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Bogotá, Colombia

Email: mauricio.restrepo@unimilitar.edu.co

Abstract—Rough set theory provides a robust framework for
dealing with inconsistent data by utilizing equivalence relations
to group indiscernible instances. A significant extension of this
framework is the concept of covering-based rough sets, where
equivalence relations are replaced with coverings. The effective-
ness of covering-based rough sets in practical applications largely
depends on the choice of an appropriate covering. To guide this
selection, various metrics have been proposed to evaluate the
quality of coverings, including entropy. While entropy serves as
a valuable measure, its exact computation is often prohibitively
expensive. In this paper, we propose an efficient method for
estimating the entropy of covering-based rough set approximation
operators, making the metric more feasible for practical use. We
assess the accuracy of these estimates through experiments on
both synthetic coverings and coverings for real-world datasets,
the latter constructed using the Mapper algorithm, from the field
of topological data analysis.

I. INTRODUCTION

IN 1982 Pawlak introduced rough set theory as a framework

to handle possibly inconsistent data [1]. Rough set theory

revolves around the notion of an information system: a couple

(U,A), where U is a universe of instances (objects, data sam-

ples) and A is a set of attributes for which these instances take

values. The setA naturally gives rise to an equivalence relation

E on U , by partitioning U into equivalence classes that have

the same values for all the attributes in A. Instances in each

equivalence class are called indiscernible. Rough set theory

then proceeds to provide lower and upper approximations of

concepts that are represented by a set A ⊆ U . The lower

approximation is the union of all equivalence classes that

are contained entirely within A. This can be viewed as the

set of instances that certainly belong to A (every instance in

the lower approximation is only indiscernible to elements of

A). The upper approximation is the union of all equivalence

classes that have non-empty intersection with A. Semantically

this is the set of instances that possibly belong to U (every

instance in the upper approximation is indiscernible with an

element in A). Sets A ⊆ U for which the lower approximation

and upper approximation equal A itself are called consistent,

or exact. It can be verified that the lower approximation is the

largest consistent subset of A, while the upper approximation

is the smallest consistent set that includes A.

Various researchers have proposed generalizations of clas-

sical rough sets by replacing the equivalence relation with a

covering of U [2, 3, 4], resulting in a more flexible framework.

Recall that a covering of U is any collection of subsets of U
whose union is equal to U . By contrast to a partition, elements

of a covering are allowed to overlap. This is useful in various

situations, for example:

• handling missing data [5]: when the value of an instance

for an attribute is unknown, it is considered indiscernible

from any other (known or unknown) value.

• tolerance-based rough sets [6]: when dealing with numer-

ical data, two objects are often considered indiscernible

when their distance is lower than a given threshold.

Clearly, such indiscernibility relations are no longer transitive.

These covering-based rough sets have been studied extensively

from a theoretical perspective ([7, 8, 9, 10]) and used in

many applications, in particular concerning attribute reduc-

tion [11, 12, 13]. However, selecting the right covering for

an application can be hard because there may be multiple

important factors to consider. One such factor is the granularity

of the covering. This measures how fine the covering is and

how detailed the rough set approximations are; it can also be

interpreted as the amount of information that remains when

the approximation operators are executed. To find coverings

that have a certain granularity, the concept of entropy (which

was originally introduced as a measure of information content)

was extended to rough set approximations in [14]. Many

applications in rough set theory use the notion of entropy

[15, 16]. However, when it comes to covering-based rough set

theory, it is computationally very expensive to calculate this

naively since it takes into account all of the possible subsets

of the universe U . For this reason, we propose an efficient

way to estimate the entropy.

In [17] a promising method to generate coverings of datasets

using the Mapper algorithm from the field of topological

data analysis [18] was introduced. We use these coverings

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 195–205

DOI: 10.15439/2025F0110
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 195 Topical area: Advanced Artificial
Intelligence in Applications



to evaluate the convergence of our estimates. We choose this

method because it produces coverings that closely resemble

the original dataset topologically. Moreover, one can easily

control several aspects of the coverings, such as the number

of subsets in the covering, and the amount of overlap between

them.

