Uaoiite

Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F0041

Science and Intelligence Systems (FedCSIS) pp. 321-326 ISSN 2300-5963 ACSIS, Vol. 43

Applying Evolutionary Techniques to Enhance
Graph Convolutional Networks for Node

Classification:

Case Studies

Maciej Krzywda*, Szymon Eukasik*, Amir H. Gandomi'
*Faculty of Physics and Applied Computer Science, AGH University of Krakow,
al. Mickiewicza 30, 30-059 Krakéw, Poland

Email: krzywda@agh.edu.pl, slukasik@agh.edu.pl
TFaculty of Engineering and IT, University of Technology Sydney,
5 Broadway, Ultimo NSW 2007, Australia

Email: gandomi@uts.edu.au
iSystems Research Institute, Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warsaw, Poland
SNASK National Research Institute,
ul. Kolska 12, 01-045 Warsaw, Poland
1IUniversity Research and Innovation Center (EKIK), Obuda University,
Bécsi 1t 96/B, Budapest, 1034, Hungary
”Department of Computer Science, Khazar University,
Baku, Azerbaijan

Abstract—In recent years, significant efforts have been made to
address graph node classification tasks by applying graph neural
networks and methods based on label propagation. Despite the
progress achieved by these approaches, their success often hinges
on complex architectures and algorithms, sometimes leading to
the oversight of crucial technical details. In designing artificial
neural networks, one crucial aspect of the innovative approach is
suggesting a novel neural architecture. Currently used architec-
tures have mostly been developed manually by human experts,
which is a time-consuming and error-prone process. That is why
the adoption of more sophisticated semi-automatic methods, such
as Neural Architecture Search, has become commonplace. This
paper introduces and assesses an evolutionary-based approach
for the design of graph convolutional neural networks in the
context of node classification. Our approach aims to systemati-
cally define the graph convolutional networks parameter space,
drawing inspiration from recent research on design principles.
By doing so, our method seeks to strike a balance between
achieving satisfactory performance and optimizing memory and
computation resources, thus offering a more efficient alternative
to conventional approaches from the neural architecture search
area.

Index Terms—graph neural networks, graph convolutional
networks, genetic algorithm , node classification, evolutionary
computation

I. INTRODUCTION

EURAL Architecture Search (NAS) [1]-[4] is gaining
Npopularity as a fully automatic method for designing
Artificial Neural Networks Architectures (ANNSs). Neural
Architecture Search is a method that allows the creation
of comparable and even superior architectures in terms of
performance to those that have been designed manually. In
essence, NAS streamlines the process of a human adjusting a

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

321

neural network through trial and error to identify successful
configurations and automates it to discover more intricate
structures. It comprises a range of techniques and tools that
evaluate numerous network architectures within a defined
search space using a search strategy and choose the one that
accomplishes the goals of a specific problem by maximizing
a fitness function.

The manuscript is structured as follows. Firstly, Section II
presents a concise overview of Neural Architecture Search
approaches applied across various domains of neural networks.
Following that, Section II-A provides a comprehensive sum-
mary of the state-of-the-art in Graph Neural Networks, encom-
passing prevalent methods employed in the design of GNN
architectures. In Section III, we delve into the description of
the evolutionary algorithm utilized in our research, elucidating
details such as fitness metrics and the delineation of the
search space. Section IV comprehensively covers settings and
implementation details, including the datasets employed and
the preparation of the computational budget. Section V is
dedicated to a thorough discussion of the attained results,
while Section VI serves as a conclusive synthesis of our
research findings.

II. NEURAL ARCHITECTURE SEARCH

NAS is computationally and time-consuming solution typi-
cally involving intensive calculations using graphics process-
ing units (GPUs). Therefore, researchers and research groups
are increasingly daring to look for alternative methods to
optimize costs and find the most efficient and effective neural
network architecture in order to solve their research problem.

Topical area: Advanced Artificial
Intelligence in Applications

322

Today, the most popular options for NAS are methods based
on reinforcement learning [2] (including one-shot methods)
[5], evolutionary computing (including multiobjective search),
Bayesian optimization [6], and hill-climbing [7].

