving to the next phase. Furthermore, for each unique  ky 
pattern, the algorithm diversifies the sampling density along 

the kx axis, utilizing different proportions (100%, 85%, 75%, 

and 50%) of the total  kx  samples,  thereby enhancing the 

flexibility in capturing critical spatial frequencies. By com-

bining random and regular  sampling techniques,  the algo-

rithm aims to optimize the information captured in k-space, 

thus  improving  the  quality  of  compressed  sensing  MRI 

while minimizing acquisition time and computational load.

The reconstructed image is obtained by:

m̂=argmin
m

{‖Fum− y‖
2

2+ λ‖Ψ‖
1}

subject to ‖Fum− y‖
2
<ε

(2)

where  y  is  the  measured  value,  Ψ is  the  operator  for  the 

sparsifying transform, and Fu is the Fourier operator.  The 

error between the recovered object and the original object is

ε=
1

N×M
∑
i=1

N

∑
j=1

M

|mij−m̂ij|
(3)

The universal  image  quality  index (Q),  another  perfor-

mance metric, is also employed

Q=
4 σ xy . x̄ . ȳ

(σ x
2+σ y

2 )[( x̄ )2+( ȳ )2 ]
(4)

When two images are identical, the Q index hits 1.

III. RESULTS AND DISCUSSION

In order to demonstrate the benefit of the suggested ap-

proach, the ε from reconstructed images is first evaluated us-

ing  a  compression  ratio  of  0.2.  In  the  ky  dimension,  we 

study a hybrid under-sampling strategy, distributing 20% of 

the measurements to deterministic under-sampling close to 

the center of k-space and 80% of the measurements to ran-

dom under-sampling. As seen in Fig. 2, the original brain 

MR slice with an image size of 128 × 128 served as the data 

source for the numerical simulation. This method offers a 

structured  approach  for  testing  and  assessing  compressed 

Fig. 1 Transformation between the k-space domain and the magnetic 
resonance image
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Fig. 2 The original brain MR slice image.
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sensing techniques in MRI, enabling comparison of various 

reconstruction techniques and evaluation of their quality.

Fig. 3 shows the effect of different levels of k-space sam-

pling on MRI image reconstruction quality. In each row, a 

binary mask (left  column) represents the sampling pattern 

used in k-space, with white lines indicating sampled points 

and black areas representing unsampled points. The percent-

ages (100%, 85%, 75%, and 50%) refer to the sampling den-

sity  in  kx,  with  100% representing  full  sampling and the 

lower percentages corresponding to increasing levels of un-

der-sampling. As the sampling density decreases, the MRI 

images (right column) progressively lose detail, displaying 

more noise and artifacts.  At 100% sampling, the image is 

clear and well-defined. At 85% and 75% sampling, the im-

ages still  retain relatively good quality  but  begin to show 

slight blurring. However, at 50% sampling, the image qual-

ity significantly deteriorates, with more noticeable blurring 

and loss of detail. This visual comparison illustrates how un-

der-sampling in k-space affects image quality, demonstrat-

ing the trade-off  between acquisition speed and image fi-

delity in MRI.

%kx The binary mask point MR images
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Fig. 3 Reconstructed brain MR slice images

Table 1 presents the performance parameters of MRI im-

age reconstruction under different k-space sampling densi-

ties (%kx). The table provides two key metrics: Error and Q 

index, which evaluate the quality of the reconstructed im-

ages. The results in Table 1 demonstrate a clear trade-off be-

tween the MRI scan time (which decreases with lower sam-

pling densities) and the image quality (which decreases with 

higher Error and lower Q index). At 50% sampling, while 

the scan time would be significantly reduced, the increased 

Error and lower Q index indicate a noticeable drop in image 

clarity, which may not be suitable for diagnostic purposes. 

On the other hand, the performance at 75% and 85% sam-

pling densities shows a promising compromise,  where the 

reduction in scan time does not drastically affect the image 

quality. This could be particularly useful in clinical settings 

where  reducing patient  discomfort  and motion  artifacts  is 

crucial.

TABLE 1. PERFORMANCE PARAMETERS

%kx Error Q index

100% 525.8777 0.9721

85% 592.2455 0.9681

75% 503.2018 0.9674

50% 854.2210 0.9487

IV. CONCLUSION

This study demonstrates the effectiveness of Compressed 

Sensing  (CS)  in  reducing  MRI  acquisition  requirements 

while preserving essential image quality. By applying 80% 

of the measurements to random under-sampling and 20% to 

deterministic under-sampling near the center of k-space, we 

generated  compressed  representations  of  MRI  data  in  the 

frequency (k-space) domain, which were then reconstructed 

using a nonlinear conjugate gradient descent approach. The 

quality assessment, based on a calculated error and quality 

index  Q,  indicating  that  CS can  retain  key  image  details 

even at significant compression levels.

The results underscore the potential of CS techniques to 

optimize  MRI  protocols,  offering  a  path  to  shorter  scan 

times and enhanced patient comfort without compromising 

diagnostic accuracy. Future work could explore the applica-

tion of more advanced CS algorithms, potentially improving 

reconstruction quality further and expanding the clinical via-

bility of CS in MRI.
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