The remainder of this paper is structured as follows. We

first recall the concepts of covering-based rough sets and

entropy in Sections 2 and 3. Then, in Section 4, we outline a

method to estimate the entropy of a given covering using the

so-called strong granule-based approximations from covering-

based rough set theory. To obtain the estimation, we first

consider the method from [19] which allows us to estimate the

entropy of any probability distribution. However, we observe

that it is restrictively slow for our purposes. Therefore, we

adapt this method using some properties of covering-based

rough sets to find better estimates that are calculated more

quickly. In Section 5, we evaluate the convergence of our

estimates experimentally on a number of synthetic and bench-

mark datasets. Finally, in Section 6, we give a discussion and

introduce some ideas for future exploration.

II. COVERING-BASED ROUGH SETS

When working with real-world classification problems, in-

consistencies often occur in datasets; intuitively, this happens

when two instances are indiscernible but belong to different

classes. Pawlak introduced rough sets in 1982 to handle such

inconsistencies [1]. In Pawlak’s seminal work, an approxi-

mation space is defined as an ordered pair (U,E), where E
is an equivalence relation that groups indiscernible instances

together over the universe U . Based on this setup, the lower

and upper approximations of a set can be described in several

equivalent ways. In this paper, we adopt the granule-based

approach:

apr(A) = {[x]E ∈ U/E | [x]E ⊆ A}

apr(A) = {[x]E ∈ U/E | [x]E ∩A ̸= ∅}

For a subset A of U , its rough set approximation is represented

as the pair (apr(A), apr(A)). These approximation operators

are dual in the sense that apr(A) = apr(Ac)c, where c refers

to the classical set complement. These approximations have

been used in many applications ranging from classification

[20] (especially rule extraction [21, 22]) to feature selection

[23, 24, 25].

Classical rough set theory often struggles with continuous

features, as the indiscernibility relation may no longer satisfy

the properties of an equivalence relation. To overcome this

limitation, various generalizations of classical rough sets have

been proposed. One such generalization are covering-based

rough sets, which replace the partition given by the indis-

cernibility relation with a covering. This defines a covering

approximation space: an ordered pair (U,C), where C is

a covering of U , that is, a collection of subsets whose

union equals U . While it is tempting to generalize Pawlak’s

definitions by replacing the equivalence classes [x]E ∈ U/E
with elements K ∈ C, this substitution does not preserve the

duality between the approximations. To address this, Yao [2]

introduced two dual pairs of granule-based approximations for

covering approximation spaces.

apr′
C
(A) =

⋃

{K ∈ C : K ⊆ A} (1)

apr′C(A) = apr′
C
(Ac)c (2)

apr′′
C
(A) = apr′′C(A

c)c (3)

apr′′C(A) =
⋃

{K ∈ C | K ∩A ̸= ∅} (4)

Equations (1) and (2) are called the strong approximation

operators, while Equations (3) and (4) are referred to as the

weak approximations. The rationale behind this terminology

is explained by the following property:

apr′′
C
(A) ⊆ apr′

C
(A) ⊆ A ⊆ apr′C(A) ⊆ apr′′C(A)

Example 1. Let U = {x1, . . . , x9} be a

universe which has the following covering, C =
{{x0, x1}, {x1, x2}, {x2, x5}, {x3, x4, x7}, {x6, x7, x8, x9}}
and A = {x1, x2, x3, x4, x5}. A has the following

approximations:

apr′
C
(A) = {x1, x2, x5}

apr′C(A) = {x0, x1, x2, x3, x4, x5}

apr′′
C
(A) = {x2, x5}

apr′′C(A) = {x0, x1, x2, x3, x4, x5, x7}

Generating suitable coverings for a particular application is

an important but challenging task. To assist with this process,

we associate an ordering to the set of all coverings.

Definition 1. [9] Let C and C′ be two coverings of U . C≪ C′

if and only if for all L ∈ C′ there exists a set S ⊆ C such

that L = ∪K∈SK. When C≪ C′, we also say that C is finer

than C′.

