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Abstract—This paper presents the design and implementation
of Eco Buddy, an automated waste classification system com-
bining IoT and computer vision. The platform integrates an
ESP32 microcontroller, Raspberry Pi 5, and sensors for real-time
waste detection and sorting. Using TensorFlow Lite, the system
achieves 95% accuracy in distinguishing between aluminum cans,
plastic bottles and anomalies. The platform includes an IoT
dashboard for monitoring and a gamified rewards system to
promote recycling. This cost-effective solution demonstrates the
practical application of robotics in environmental sustainability.

Index Terms—2-DoF Robotic Platform, IoT, Edge Computing,
Computer Vision, TensorFlow Lite, COTS.

I. INTRODUCTION

URBAN waste management systems have faced major

challenges in recent years due to rising garbage creation.

Public health, resource conservation, and environmental sus-

tainability are all seriously hampered by the labor-intensive

and frequently inefficient nature of traditional storage and

disposal techniques. Ineffective waste management techniques

raise greenhouse gas emissions, pollution, and resource deple-

tion [1]. One of the main challenges in waste management

systems is the inaccurate and ineffective separation of recy-

clables from non-recyclables. In addition to being resource-

intensive and prone to major errors, conventional garbage

sorting techniques—which rely mainly on manual labor or

semi-automated systems—are unsustainable given the growing

amounts of waste in urban and industrial areas [2]. Robotics,

computer vision, and the Internet of Things are examples

of emerging technologies that present promising prospects

for modernizing and improving waste management efficiency,

perhaps leading to more intelligent and automated solutions

[3]–[7].

IoT frameworks and wireless methods for trash sorting and

data collection have been used in previous attempts to address

this problem. For example, in [8], the authors suggest an

Internet of Things (IoT)-based smart segregation and man-

agement system that uses sensors such as color and ultrasonic

sensors, as well as servo motors that are interfaced with the

Node MCU ESP8266, to separate garbage into biodegradable

and non-biodegradable categories. An IoT self-powered, easily

connectable substitute for monitoring the level of overflowing

trash cans from a valuable tracking station is offered in [9].

Because of antiquated waste management techniques, many

trash cans seem to be overflowing, underscoring the necessity

of real-time tracking to notify authorities for prompt collection.

The Internet of Things (IoT), which offers free access to

specific data subsets for the development of a wide range of

digital services, was used by the authors of [10] to propose a

waste monitoring system.

Current systems struggle with real-time processing, scala-

bility, and integration into smart city infrastructures.

Eco Buddy is a robotic platform for autonomous waste sort-

ing, combining computer vision, IoT, and affordable hardware.

With a unique design inspired by the Stewart-Gough platform,

it features 2D motion, sensors, and cloud support to enhance

recycling and waste management efficiency.

Real-time processing, flexibility, and integration with smart

cities are made possible by the platform. Using a TensorFlow

Lite neural network running on a Raspberry Pi 5, Eco Buddy

identifies metal and non-metal waste, detects anomalies, con-

nects to the cloud for monitoring, and offers insights to

improve waste management.

To address global waste in smart cities, this work proposes

a scalable, intelligent garbage classification system that inte-
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grates robots, computer vision, IoT, and cloud computing.

II. MATERIALS AND METHODS

A. Mechanical Design

Fig. 1: 2-DOF robotic platform

The Eco Buddy robotic platform’s mechanical design is

intended for automated waste sorting, specifically for the clas-

sification of plastic and aluminum. The system’s two-degree-

of-freedom (2-DOF) robotic platform, which was modeled

based on the Stewart-Gough platform [11], allows for fine

positioning and movement control. It was built using 3D

printing and recyclable materials with a sustainability focus.

The platform is powered by two MG995 servo motors,

which were chosen for their robustness and torque capac-

ity—two essential characteristics for precise manipulation in

garbage sorting processes. This actuation system’s rapid and

stable control allows for accurate rubbish sorting into the right

containers.

