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Abstract—In recent years, significant efforts have been made to
address graph node classification tasks by applying graph neural
networks and methods based on label propagation. Despite the
progress achieved by these approaches, their success often hinges
on complex architectures and algorithms, sometimes leading to
the oversight of crucial technical details. In designing artificial
neural networks, one crucial aspect of the innovative approach is
suggesting a novel neural architecture. Currently used architec-
tures have mostly been developed manually by human experts,
which is a time-consuming and error-prone process. That is why
the adoption of more sophisticated semi-automatic methods, such
as Neural Architecture Search, has become commonplace. This
paper introduces and assesses an evolutionary-based approach
for the design of graph convolutional neural networks in the
context of node classification. Our approach aims to systemati-
cally define the graph convolutional networks parameter space,
drawing inspiration from recent research on design principles.
By doing so, our method seeks to strike a balance between
achieving satisfactory performance and optimizing memory and
computation resources, thus offering a more efficient alternative
to conventional approaches from the neural architecture search
area.

Index Terms—graph neural networks, graph convolutional
networks, genetic algorithm , node classification, evolutionary
computation

I. INTRODUCTION

NEURAL Architecture Search (NAS) [1]–[4] is gaining

popularity as a fully automatic method for designing

Artificial Neural Networks Architectures (ANNs). Neural

Architecture Search is a method that allows the creation

of comparable and even superior architectures in terms of

performance to those that have been designed manually. In

essence, NAS streamlines the process of a human adjusting a

neural network through trial and error to identify successful

configurations and automates it to discover more intricate

structures. It comprises a range of techniques and tools that

evaluate numerous network architectures within a defined

search space using a search strategy and choose the one that

accomplishes the goals of a specific problem by maximizing

a fitness function.

The manuscript is structured as follows. Firstly, Section II

presents a concise overview of Neural Architecture Search

approaches applied across various domains of neural networks.

Following that, Section II-A provides a comprehensive sum-

mary of the state-of-the-art in Graph Neural Networks, encom-

passing prevalent methods employed in the design of GNN

architectures. In Section III, we delve into the description of

the evolutionary algorithm utilized in our research, elucidating

details such as fitness metrics and the delineation of the

search space. Section IV comprehensively covers settings and

implementation details, including the datasets employed and

the preparation of the computational budget. Section V is

dedicated to a thorough discussion of the attained results,

while Section VI serves as a conclusive synthesis of our

research findings.

II. NEURAL ARCHITECTURE SEARCH

NAS is computationally and time-consuming solution typi-

cally involving intensive calculations using graphics process-

ing units (GPUs). Therefore, researchers and research groups

are increasingly daring to look for alternative methods to

optimize costs and find the most efficient and effective neural

network architecture in order to solve their research problem.
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Today, the most popular options for NAS are methods based

on reinforcement learning [2] (including one-shot methods)

[5], evolutionary computing (including multiobjective search),

Bayesian optimization [6], and hill-climbing [7].

In article [4], the authors defined NAS as a system com-

posed of three primary elements: search space, search algo-

rithm, and evolutionary strategy.

• Search space - outlines a group of operations, such as

convolution, pooling, and fully connected layers, and de-

termines how these operations can be combined to create

valid network architectures. Developing the search space

often involves human expertise, inevitably introducing

biases.

• Search algorithm - selects a group of candidates for

network architecture and tests their performance. It re-

ceives child model performance metrics, such as accuracy

and low latency, as rewards and utilizes this information

to optimize and produce high-performance architecture

candidates. As the possible search algorithms for NAS,

one can name, e.g., algorithms like Random Search,

Reinforcement Learning, and Bayesian Optimization.

• Evaluation strategy - in order to provide feedback for

the search algorithm to learn, we must evaluate the

performance of numerous proposed child models through

measurement, estimation, or prediction. This process of

evaluating candidates can be quite costly, prompting

the proposal of various new methods to conserve time

and computing resources. For these strategies, we can

include proxy task performance, low-fidelity performance

estimation, weight inheritance, weight sharing, learning

curve extrapolation, and network morphism. [8], [9]

Based on the above definition of NAS we can define the

NAS using Evolutionary Computation (EC) as a task of ex-

ploring architectures search space by generating and evaluating

a population of candidate architectures and then evolving this

population over multiple generations to find better-performing

architectures. As we mentioned, ECs are one of the methods

used to realize NAS, but the most promising results were

achieved recently using the following approaches:

• NAS-EA-FA [10] - evolutionary algorithm based on the

fitness approximation to the search for neural architecture.