We have the following proposition [9]:

Proposition 1. Let C and C′ be coverings of U . Then

apr′
C′(A) ⊆ apr′

C
(A) ⊆ A ⊆ apr′C(A) ⊆ apr′C′(A) for

all A ⊆ U , if and only if C≪ C′.

Example 2. To illustrate the previous propo-

sition we continue Example 1. Let C′ =
{{x0, x1, x2}, {x2, x5}, {x3, x4, x6, x7, x8, x9}}. Then

we clearly have that C ≪ C′. If we now recalculate the

approximations of A, using C, we get:

apr′
C′(A) = {x2, x5}

apr′C′(A) = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9}

In [17] a promising new method was introduced to generate

coverings for classification problems, using the Mapper algo-

rithm that originated in the field of topological data analysis

(TDA). It generates coverings of a universe U , as shown

in Algorithm 1, which generally represent the topological

structure of the dataset and are therefore useful for our

purposes. The algorithm uses a lens function f : U → Rd, an

input covering I of f(U), and a clustering algorithm. Often
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the lens function is chosen to be a projection on particular

attributes or PCA components. The input covering I is in

practice constructed using a number of (hyper-)cubes among

each dimension in Rd, such that consecutive cubes have a

certain overlap percentage p.

Mapper proceeds in the following way: the lens function

transforms the original dataset U to the lower-dimensional

space f(U), on which the covering I is defined. Then, for each

I inside the input covering, the instances from U projected

onto it by f (i.e., f−1(I)) are partitioned by means of

a clustering algorithm, another parameter of the algorithm.

These clusters form the resulting covering.

In [26] we proved the following result which holds when the

clustering algorithm is equal to the single-linkage clustering

algorithm [27] (shown in Algorithm 2).

Proposition 2. Let U be a dataset, f : U → Rn. Let K
denote the single linkage clustering algorithm. Let I and I′ be

coverings of f(U), and let CI,ε and CI′,ε′ denote the coverings

generated by the Mapper algorithm using lens function f ,

the single linkage algorithm with parameters ε and ε′ and

coverings I and I′. If I≪ I′ and ε ≤ ε′, then CI,ε ≪ CI′,ε′ .

Algorithm 1: The Mapper algorithm

Input: a dataset U with an associated metric, a lens

function f : U → R (or Rm), a covering

I = {Ij | j = 1, . . . n} of f(U), and a

clustering algorithm cl on U .

for j ∈ {1, 2, . . . , n} do

Aj = {Aj1, . . . , Ajk | i = 1, . . . k} ← cl(f−1(Ij));
end

Result: ∪Aj

Algorithm 2: The Single Linkage algorithm

Input: a dataset U , with an associated metric d and a

real number ε > 0
Construct a graph Gε, with U as vertices and an edge

between x and y when d(x, y) ≤ ε. ;

{A1, . . . , Ak} ← The connected components of Gε;

Result: {A1, . . . , Ak}

III. ENTROPY

In order to be able to control the fineness of the constructed

coverings, we require a measure that reflects granularity. A

suitable candidate for this is entropy, which is classically

defined for probability distributions:

Definition 2. [28] Let Pr be a probability distribution over a

finite universe U . The entropy of Pr is defined as:

H(Pr) := −
∑

x∈U

Pr(x) log Pr(x)

This definition can be naturally adjusted to partitions:

Definition 3. [19] Let π = {A1, . . . , Ak} be a partition of U .

We define the entropy of π as:

H(π) := −
k

∑

i=1

|Ai|

|U |
log
|Ai|

|U |
.

The entropy indeed reflects the fineness of a partition. When

every element resides in its own equivalence class, the entropy

is maximal and equal to log |U |. When there is only one

equivalence class, the entropy is minimal and equal to 0.

We also have the following property:

Proposition 3. [14] Let π ≪ π′ be two partitions of U , then

H(π) ≥ H(π′).

Since we work with coverings instead of partitions, Def-

inition 3 is not directly applicable. Instead, we adopt the

proposal from [14] that computes the entropy associated with

an arbitrary pair of covering-based approximation operators.