In article [4], the authors defined NAS as a system com-
posed of three primary elements: search space, search algo-
rithm, and evolutionary strategy.

o Search space - outlines a group of operations, such as
convolution, pooling, and fully connected layers, and de-
termines how these operations can be combined to create
valid network architectures. Developing the search space
often involves human expertise, inevitably introducing
biases.

o Search algorithm - selects a group of candidates for
network architecture and tests their performance. It re-
ceives child model performance metrics, such as accuracy
and low latency, as rewards and utilizes this information
to optimize and produce high-performance architecture
candidates. As the possible search algorithms for NAS,
one can name, e.g., algorithms like Random Search,
Reinforcement Learning, and Bayesian Optimization.

« Evaluation strategy - in order to provide feedback for
the search algorithm to learn, we must evaluate the
performance of numerous proposed child models through
measurement, estimation, or prediction. This process of
evaluating candidates can be quite costly, prompting
the proposal of various new methods to conserve time
and computing resources. For these strategies, we can
include proxy task performance, low-fidelity performance
estimation, weight inheritance, weight sharing, learning
curve extrapolation, and network morphism. [8], [9]

Based on the above definition of NAS we can define the
NAS using Evolutionary Computation (EC) as a task of ex-
ploring architectures search space by generating and evaluating
a population of candidate architectures and then evolving this
population over multiple generations to find better-performing
architectures. As we mentioned, ECs are one of the methods
used to realize NAS, but the most promising results were
achieved recently using the following approaches:

o NAS-EA-FA [10] - evolutionary algorithm based on the

fitness approximation to the search for neural architecture.
It is designed to accelerate the search process.

o EF-ENAS [11] - evolutionary neural architecture search
algorithm based on evaluation corrections and fitness
sharing. It is designed to improve the efficiency and
effectiveness of the search process.

for a more extensive survey of evolutionary NAS one can
refer to [8], [9].

A. Neural Architecture Search for GNNs

Remarkably, the field of NAS within GNNs remains rel-
atively unexplored. Notable exceptions include GraphNAS
[12]-[14], which uses RL to identify architectures for node
classification tasks. The search space defined by GraphNAS
includes sampling, aggregation, and gated functions, demon-
strating its efficacy in the realm of GNNs. Auto-GNN [15]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

follows suit by adopting RL and a comparable search space.
SNAG framework (Simplified Neural Architecture Search for
Graph Neural Networks [16]) addresses drawbacks in existing
neural architecture search (NAS) methods, such as GraphNAS
and Auto-GNN, by introducing an innovative search space and
a reinforcement learning-based search algorithm, as demon-
strated through extensive experiments on real-world datasets.

Another novel approach to NAS for GNN is Scalable
Graph Neural Architecture Paradigm [17] representing a novel
paradigm introduced in the paper “PaSca.” It serves as a
systematic approach to construct and explore the design space
for scalable Graph Neural Networks (GNNs), aiming to ad-
dress the scalability challenges inherent in traditional GNNs
designed based on the neural message passing mechanism.
SGAP is presented as a key element of the PaSca system,
offering a principled framework for designing GNNs that
can efficiently handle larger datasets and message passing
steps, thus enhancing overall scalability. Neural Architecture
Coding (NAC) [18] is a Neural Architecture Search (NAS)
method for Graph Neural Networks (GNNs) that addresses
computational cost and optimization challenges. It utilizes a
sparse coding objective to find optimal architecture parame-
ters without weight updates after random initialization. NAC
claims linear-time efficiency, and empirical evaluations on
GNN benchmark datasets show that it outperforms strong
baselines. The method’s strength lies in leveraging the ex-
pressive power of GNNs with randomly-initialized weights for
efficient architecture discovery.

[19] Automated Graph Neural Network(Auto-HeG) on
Heterophilic Graphs addresses the limitations of existing graph
neural architecture search (NAS) methods, which primarily
focus on the homophily assumption and neglect heterophily,
a crucial graph property in real-world applications. Auto-HeG
aims to automatically design powerful graph neural networks
with expressive learning abilities for heterophilic graphs, in-
corporating heterophily into various stages of the automatic
heterophilic graph learning process. This includes aspects such
as search space design, supernet training, and architecture
selection, using a diverse message-passing scheme, progressive
supernet training, and a heterophily-aware distance criterion
to derive specialized and expressive heterophilic GNN archi-
tectures. The proposed method demonstrates its superiority
through extensive experiments, showcasing its effectiveness
compared to human-designed models and existing graph NAS
models.