It is designed to accelerate the search process.

• EF-ENAS [11] - evolutionary neural architecture search

algorithm based on evaluation corrections and fitness

sharing. It is designed to improve the efficiency and

effectiveness of the search process.

for a more extensive survey of evolutionary NAS one can

refer to [8], [9].

A. Neural Architecture Search for GNNs

Remarkably, the field of NAS within GNNs remains rel-

atively unexplored. Notable exceptions include GraphNAS

[12]–[14], which uses RL to identify architectures for node

classification tasks. The search space defined by GraphNAS

includes sampling, aggregation, and gated functions, demon-

strating its efficacy in the realm of GNNs. Auto-GNN [15]

follows suit by adopting RL and a comparable search space.

SNAG framework (Simplified Neural Architecture Search for

Graph Neural Networks [16]) addresses drawbacks in existing

neural architecture search (NAS) methods, such as GraphNAS

and Auto-GNN, by introducing an innovative search space and

a reinforcement learning-based search algorithm, as demon-

strated through extensive experiments on real-world datasets.

Another novel approach to NAS for GNN is Scalable

Graph Neural Architecture Paradigm [17] representing a novel

paradigm introduced in the paper ”PaSca.” It serves as a

systematic approach to construct and explore the design space

for scalable Graph Neural Networks (GNNs), aiming to ad-

dress the scalability challenges inherent in traditional GNNs

designed based on the neural message passing mechanism.

SGAP is presented as a key element of the PaSca system,

offering a principled framework for designing GNNs that

can efficiently handle larger datasets and message passing

steps, thus enhancing overall scalability. Neural Architecture

Coding (NAC) [18] is a Neural Architecture Search (NAS)

method for Graph Neural Networks (GNNs) that addresses

computational cost and optimization challenges. It utilizes a

sparse coding objective to find optimal architecture parame-

ters without weight updates after random initialization. NAC

claims linear-time efficiency, and empirical evaluations on

GNN benchmark datasets show that it outperforms strong

baselines. The method’s strength lies in leveraging the ex-

pressive power of GNNs with randomly-initialized weights for

efficient architecture discovery.

[19] Automated Graph Neural Network(Auto-HeG) on

Heterophilic Graphs addresses the limitations of existing graph

neural architecture search (NAS) methods, which primarily

focus on the homophily assumption and neglect heterophily,

a crucial graph property in real-world applications. Auto-HeG

aims to automatically design powerful graph neural networks

with expressive learning abilities for heterophilic graphs, in-

corporating heterophily into various stages of the automatic

heterophilic graph learning process. This includes aspects such

as search space design, supernet training, and architecture

selection, using a diverse message-passing scheme, progressive

supernet training, and a heterophily-aware distance criterion

to derive specialized and expressive heterophilic GNN archi-

tectures. The proposed method demonstrates its superiority

through extensive experiments, showcasing its effectiveness

compared to human-designed models and existing graph NAS

models.

Auto-GNAS (Automatic Graph Neural Architecture Search)

[20] addresses the challenge of constructing effective graph

neural networks (GNNs) for non-euclidean data by automating

the search for optimal GNN architectures. Unlike traditional

methods that evaluate architectures serially, Auto-GNAS em-

ploys parallel evaluation, utilizing multiple genetic searchers

simultaneously. These searchers use evaluation feedback, in-

formation entropy, and results from other searchers through a

sharing mechanism to enhance efficiency. Auto-GNAS demon-

strates competitive model performance and improved search

efficiency compared to other algorithms, marking the first
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instance of using parallel computing to improve the system

efficiency of graph neural architecture search. Our approach

allows for a quick and simple (computationally inexpensive)

way to limit the spatial hyperparameters of a graph neural

network.

III. EVOLUTIONARY ALGORITHM FOR DESIGNING GCN

Genetic Algorithm (GA) is part of the evolutionary algo-

rithm family, inspired by natural selection and genetics. The

exploration space is a crucial element in all GAs, represented

as strings called chromosomes or individuals. A population

comprises a collection of such strings. Each chromosome

consists of a sequence of genes encoding a solution to a target

problem. Initially, a diverse population of random individuals

is created to represent various potential solutions for the

target problem. Each individual is assigned a fitness value that

indicates its quality within the population.

During the evaluation step, the fitness of each individual

is calculated. The selection step involves choosing certain

individuals from the entire population as parents for mating.

In the cross-step, parents exchange information, such as swap-

ping genes, to generate new individuals and form the next

generations. The mutation step introduces diversity into the

population by randomly altering a gene in new individuals

based on the probability of mutation. Finally, the population

is updated by incorporating new individuals.