B. Hardware Architecture and Communication

The microcontroller unit (MCU) of the Eco Buddy platform

is an ESP32 Dev Kit 1 [12], which manages the integration

of inductive and ultrasonic sensors. The inductive sensor is

designed specifically to detect metal waste, such as aluminum

cans, while the ultrasonic sensor identifies the presence of

waste at the platform’s entry point.

The system is equipped with two MG995 servo motors

for actuation and a buzzer for audio alerts, complementing

the sensors. Digital signal processing (DSP) is employed to

efficiently manage signals from both sensors and actuators,

ensuring optimal control and reliable communication within

the system.

To enhance the reliability and accuracy of the waste man-

agement process, we incorporated a USB webcam and a

Raspberry Pi as a single-board computer. Communication

between the MCU and the Raspberry Pi is facilitated via

USB/UART. The Raspberry Pi performs real-time data pro-

cessing and image capture, enabling detection mechanisms.

This configuration allows for the activation of an alarm system

in case of classification anomalies, such as the detection of

organic waste that falls outside specified sorting parameters.

Because of its IEEE 802.11 PHY-based wireless communi-

cation capabilities, which allow for smooth applications using

protocols like MQTT, the ESP32 was selected as the IoT

board. The Eco Buddy platform depends on this connection.

The OSI (Open Systems Interconnection) model (see Fig. 2)

defines network functions across seven layers: Physical, Data

Link, Network, Transport, Session, Presentation, and Applica-

tion [13], [14]. To emphasize its significance, we place MQTT

within this framework.

• Physical Layer: The ESP32 operates on IEEE 802.11

standards to transmit raw bits wirelessly over Wi-Fi. This

layer manages the physical medium, setting the founda-

tion for data transmission by modulating and encoding

signals.

• Data Link Layer: Also using IEEE 802.11, this layer

handles link management, medium access control, and

error detection. These functions are essential for sta-

ble communication, controlling data flow and managing

transmission errors.

• Network Layer: The Internet Protocol (IP) enables data

to travel across networks by routing and forwarding pack-

ets, supporting communication beyond the local network.

• Transport Layer: TCP ensures reliable, ordered data

delivery, which is critical for MQTT protocol integrity.

It guarantees message transmission without errors, main-

taining data accuracy.

• Session Layer: Managed within TCP, this layer handles

session continuity, allowing the ESP32 to maintain stable

exchanges with servers.

• Presentation Layer: This layer formats, compresses, and

encrypts data as needed, often using TLS (Transport

Layer Security) for secure MQTT communication, pre-

venting unauthorized access.

• Application Layer: MQTT runs here, managing

lightweight message queuing for efficient communication

with platforms like Arduino IoT Cloud.

Fig. 2: OSI Model

24 PROCEEDINGS OF THE RICE. HYDERABAD, 2024



C. Computer Vision

A custom Python application using OpenCV and Tkinter

was developed to capture and organize webcam images into

four folders: cans, bottles, anomalies, and empty platform.

These images, shown in Fig. 3, serve as the dataset foundation

for training a waste management computer vision algorithm.

Fig. 3: Example image showing the platform without any

objects, categorized as Class 1 (Empty)

Fig. 4: Illustrative image of the platform with a plastic bottle,

classified as Class 2 (Bottles)

Fig. 5: Illustrative image of the platform with a aluminium

cand, classified as Class 3 (Cans)

The waste classification system was developed using a

convolutional neural network trained on a custom dataset

with three classes: Bottles, Cans, and Empty. Training uti-

lized Google Colab and Google Drive for data storage, with

preprocessing done through an ImageDataGenerator to nor-

malize pixel values and split 20% for validation. The CNN

architecture included four convolutional layers (filters: 32, 64,

128, 128) with max-pooling, and a final dense layer with

512 neurons and a softmax output for classification. The

model trained over 10 epochs with the Adam optimizer and

categorical cross-entropy, achieving stable convergence.