Auto-GNAS (Automatic Graph Neural Architecture Search)
[20] addresses the challenge of constructing effective graph
neural networks (GNNs) for non-euclidean data by automating
the search for optimal GNN architectures. Unlike traditional
methods that evaluate architectures serially, Auto-GNAS em-
ploys parallel evaluation, utilizing multiple genetic searchers
simultaneously. These searchers use evaluation feedback, in-
formation entropy, and results from other searchers through a
sharing mechanism to enhance efficiency. Auto-GNAS demon-
strates competitive model performance and improved search
efficiency compared to other algorithms, marking the first

MACIEJ KRZYWDA ET AL.: APPLYING EVOLUTIONARY TECHNIQUES TO ENHANCE GRAPH CONVOLUTIONAL NETWORKS

instance of using parallel computing to improve the system
efficiency of graph neural architecture search. Our approach
allows for a quick and simple (computationally inexpensive)
way to limit the spatial hyperparameters of a graph neural
network.

III. EVOLUTIONARY ALGORITHM FOR DESIGNING GCN

Genetic Algorithm (GA) is part of the evolutionary algo-
rithm family, inspired by natural selection and genetics. The
exploration space is a crucial element in all GAs, represented
as strings called chromosomes or individuals. A population
comprises a collection of such strings. Each chromosome
consists of a sequence of genes encoding a solution to a target
problem. Initially, a diverse population of random individuals
is created to represent various potential solutions for the
target problem. Each individual is assigned a fitness value that
indicates its quality within the population.

During the evaluation step, the fitness of each individual
is calculated. The selection step involves choosing certain
individuals from the entire population as parents for mating.
In the cross-step, parents exchange information, such as swap-
ping genes, to generate new individuals and form the next
generations. The mutation step introduces diversity into the
population by randomly altering a gene in new individuals
based on the probability of mutation. Finally, the population
is updated by incorporating new individuals.

In this approach, the individual is a single representation of a
graph convolutional network with a random configuration that
allows it to compile and run successfully on selected datasets.
The genetic algorithm used in research is the mutation and
cross-over operators. Mutation involves randomly selecting a
new gene value from a uniform distribution within the range
of values available for that gene. The crossover function takes
a list of parents as an argument, from which it randomly
selects two individuals. Each individual then contributes one
part of his genes (complementary to the part contributed by
the other individual). Subsequently, a mutation is introduced
to the obtained gene. The random selection process is re-
peated until the specified population size is achieved. The
algorithm dynamically adjusts the number of layers based
on the specified num_layers parameter for each agent
(more params of individuals are described in Tables ?? and I,
providing adaptability in the neural network architecture for
each agent in the deep_GCN class involves iterating over the
specified number of layers (num_layers). For every layer,
the algorithm determines the specific parameters (described in
Tablel).

A. Fitness

In our approach, fitness_value serves as a measure
of the classifier quality that you aim to minimize. It is the
sum of squared F1 errors for each class. The F1 scores
for individual classes are numerical metrics that represent
the classification quality of each class. This considers both
precision and recall for a given class, making them more

informative than accurate, especially in the context of unbal-
anced data sets. fitness_value is the sum of squared F1
errors across all classes. This approach provides an overall
assessment of the quality of the classifier in multiple classes.
Squaring the F1 error emphasizes larger errors, i.e., greater
deviations from the ideal F1 score. The goal is to minimize
fitness_value. Minimizing this value implies an effort to
enhance the classifier’s quality for all classes simultaneously,
offering a more balanced objective than merely maximizing
accuracy. Evaluating the classification quality for each class
individually allows the identification and improvement of areas
where the classifier may perform suboptimally.

In summary, the fitness_value-based approach con-
siders more nuanced aspects of classification quality, taking
into account both false positives and false negatives, as well
as precision and recall. This is a more balanced approach than
relying solely on accuracy, especially in scenarios involving
imbalanced datasets or multiclass classification.

B. Search space

In this section, we delve into the details of the search space
employed in our approach, elucidating the ranges of various
parameters within it. The search space is a crucial aspect of
our methodology, and in Table I, we provide a comprehensive
overview of the hyperparameter ranges relevant to the training
of neural networks. It is essential to note that these ranges
remain consistent across all datasets, ensuring a standardized
approach to model optimization.