In this approach, the individual is a single representation of a

graph convolutional network with a random configuration that

allows it to compile and run successfully on selected datasets.

The genetic algorithm used in research is the mutation and

cross-over operators. Mutation involves randomly selecting a

new gene value from a uniform distribution within the range

of values available for that gene. The crossover function takes

a list of parents as an argument, from which it randomly

selects two individuals. Each individual then contributes one

part of his genes (complementary to the part contributed by

the other individual). Subsequently, a mutation is introduced

to the obtained gene. The random selection process is re-

peated until the specified population size is achieved. The

algorithm dynamically adjusts the number of layers based

on the specified num_layers parameter for each agent

(more params of individuals are described in Tables ?? and I,

providing adaptability in the neural network architecture for

each agent in the deep_GCN class involves iterating over the

specified number of layers (num_layers). For every layer,

the algorithm determines the specific parameters (described in

TableI).

A. Fitness

In our approach, fitness_value serves as a measure

of the classifier quality that you aim to minimize. It is the

sum of squared F1 errors for each class. The F1 scores

for individual classes are numerical metrics that represent

the classification quality of each class. This considers both

precision and recall for a given class, making them more

informative than accurate, especially in the context of unbal-

anced data sets. fitness_value is the sum of squared F1

errors across all classes. This approach provides an overall

assessment of the quality of the classifier in multiple classes.

Squaring the F1 error emphasizes larger errors, i.e., greater

deviations from the ideal F1 score. The goal is to minimize

fitness_value. Minimizing this value implies an effort to

enhance the classifier’s quality for all classes simultaneously,

offering a more balanced objective than merely maximizing

accuracy. Evaluating the classification quality for each class

individually allows the identification and improvement of areas

where the classifier may perform suboptimally.

In summary, the fitness_value-based approach con-

siders more nuanced aspects of classification quality, taking

into account both false positives and false negatives, as well

as precision and recall. This is a more balanced approach than

relying solely on accuracy, especially in scenarios involving

imbalanced datasets or multiclass classification.

B. Search space

In this section, we delve into the details of the search space

employed in our approach, elucidating the ranges of various

parameters within it. The search space is a crucial aspect of

our methodology, and in Table I, we provide a comprehensive

overview of the hyperparameter ranges relevant to the training

of neural networks. It is essential to note that these ranges

remain consistent across all datasets, ensuring a standardized

approach to model optimization.

However, the uniqueness of each dataset requires specific

considerations for certain parameters, particularly Hidden

Channels and Batch Size, as explained in Table ??. For Hidden

Channels, the range is dynamically defined as range from 10

to the number of features within the dataset. This adaptability

reflects the intrinsic characteristics of the data and aims to

optimize the model architecture accordingly. Similarly, for the

batch size parameter, the range ranges from a minimum of 10

to the total count of all training masks present in the dataset,

as detailed in Table II.

To provide a concise reference, Table I encapsulates the

overarching hyperparameter ranges for training neural net-

works, emphasizing their uniform applicability across diverse

datasets. The following table ?? then details the data set-

specific nuances, delineating the distinct ranges for Hidden

Channels and Batch Size. This approach ensures that our

search space is not only comprehensive but also adaptive to

the intricacies of individual datasets, fostering effective model

optimization.

IV. EXPERIMENTAL SETTINGS

A. Datasets

In Table II, we provide a comprehensive overview of the

key parameters associated with the datasets utilized in our

experimental efforts. Brief characteristics of each dataset are

described below.

• Planetoid Datasets, including Cora, CiteSeer, and

PubMed, are widely used in graph-based learning tasks.
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TABLE I: Neural Network Hyperparameter Ranges

Parameter Range

Epochs 100

Learning Rate From 0.0001 to 0.1

Weight Decay From 0.0001 to 0.1

Layers From 1 to 10

Optimizers

Adadelta, Adagrad, Adam,

AdamW, Adamax, ASGD, NAdam, RAdam, RMSprop,

Rprop, SGD, QHM, QHAdam, PSO, A2GradExp,

A2GradInc, A2GradUni, AccSGD, AdaBelief, AdaBound, AdaMod,

Adafactor, Adahessian, AdamP, AggMo, Apollo, DiffGrad,

Lamb, MADGRAD, NovoGrad, PID, Ranger, RangerQH,

RangerVA, SGDP, SGDW, SWATS, Shampoo, Yogi

Loss Function

CrossEntropy, NLLLoss,

MultiMarginLoss,

MultiLabelMarginLoss,

SmoothL1Loss

They feature academic citation networks where nodes

represent documents, and edges denote citations.