Definition 4. [14]

• Let (apr, apr) be a pair of covering-based approxi-

mation operators over a finite universe U . We define

Πapr
apr as the set of equivalence classes of P(U) of the

equivalence relation A ≈ B ⇔ (apr(A), apr(A)) =
(apr(B), apr(B)).

• We define the entropy of (apr, apr) as follows:

Hapr
apr = H(Πapr

apr)

Again we observe that a high entropy occurs when approxi-

mation operators are very fine and a low entropy occurs when

approximation operators are very rough. When we have for all

A ⊆ U that (apr(A), apr(A)) = (A,A) (the approximation

operator is maximally fine), the size of each class in Πapr
apr is

equal to 1 and thus the entropy reaches its the maximal value,

|U |. When an approximation operator is maximally rough, i.e.

(apr(A), apr(A)) = (∅, U) for all A, Πapr
apr is equal to {U}

and thus the entropy is minimal and equal to 0.

Example 3. Let U = {x1, . . . , xn} and C =
{{xi, xi+1} | 1 ≤ i < n}.

We calculate the entropy of the strong approximations by

first constructing Π
apr′

C

apr′
C

.

Let ≈ be the equivalence relation corresponding to Π
apr′

C

apr′
C

.

Then A ≈ B if either A = B or A and B are equal to

{xi | 1 ≤ i ≤ n and i ≡ 0 (mod 2)} and {xi | 1 ≤ i ≤
n and i ≡ 1 (mod 2)}.

To see this, first note that

apr′
C
(A) = {xi | xi ∈ A and (xi−1 ∈ A or xi+1 ∈ A)}

apr′C(A) = {xi | xi ∈ A or (xi−1 ∈ A and xi+1 ∈ A)}

Suppose that A ̸= B but A ≈ B. Let i be an integer such

that xi ∈ A and xi /∈ B. Since xi ∈ apr′C(A), xi+1 ∈ B and

xi−1 ∈ B. Since xi /∈ apr′
C
(B), xi−1 /∈ A and xi+1 /∈ A.

We can repeat the same procedure for xi−1 and xi+1 and in

the end we conclude that A and B have the requested shape.
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Thus, Π
apr′

C

apr′
C

has one equivalence class of size two and all

other classes have size one. We can now calculate the entropy:

H
apr′

C

apr′
C

=
− log 2−n+1

2n−1
−

2n−2
∑

i=1

1

2n
log

1

2n

=
n− 1

2n−1
+

(2n − 2)n

2n

=
2n− 2 + n2n − 2n

2n

= n−
1

2n−1

We also prove that entropy increases monotonically with

increasing fineness in coverings. This is useful because, as

mentioned in Proposition 2, we are able to construct chains

of coverings under ≪. Therefore, we may exploit this mono-

tonicity to guide the search for coverings that possess a certain

entropy.

Proposition 4. Let C ≪ C′ be coverings of U . If

(apr′
C
(A), apr′C(A)) = (apr′

C
(B), apr′C(B)) then also

(apr′
C′(A), apr′C′(A)) = (apr′

C′(B), apr′C′(B)).

Proof. First assume apr′
C
(A) = apr′

C
(B). We now have for

every K ∈ C that K ⊆ A if and only if K ⊆ B. Assume

by contradiction that apr′
C′(A) ̸= apr′

C′(B) then (w.l.o.g.)

there exists a K ∈ C′ such that K ⊆ A but K ⊈ B. Because

C≪ C′ we have that K = ∪L∈SL for some S ⊆ C. However,

for all L ∈ S, it holds that L ⊆ A and thus L ⊆ B. This is a

contradiction. Thus, apr′
C′(A) = apr′

C′(B).
Because of the duality of the strong approximation operator,

also apr′C′(A) = apr′C′(B).

This implies the following theorem:

Theorem 1. Let C≪ C′ be coverings of a universe U , then

H
apr′

C

apr′
C

≥ H
apr′

C′

apr′
C′

.

Proof. This follows from Proposition 4 and Proposition 3.

There does not exist a similar result establishing mono-

tonicity between the weak granule-based approximations and

entropy. Because of this, we only consider the strong approx-

imations in the remainder of this paper.