However, the uniqueness of each dataset requires specific
considerations for certain parameters, particularly Hidden
Channels and Batch Size, as explained in Table ??. For Hidden
Channels, the range is dynamically defined as range from 10
to the number of features within the dataset. This adaptability
reflects the intrinsic characteristics of the data and aims to
optimize the model architecture accordingly. Similarly, for the
batch size parameter, the range ranges from a minimum of 10
to the total count of all training masks present in the dataset,
as detailed in Table II.

To provide a concise reference, Table I encapsulates the
overarching hyperparameter ranges for training neural net-
works, emphasizing their uniform applicability across diverse
datasets. The following table ?? then details the data set-
specific nuances, delineating the distinct ranges for Hidden
Channels and Batch Size. This approach ensures that our
search space is not only comprehensive but also adaptive to
the intricacies of individual datasets, fostering effective model
optimization.

IV. EXPERIMENTAL SETTINGS
A. Datasets

In Table II, we provide a comprehensive overview of the

key parameters associated with the datasets utilized in our

experimental efforts. Brief characteristics of each dataset are
described below.

o Planetoid Datasets, including Cora, CiteSeer, and
PubMed, are widely used in graph-based learning tasks.

323

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

TABLE I: Neural Network Hyperparameter Ranges

Parameter

Range

Epochs
Learning Rate
‘Weight Decay

100

From 0.0001 to 0.1
From 0.0001 to 0.1

Layers From 1 to 10
Adadelta, Adagrad, Adam,
AdamW, Adamax, ASGD, NAdam, RAdam, RMSprop,
Rprop, SGD, QHM, QHAdam, PSO, A2GradExp,
Optimizers A2GradInc, A2GradUni,l AccSGD, AdaBelief, AdaBounoll, AdaMod,
Adafactor, Adahessian, AdamP, AggMo, Apollo, DiffGrad,
Lamb, MADGRAD, NovoGrad, PID, Ranger, RangerQH,
RangerVA, SGDP, SGDW, SWATS, Shampoo, Yogi
CrossEntropy, NLLLoss,
. MultiMarginLoss,
Loss Function MultiLabelMarginLoss,
SmoothLlLoss
They feature academic citation networks where nodes V. RESULTS

represent documents, and edges denote citations.

o WikipediaNetwork Datasets, comprising Squirrel and
Chameleon, focus on analyzing relationships within
Wikipedia. For example, Squirrel captures the network
structure of Wikipedia articles, enabling researchers to
explore connections and interactions between different
topics.

« WebKB Datasets, such as Cornell, Texas, and Wis-
consin, are tailored for web page classification. These
datasets encompass web pages from university domains
and are labeled with categories such as student, faculty,
project, and course. They serve as benchmarks for text
classification and information retrieval tasks.

e Actor Dataset is commonly utilized in social network
analysis, representing a network of actors and their col-
laborations in movies or television shows. The nodes cor-
respond to actors, and the edges represent collaborations
in specific projects.

The selection of these datasets is grounded in their preva-
lence in academic research and practical applications. Re-
searchers and practitioners often turn to these datasets as
benchmarks due to their well-defined structures, facilitating the
rigorous evaluation of diverse graph-based machine learning
algorithms.

B. Computational Settings

We have defined a computational budget for our evolution-
ary algorithm with the following specifications:

o 300 generations

100 training epochs

o 10 initial populations (random)

o whole population is 20

« mutation rate is 0.3

The search space is 8-dimensional, denoted as batch
size,hidden channels, learning rate, weight decay, num
layer, optimizer, loss function. In particular, the epoch
number is held constant throughout the exploration. Using
the previously defined fitness value enables us to conduct
innovative research within this fixed dimensionality.

We observed the mean fitness and accuracy for each gener-
ation and, for better visualization, we also tracked the best
fitness and best accuracy achieved throughout the
evolutionary process. While analysing the results enclosed in
Table II and III, it can be noticed that minimizing the cost
in multi-class classification problems is more complex than in
the case of binary classification, which can also be observed
in our case - the more complex the dataset, the potentially
more difficult it is to prepare a model that will allow for the
correct classification of all nodes from high effectiveness. Our
research shows that using only GCN is not an ideal solution
for datasets such as Actor, Squirrel or Chameleon, which are
more complex datasets, e.g. heterophily ratio, characterized by
more Nodes, average node Degree, or Node Features (in Table
II) the less accurate the classification, which can be observed
in the table.