• WikipediaNetwork Datasets, comprising Squirrel and

Chameleon, focus on analyzing relationships within

Wikipedia. For example, Squirrel captures the network

structure of Wikipedia articles, enabling researchers to

explore connections and interactions between different

topics.

• WebKB Datasets, such as Cornell, Texas, and Wis-

consin, are tailored for web page classification. These

datasets encompass web pages from university domains

and are labeled with categories such as student, faculty,

project, and course. They serve as benchmarks for text

classification and information retrieval tasks.

• Actor Dataset is commonly utilized in social network

analysis, representing a network of actors and their col-

laborations in movies or television shows. The nodes cor-

respond to actors, and the edges represent collaborations

in specific projects.

The selection of these datasets is grounded in their preva-

lence in academic research and practical applications. Re-

searchers and practitioners often turn to these datasets as

benchmarks due to their well-defined structures, facilitating the

rigorous evaluation of diverse graph-based machine learning

algorithms.

B. Computational Settings

We have defined a computational budget for our evolution-

ary algorithm with the following specifications:

• 300 generations

• 100 training epochs

• 10 initial populations (random)

• whole population is 20

• mutation rate is 0.3

The search space is 8-dimensional, denoted as batch

size,hidden channels, learning rate, weight decay, num

layer, optimizer, loss function. In particular, the epoch

number is held constant throughout the exploration. Using

the previously defined fitness value enables us to conduct

innovative research within this fixed dimensionality.

V. RESULTS

We observed the mean fitness and accuracy for each gener-

ation and, for better visualization, we also tracked the best

fitness and best accuracy achieved throughout the

evolutionary process. While analysing the results enclosed in

Table II and III, it can be noticed that minimizing the cost

in multi-class classification problems is more complex than in

the case of binary classification, which can also be observed

in our case - the more complex the dataset, the potentially

more difficult it is to prepare a model that will allow for the

correct classification of all nodes from high effectiveness. Our

research shows that using only GCN is not an ideal solution

for datasets such as Actor, Squirrel or Chameleon, which are

more complex datasets, e.g. heterophily ratio, characterized by

more Nodes, average node Degree, or Node Features (in Table

II) the less accurate the classification, which can be observed

in the table.

In Table III, we present the optimal genes, which represent

the best solutions obtained through optimization using the

genetic algorithm.

These adjustments ensure that the experimental parameters

adhere to the requirement of being integer values. Although

presented in the table as floating values for clarity, they are

effectively treated as integers during the genetic algorithm

optimization process. This approach maintains consistency and

allows for a meaningful and applicable exploration of the

solution space.

Analysis of the experimental results reveals key patterns

in hyperparameter configurations for Graph Convolutional

Networks (GCN) across various datasets (presented in III.

The most prevalent configuration associated with optimal

performance includes the Adamax optimizer, the cross-entropy

loss function, and 1 to 3 layers of GCN. In particular, con-

figurations with a single or two layers of GCN emerged more

frequently, suggesting their effectiveness in achieving high

fitness values and classification accuracy. These findings offer

practical guidance for researchers and practitioners seeking

robust hyperparameter choices for GCN models [21], [22] for

Node Classification.
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TABLE II: Dataset Characteristics

Parameter Wisconsin Actor Texas Squirrel PubMed Cornell Cora CiteSeer Chameleon

Nodes 251 7600 183 5201 19717 183 2708 3327 2277
Edges 515 30019 325 217073 88648 298 10556 9104 36101
Avg. Node Degree 2.05 3.95 1.78 41.74 4.50 1.63 3.90 2.74 15.85
Training Nodes 1200 36480 870 24960 60 870 140 120 10920
Isolated Nodes False False False False False False False True False
Self-Loops True True True True False True False False True
Is Undirected False False False False True False True True False
Features 1703 932 1703 2089 500 1703 1433 3703 2325
Classes 5 5 5 5 3 5 7 6 5
Node Features 1703 932 1703 2089 500 1703 1433 3703 2325
Homophily ratio (h) 0.21 0.22 0.11 0.22 0.8 0.3 0.81 0.74 0.23