IV. ESTIMATING ENTROPY

Since our definition of entropy takes into account all subsets

of U , it is computationally expensive to calculate its exact

value. Because of this, we will estimate the value of the

entropy. It is well-known that there is no unbiased estimator

for the entropy of a probability distribution when there is

no external knowledge about the probability distribution [29].

There exist, however, some good estimators that do not depend

on external knowledge. We will also use our knowledge about

covering-based rough sets to estimate and determine the exact

size of certain equivalence classes of Πapr
apr, which will lead to

an unbiased estimator anyway.

We proceed in the following way: Let Y equal the multiset

{− |Ai|
2|U| log

|Ai|
2|U| | Ai ∈ Πapr

apr}. Estimating the entropy is then

equivalent to estimating the sum of Y .

Inspired by [19] and [30], we do this using the

Horvitz–Thompson estimator [31]. This estimator is unbiased

and counts the sum of all elements yi in a universe Y by

sampling a set S from Y without replacement. The estimator

is equal to
∑

yi∈S

yi
Pr(yi ∈ S)

,

where Pr(yi ∈ S) is the probability of a sample yi belonging

to S. However, this estimator is only unbiased if we know the

size of each Ai exactly.

We proceed as follows: first, we generate n random subsets

{B1, . . . , Bn} of U . Let M be the set of approximations

{(apr′
C
(Bi), apr′C(Bi)) | 1 ≤ i ≤ n}. We observe that the

probability of Bi belonging to a certain equivalence class Al

of Πapr
apr is equal to the proportion of the size of the equivalence

class to the number of possible subsets:
|Al|
2|U| .

We define pk = |Ak|
2|U| for every 1 ≤ k ≤ |M | (note that

|M | ≤ n), where Ak = {B ⊆ U | (apr′
C
(B), apr′C(B)) =

(Ak, Ak)}, and (Ak, Ak) is the k-th element of M . The

probability of not generating a set from Ak is equal to

(1 − pk)
n and thus the probability of generating a set inside

Ak is equal to 1 − (1 − pk)
n. Therefore, the result from the

Horvitz-Thomson estimator is:

Ĥ
apr′

C

apr′
C

= −
∑

k

pk log pk
1− (1− pk)n

(5)

We also have an estimator for the variance of the Horvitz-

Thomson estimator [31]:

V̂
(

Ĥ
apr′

C

apr′
C

)

=
(

Ĥ
apr′

C

apr′
C

)2

−
∑

k

(pk log pk)
2

1− (1− pk)n

−
∑

k ̸=j

(pk log pk)(pj log pj)

1− (1− pk)n − (1− pj)n + (1− pk − pj)n
(6)

When we have exact values for pk available, both of these

estimators are unbiased [31] and can thus be used to estimate

the entropy and the corresponding confidence interval. A

new problem presents itself: determining pk. We can do this

by empirically estimating pk (Section IV-A) or we can use

properties of the covering itself to determine it exactly (Section

IV-B).

A. Coverage-adjusted estimator

The coverage-adjusted estimator was introduced in [19] and

uses the Horvitz-Thomson estimator to estimate the entropy

of a probability distribution. According to the observations

of the authors of [19], the most intuitive way to estimate pk
empirically is by letting p̂k equal the number of generated sets

Bi that have (Ak, Ak) as their approximations divided by n.

However, they introduced a more useful approximation, where
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the estimator converges faster to the true value of the entropy.