In Table III, we present the optimal genes, which represent
the best solutions obtained through optimization using the
genetic algorithm.

These adjustments ensure that the experimental parameters
adhere to the requirement of being integer values. Although
presented in the table as floating values for clarity, they are
effectively treated as integers during the genetic algorithm
optimization process. This approach maintains consistency and
allows for a meaningful and applicable exploration of the
solution space.

Analysis of the experimental results reveals key patterns
in hyperparameter configurations for Graph Convolutional
Networks (GCN) across various datasets (presented in III.
The most prevalent configuration associated with optimal
performance includes the Adamax optimizer, the cross-entropy
loss function, and 1 to 3 layers of GCN. In particular, con-
figurations with a single or two layers of GCN emerged more
frequently, suggesting their effectiveness in achieving high
fitness values and classification accuracy. These findings offer
practical guidance for researchers and practitioners seeking
robust hyperparameter choices for GCN models [21], [22] for
Node Classification.

MACIEJ KRZYWDA ET AL.: APPLYING EVOLUTIONARY TECHNIQUES TO ENHANCE GRAPH CONVOLUTIONAL NETWORKS

TABLE II: Dataset Characteristics

Parameter Wisconsin Actor Texas Squirrel PubMed Cornell Cora CiteSeer Chameleon
Nodes 251 7600 183 5201 19717 183 2708 3327 2277
Edges 515 30019 325 217073 88648 298 10556 9104 36101
Avg. Node Degree 2.05 3.95 1.78 41.74 4.50 1.63 3.90 2.74 15.85
Training Nodes 1200 36480 870 24960 60 870 140 120 10920
Isolated Nodes False False False False False False False True False
Self-Loops True True True True False True False False True
Is Undirected False False False False True False True True False
Features 1703 932 1703 2089 500 1703 1433 3703 2325
Classes 5 5 5 5 3 5 7 6 5
Node Features 1703 932 1703 2089 500 1703 1433 3703 2325
Homophily ratio (h) 0.21 0.22 0.11 0.22 0.8 0.3 0.81 0.74 0.23
TABLE III: Best results achieved for each dataset
Param Wisconsin Texas Squirrel PubMed Cornell Cora CiteSeer Chameleon Actor
Batch Size 630 500 837 280 210 605 358 509 87
Hidden Channels 267 1633 1384 338 348 1245 230 623 1647
Epochs 100 100 100 100 100 100 100 100 100
Learning Rate 0.0087 0.0118 0.0143 0.0848 0.0073 0.0022 0.0054 0.0826 0.0674
Weight Decay 0.0312 0.0023 0.0169 0.0019 0.0011 0.0009 0.0083 0.0039 0.0151
Layers 1 1 1 3 2 4 2 4 1
Loss Function SmoothL1Loss Cross Entropy Cross Entropy ~ Cross Entropy ~ Cross Entropy ~ Cross Entropy Cross Entropy ~ Cross Entropy Cross Entropy
Optimizer Adam NAdam Adadelta Adam Adadelta Adadelta PSO Adam Adagrad
Minimum Fitness 1.4624 1.7088 1.6277 0.3627 1.4322 0.4845 0.8082 1.2427 1.6963
Accuracy 0.5882 0.6486 0.3121 0.7960 0.5135 0.8290 0.7320 0.4496 0.2539

It is surprising that NAdam and QHAdam [23] along with
Particle Swarm Optimization [24] are algorithms that have
achieved high Accuracy values and low fitness. Moreover, the
dominance of Adagrad over the most popular Adam is note-
worthy. Due to fewer options for loss functions, Categorical
Cross Entropy dominates here and possibly achieves better
results for other loss functions, which are not included in our
research. We compare our methods with baselines methods
[25], [26], which are presented in Table IV.

Based on the results presented above in Table IV, we
observe that the results achieved for GCN based on the most
popular implementation of GCN [26] are very close to the best
accuracy. Our solution enhances the standard GCN models,
though it does not quite reach the level of the most advanced
ones [27], [28]. Nevertheless, it can serve as an inspiring
starting point for future research in this field. Homophily
ratio [29] in datasets with high values (Actor, Wisconsin,
Squrrel) refers to the tendency of nodes with similar features or
attributes to be more likely connected to each other. In datasets
with a high homophily ratio (CiteSeer, Cora, PubMed), the
relationships between similar nodes become more pronounced,
potentially improving classification performance in tasks that
rely on node similarities.