TABLE III: Best results achieved for each dataset

Param Wisconsin Texas Squirrel PubMed Cornell Cora CiteSeer Chameleon Actor

Batch Size 630 500 837 280 210 605 358 509 87
Hidden Channels 267 1633 1384 338 348 1245 230 623 1647
Epochs 100 100 100 100 100 100 100 100 100
Learning Rate 0.0087 0.0118 0.0143 0.0848 0.0073 0.0022 0.0054 0.0826 0.0674
Weight Decay 0.0312 0.0023 0.0169 0.0019 0.0011 0.0009 0.0083 0.0039 0.0151
Layers 1 1 1 3 2 4 2 4 1
Loss Function SmoothL1Loss Cross Entropy Cross Entropy Cross Entropy Cross Entropy Cross Entropy Cross Entropy Cross Entropy Cross Entropy
Optimizer Adam NAdam Adadelta Adam Adadelta Adadelta PSO Adam Adagrad

Minimum Fitness 1.4624 1.7088 1.6277 0.3627 1.4322 0.4845 0.8082 1.2427 1.6963
Accuracy 0.5882 0.6486 0.3121 0.7960 0.5135 0.8290 0.7320 0.4496 0.2539

It is surprising that NAdam and QHAdam [23] along with

Particle Swarm Optimization [24] are algorithms that have

achieved high Accuracy values and low fitness. Moreover, the

dominance of Adagrad over the most popular Adam is note-

worthy. Due to fewer options for loss functions, Categorical

Cross Entropy dominates here and possibly achieves better

results for other loss functions, which are not included in our

research. We compare our methods with baselines methods

[25], [26], which are presented in Table IV.

Based on the results presented above in Table IV, we

observe that the results achieved for GCN based on the most

popular implementation of GCN [26] are very close to the best

accuracy. Our solution enhances the standard GCN models,

though it does not quite reach the level of the most advanced

ones [27], [28]. Nevertheless, it can serve as an inspiring

starting point for future research in this field. Homophily

ratio [29] in datasets with high values (Actor, Wisconsin,

Squrrel) refers to the tendency of nodes with similar features or

attributes to be more likely connected to each other. In datasets

with a high homophily ratio (CiteSeer, Cora, PubMed), the

relationships between similar nodes become more pronounced,

potentially improving classification performance in tasks that

rely on node similarities.

VI. CONLUSIONS

In the last few years, studies on designing Artificial Neu-

ral Networks (ANNs) have become an active research field,

mainly due to the advanced cost training and prototyping of

underlying deep learning architectures. The proposed study

focuses on developing the first stage of a method for the

design and optimization of graph-convolutional neural net-

works.Our method enables avoiding mindless reliance on

closed-box approaches, where one often waits for the final

outcome without considering what transpires throughout the

entire process. Assuming that the parameter search space of a

graph convolutional neural network is multidimensional (each

dimension defined by a network parameter), we conclude that

by increasing the number of dimensions and their size, such

as utilizing various types of layers (not just GCNConv, as in

our study, but also GATConv, GIN, SGCNN etc.), we can

construct the best possible neural network. This is achieved

without the need to specify in advance whether our network

should be GCN or GAT-based. Our study provides answers

that GCN is not always the ideal solution. By extending our

proposed mechanism, we can achieve an ideal architecture for

solving a specific node classification problem as a result, our

method allows for flexibility and adaptation to the specific re-

quirements of a given situation.Plans for this research include

the research of another search optimization framework based

on Genetic Programming (including Cartesian Genetic Pro-

gramming, the utility of which was previously demonstrated

by designing CNNs [30]), Evolutionary Strategies, and Bio-

Inspired optimization methods [31]. This approach will allow

greater flexibility in designing and optimizing not only graph

coefficient neural networks but all available Graph Neural

Networks (GAT, GIN, Graph Transformer etc.). We anticipate

that the results of this study might be useful to researchers

in the field of Neural Architecture Search because the results

obtained in the experiment are very promising.
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TABLE IV: Comparison of accuracy of our approaches with state-of-the-art methods and GNN baselines, and performance of

different models on various datasets

Method Wisconsin Texas Squirrel PubMed Cornell Cora CiteSeer Chameleon Actor

GCN [26] 45.88 52.16 23.96 88.13 52.70 85.77 73.68 28.18 26.86
GAT [25] 49.41 58.38 30.03 87.62 54.32 86.37 74.32 42.93 28.45
Geom-GCN-P [27] 64.12 67.57 38.14 88.09 60.81 84.93 75.14 60.90 31.63
GGCN [28] 86.86 84.86 55.17 89.15 85.68 87.95 77.14 71.14 37.54

Our 58.82 64.86 31.21 79.60 51.35 82.90 73.20 44.96 25.39
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