For edge deployment, the model was converted to

TensorFlow Lite with 8-bit quantization to reduce memory and

computational demands, preserving accuracy. A confidence

threshold was introduced to flag predictions below 0.5

as anomalies, enhancing reliability. The model was then

deployed on a Raspberry Pi 5, using OpenCV for real-time

inference. Video frames were resized and normalized to

fit the model’s input requirements (150x150 pixels). The

system achieved an average inference time under 100ms

per frame, suitable for responsive waste classification, with

performance monitored through custom logging for inference

times, confidence scores, and resource usage.

D. System Integration

The waste classification system integrates multiple sensors,

computer vision, and IoT capabilities to provide an automated

and remotely monitored waste sorting solution. At the core,

the ESP32 microcontroller manages sensor operations and

communication processes. Upon activation, it powers up the

ultrasonic sensor to detect waste on the platform, while the

inductive sensor identifies material types, specifically detecting

aluminum and plastic to enable an initial classification stage.

Based on this sensor data, the ESP32 controls actuators

(MG995 servos) that direct items into designated bins ac-

cording to their classification. For cases where sensor data

alone cannot confidently identify the waste, control is handed

over to the Raspberry Pi 5, which operates a computer vision

subsystem. An RGB camera captures images of the waste

items, and the Raspberry Pi uses a neural network model to

analyze the images and detect any anomalies. Anomalies, such

as filled bottles or mixed-material waste, trigger a buzzer alarm

to alert users and ensure special handling.

Beyond classification, the ESP32 microcontroller facilitates

real-time data transmission to the Arduino IoT Cloud for con-

tinuous monitoring of hardware status [15]–[17].Additionally,

it integrates seamlessly with the Google Cloud Platform via

Node-RED [18], facilitating the aggregation and analysis of

recycling data. This setup empowers users with an interactive

UX web application that not only displays real-time system

metrics but also provides access to historical data for trend

analysis and optimization. The incorporation of such advanced

connectivity ensures that the platform remains scalable and

adaptable, supporting long-term waste management strategies

through data-driven decision-making and user engagement.
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Fig. 6: System architecture for IoT-based monitoring and control system

III. RESULTS AND DISCUSSION

A. Prototype Performance

Fig. 7: Prototype of the waste classification system showing

the 2-DOF robotic arm, sensors, and processing units.

The developed robotic platform was tested under realistic

conditions to evaluate its capability in classifying and sorting

aluminum and plastic waste. Fig. 7 illustrates the final pro-

totype, including the 2-DOF robotic arm and sensor modules

interfaced with the ESP32 and Raspberry Pi 5. During trials,

the system achieved high classification accuracy, correctly

identifying aluminum and plastic with 98.5% and 97.2%

accuracy, respectively.

The neural network model, deployed on the Raspberry Pi

5 and trained with TensorFlow Lite and Keras, achieved

an overall classification accuracy of 95.45%. The confusion

matrix (Fig. 8) displays the model’s performance, showing

effective discrimination between aluminum, plastic, and other

waste types, with minimal misclassifications.

Fig. 8: Confusion matrix for waste classification: Bottles,

Cans, and Empty categories.

The training metrics over 10 epochs are shown in Fig. 9,

illustrating consistent convergence in both training and vali-

dation accuracy, as well as minimal overfitting. The model’s

stability suggests that it generalizes well to unseen data,

supporting its practical application in waste management.

Fig. 10 presents a t-SNE visualization of feature embed-

dings, highlighting clear class separation between waste cate-

gories and anomalies. This visualization confirms the model’s
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Fig. 9: Training metrics over 10 epochs, showing training and

validation accuracy (left) and loss (right).

Fig. 10: t-SNE visualization of feature embeddings illustrating

class separation for different waste categories and anomalies.

capability to distinguish between different waste types and

detect anomalies effectively.