VI. CONLUSIONS

In the last few years, studies on designing Artificial Neu-
ral Networks (ANNs) have become an active research field,
mainly due to the advanced cost training and prototyping of
underlying deep learning architectures. The proposed study
focuses on developing the first stage of a method for the

design and optimization of graph-convolutional neural net-
works.Our method enables avoiding mindless reliance on
closed-box approaches, where one often waits for the final
outcome without considering what transpires throughout the
entire process. Assuming that the parameter search space of a
graph convolutional neural network is multidimensional (each
dimension defined by a network parameter), we conclude that
by increasing the number of dimensions and their size, such
as utilizing various types of layers (not just GCNConv, as in
our study, but also GATConv, GIN, SGCNN etc.), we can
construct the best possible neural network. This is achieved
without the need to specify in advance whether our network
should be GCN or GAT-based. Our study provides answers
that GCN is not always the ideal solution. By extending our
proposed mechanism, we can achieve an ideal architecture for
solving a specific node classification problem as a result, our
method allows for flexibility and adaptation to the specific re-
quirements of a given situation.Plans for this research include
the research of another search optimization framework based
on Genetic Programming (including Cartesian Genetic Pro-
gramming, the utility of which was previously demonstrated
by designing CNNs [30]), Evolutionary Strategies, and Bio-
Inspired optimization methods [31]. This approach will allow
greater flexibility in designing and optimizing not only graph
coefficient neural networks but all available Graph Neural
Networks (GAT, GIN, Graph Transformer etc.). We anticipate
that the results of this study might be useful to researchers
in the field of Neural Architecture Search because the results
obtained in the experiment are very promising.

325

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

TABLE IV: Comparison of accuracy of our approaches with state-of-the-art methods and GNN baselines, and performance of
different models on various datasets

Method Wisconsin Texas Squirrel PubMed Cornell Cora CiteSeer Chameleon Actor
GCN [26] 45.88 52.16 23.96 88.13 52.70 85.77 73.68 28.18 26.86
GAT [25] 49.41 58.38 30.03 87.62 54.32 86.37 74.32 42.93 28.45
Geom-GCN-P [27] 64.12 67.57 38.14 88.09 60.81 84.93 75.14 60.90 31.63
GGCN [28] 86.86 84.86 55.17 89.15 85.68 87.95 77.14 71.14 37.54
Our 58.82 64.86 31.21 79.60 51.35 82.90 73.20 44.96 25.39
ACKNOWLEDGMENTS [14] Y. Gao, P. Zhang, H. Yang, C. Zhou, Z. Tian, Y. Hu, Z. Li, and

The work was supported by statutory tasks of the AGH
UST Faculty of Physics and Applied Computer Science within
the MEIN grant. We gratefully acknowledge the Polish high-
performance computing infrastructure PLGrid (HPC Centers:
ACK Cyfronet AGH) for providing computer facilities and
support within computational grant no. PLG/2022/015677 and
no. PLG/2023/016643.

(1]

[2]
[3]

(4]
[5]

(6]

(71

(8]

(1

(10]

[11]

[12]

[13]

REFERENCES

C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. L. Yuille,
J. Huang, and K. P. Murphy, “Progressive neural architecture search,”
in European Conference on Computer Vision, 2017.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” ArXiv, vol. abs/1611.01578, 2016.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in International conference
on machine learning. PMLR, 2018, pp. 4095-4104.

T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” ArXiv, vol. abs/1808.05377, 2018.

G. Bender, P-J. Kindermans, B. Zoph, V. Vasudevan, and Q. V. Le,
“Understanding and simplifying one-shot architecture search,” in Inter-
national Conference on Machine Learning, 2018.

C. White, W. Neiswanger, and Y. Savani, “Bananas: Bayesian optimiza-
tion with neural architectures for neural architecture search,” in AAAI
Conference on Artificial Intelligence, 2019.

M. Verma, P. P. Sinha, K. Goyal, A. Verma, and S. Susan, “A novel
framework for neural architecture search in the hill climbing domain,”
2019 IEEE Second International Conference on Artificial Intelligence
and Knowledge Engineering (AIKE), pp. 1-8, 2019.

Y. Liu, Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “A survey on
evolutionary neural architecture search,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 34, pp. 550-570, 2020.

X. Zhou, A. K. Qin, Y. Sun, and K. C. Tan, “A survey of advances
in evolutionary neural architecture search,” 2021 IEEE Congress on
Evolutionary Computation (CEC), pp. 950-957, 2021.

C. Pan and X. Yao, “Neural architecture search based on evolutionary
algorithms with fitness approximation,” in 2021 International Joint
Conference on Neural Networks (IJCNN), 2021, pp. 1-8.

R. Shang, S. Zhu, J. Ren, H. Liu, and L. Jiao, “Evolutionary neural
architecture search based on evaluation correction and functional units,”
Knowledge-Based Systems, vol. 251, p. 109206, 2022.

Y. Gao, H. Yang, P. Zhang, C. Zhou, and Y. Hu, “Graph neural
architecture search,” in International Joint Conference on Artificial
Intelligence, 2020.

, “Graphnas: Graph neural architecture search with reinforcement
learning,” ArXiv, vol. abs/1904.09981, 2019.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]

[28]

[29]

[30]

[31]

J. Zhou, “Graphnas++: Distributed architecture search for graph neural
networks,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, pp. 6973-6987, 2023.

K. Zhou, Q. Song, X. Huang, and X. Hu, “Auto-gnn: Neural architecture
search of graph neural networks,” Frontiers in Big Data, vol. 5, 2019.
H. Zhao, L. Wei, and Q. Yao, “Simplifying architecture search for graph
neural network,” ArXiv, vol. abs/2008.11652, 2020.

W. Zhang, Y. Shen, Z. Lin, Y. Li, X. Li, W. Ouyang, Y. Tao, Z. Yang,
and B. Cui, “Pasca: A graph neural architecture search system under
the scalable paradigm,” Proceedings of the ACM Web Conference 2022,
2022.

P. Xu, L. Zhang, X. Liu, J. Sun, Y. Zhao, H. Yang, and B. Yu, “Do not
train it: A linear neural architecture search of graph neural networks,”
ArXiv, vol. abs/2305.14065, 2023.

X. Zheng, M. Zhang, C. cheng Jason Chen, Q. Zhang, C. Zhou, and
S. Pan, “Auto-heg: Automated graph neural network on heterophilic
graphs,” Proceedings of the ACM Web Conference 2023, 2023.

J. Chen, J. Gao, Y. Chen, B. M. Oloulade, T. Lyu, and Z. Li, “Auto-
gnas: A parallel graph neural architecture search framework,” IEEE
Transactions on Parallel and Distributed Systems, vol. PP, pp. 1-1, 2022.
X. Miao, W. Zhang, Y. Shao, B. Cui, L. Chen, C. Zhang, and J. Jiang,
“Lasagne: A multi-layer graph convolutional network framework via
node-aware deep architecture (extended abstract),” in 2022 [EEE 38th
International Conference on Data Engineering (ICDE), 2022, pp. 1561—
1562.

O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann, “Pitfalls of
graph neural network evaluation,” ArXiv, vol. abs/1811.05868, 2018.

J. Ma and D. Yarats, “Quasi-hyperbolic momentum and adam for deep
learning,” arXiv preprint arXiv:1810.06801, 2018.

D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm:
an overview,” Soft computing, vol. 22, pp. 387-408, 2018.

P. Velickovié¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” arXiv, 2018.

T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” ArXiv, vol. abs/1609.02907, 2017.

H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-gcn:
Geometric graph convolutional networks,” 2020.

Y. Yan, M. Hashemi, K. Swersky, Y. Yang, and D. Koutra, “Two sides
of the same coin: Heterophily and oversmoothing in graph convolutional
neural networks,” 2022 IEEE International Conference on Data Mining
(ICDM), pp. 1287-1292, 2021.

W. Huang, X. Guan, and D. Liu, “Revisiting homophily ratio: A
relation-aware graph neural network for homophily and heterophily,”
Electronics, vol. 12, no. 4, 2023. [Online]. Available: https:
/Iwww.mdpi.com/2079-9292/12/4/1017

M. Krzywda, S. Lukasik, and A. H. Gandomi, “Cartesian genetic
programming approach for designing convolutional neural networks,”
arXiv preprint arXiv:2410.00129, 2024.

R. Shen, A. S. Bosman, A. Schreuder, M. Krzywda, and S. Lukasik,
“Training graph neural networks with particle swarm optimisation,”
Sacair 2023, 2023.