For real-time monitoring, we implemented the Arduino IoT

Cloud dashboard, as shown in Fig.11. This dashboard provides

comprehensive insights into key technical variables, including

ultrasonic sensor data, servo motor positions, inductive sen-

sor readings, and anomaly detection values. It also includes

counters for categorized items like cans and bottles, primarily

designed to support maintenance and system diagnostics.

Additionally, a user-friendly dashboard was developed as

a UX/web application tailored for end-users. This platform

goes beyond the prototype by establishing a holistic ecosys-

tem that allows users to monitor the quantity of recyclables

processed and interact with a rewards system. Leveraging

emerging technologies such as cryptocurrency, the system

introduces incentives by converting recyclables—like bottles

and cans—into satoshis, promoting a culture of recycling

through automated rewards.

Fig. 11: Arduino IoT Cloud dashboard for system diagnostics

B. Challenges and Limitations

One of the key challenges faced during the development of

the system was maintaining accurate classification in varying

lighting conditions. The performance of the computer vision

system was slightly impacted by ambient lighting, which could

be mitigated by incorporating additional lighting controls or

using infrared-based vision techniques [19]. Moreover, the

inductive sensor occasionally detected thin layers of aluminum

on non-recyclable items, resulting in false positives. Further

improvements to the sensor’s sensitivity could enhance the

robustness of the platform in distinguishing between materials

with similar electromagnetic properties.

C. Future Improvements

Looking forward, future iterations of the system could bene-

fit from additional sensors for more precise detection of other

recyclable materials such as glass or mixed waste. Further-

more, upgrading the machine learning model with additional

training data and incorporating more advanced neural network

architectures could improve the system’s anomaly detection

capabilities. Finally, the integration of edge AI processors,
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such as the Google Coral [20] or NVIDIA Jetson Nano [21],

could further enhance real-time performance, enabling the sys-

tem to handle larger datasets and more complex classification

tasks without compromising speed.

D. Discussion

The robotic platform combines sensor-based detection, ma-

chine learning, and IoT to provide a scalable, efficient solution

for waste sorting. Its TensorFlow Lite-powered anomaly de-

tection and real-time monitoring via an IoT dashboard enable

rapid decision-making while reducing cloud dependency. The

system demonstrates high classification accuracy and practical

usability, addressing key challenges in waste management.

Although environmental factors occasionally affect sensor

performance, the platform’s modular design and edge AI inte-

gration enhance its adaptability, making it suitable for broader

applications such as manufacturing and logistics, where real-

time classification and automation are vital.

IV. CONCLUSIONS

This research demonstrates the efficacy of an innovative

2-DoF robotic platform for automated waste classification,

achieving 95% accuracy in distinguishing between aluminum

cans, plastic bottles, and anomalies. The proposed architecture,

leveraging TensorFlow Lite optimization on a Raspberry Pi

5 alongside ESP32-based sensor fusion and IoT integration,

presents a viable approach to real-time waste classification

challenges. The system’s performance metrics, including sub-

100ms inference times and robust anomaly detection capabili-

ties, validate its practical applicability in resource-constrained

environments. Furthermore, the integration of cloud-based

monitoring through Arduino IoT Cloud and the implemen-

tation of a gamified incentive mechanism contribute to the

broader discourse on sustainable waste management solutions.

While there are opportunities to improve the system’s

performance under variable lighting conditions and expand

material detection capabilities by incorporating enhanced

datasets and advanced computing technologies, the proposed

framework provides a solid foundation for future research

in automated waste classification. The results demonstrate

significant potential for scaling this approach to tackle broader

industrial automation challenges and smart city applications,

especially in scenarios requiring real-time classification and

cost-effective solutions. Future developments may include

integrating advanced sensors, optimizing edge AI processing,

and extending the platform’s adaptability to diverse industrial

and environmental contexts, further solidifying its relevance

and scalability.
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