Here Ĉ = 1 − f1
n , where f1 equals the number of approxi-

mations (Ak, Ak) such that there is only one Bi which has

(Ak, Ak) as its approximation. We will call approximations

which are reached more than once collisions. We now define

p̂k =
Ĉ

n
|{Bi | (apr

′
C
(Bi), apr′C(Bi)) = (Ak, Ak)}| (7)

This estimation of entropy based on Equation (5) and Equa-

tion (7) is called the coverage-adjusted estimator. It converges

to the true value of entropy as follows. Let Ĥ be the coverage-

adjusted entropy estimate of H generated using n samples. We

now have that |Ĥ − H| = O(1/ log(n)) [19]

The main downside of this estimator is that we need to

choose a large enough n to ensure that there is an approxima-

tion (Ak, Ak) that is reached at least twice. When there are

no such sets, Ĉ = 0 and thus all pk = 0 which will lead to

an entropy of 0 (convention states that 0 log 0 = 0). When the

entropy is high this often means that n needs to be unfeasibly

large. When the entropy is equal to e, we expect this to happen

on average after generating O(2e/2) sets [32]. To mitigate

this problem, the authors of [19] replaced the definition of

Ĉ with 1− f1
n+1 . Now Ĉ is never equal to 0 and still has the

same asymptotic behavior. However, when the true value of

the entropy is too high, this can still cause problems. When no

collisions occur the coverage-adjusted estimator is equal to:

Ĥ = −
n
∑

i=1

Ĉ/n log(Ĉ/n)

1− (1− Ĉ/n)n

=

n
∑

i=1

log(n(n+ 1))

n(n+ 1)(1− (1− 1
n(n+1) )

n)

=
log(n(n+ 1))

(n+ 1)(1− (n(n+1)−1
n(n+1) )n)

= O(log(n))

We would thus need exponentially many samples to estimate

an entropy accurately when no collisions occur. This can be

intractable when the entropy is large.

B. Horvitz-Thompson Exact Estimator

In this section we introduce a different way of estimating

the entropy by determining the exact size of Ak so that we

can use Equation (5) to get an unbiased estimator.

To do this, we introduce the following definition: PC is the

partition of U given by the equivalence relation ∼, defined as

follows:

(∀x, y ∈ U)(x ∼ y ⇔ {K ∈ C | x ∈ K} = {K ∈ C | y ∈ K})

In other words, points that are equivalent always occur together

in the covering. Also note that every element K of C can be

written as the union of elements in PC.

We will call elements of PC blocks, and we define a

tripartition of PC for every A ⊆ U :

P1(A) := {X ∈ PC | X ⊆ A}

P2(A) := {X ∈ PC | ∅ ≠ X ∩A ̸= X}

P3(A) := {X ∈ PC | X ∩A = ∅}

The strong approximations are fully characterized by P1, P2

and P3 because:

apr′
C
(A) = ∪ {K ∈ C | (∀X ∈ PC)(X ⊆ K ⇒ X ∈ P1(A))}

apr′C(A) = ∪ {X ∈ PC | (∀K ∈ C)(X ∩K ̸= ∅

⇒ (∃X ′ ∈ P1(A) ∪ P2(A))(X ′ ⊆ K))}

For a given tripartition (P1, P2, P3) of PC the number of sets

A ⊆ U that have Pi(A) = Pi (for i ∈ {1, 2, 3}) is equal to:

∏

X∈P2

(

2|X| − 2
)

Because of this we can count all A ∈ Ak by generating all

possible assignments (P1, P2, P3) that have the correct lower

and upper approximations.

For each A ∈ Ak, every block X ∈ PC is in some Pi(A);
we call i the type of X with respect to A. We will count all

sets A ∈ Ak, by deciding for each block X ∈ PC which type

it has. This needs to be done in such a way that every Y ∈ C
is ’satisfied’, meaning:

• If Y ⊆ Ak, all blocks X ⊆ Y must be in P1(A)
• If Y ∩Ak = ∅, all blocks X ⊆ Y must be in P3(A)
• Else, at least one block X ⊆ Y should be in P1(A) ∪

P2(A) and at least one block X ⊆ Y should be in

P2(A) ∪ P3(A).

It is clear that every A for which these conditions hold has

(Ak, Ak) as its approximations.

Based on the first two cases above, for some blocks X we

can immediately establish their type. For others (blocks that

do not appear in the first two cases) we need to perform a

backtracking search. Note that for every unsatisfied Y ∈ C,

Y ∩Ak ̸= ∅ and Y ⊈ Ak.

The process proceeds as follows: as long as there are

unsatisfied Y ∈ C, we recursively pick one such Y arbitrarily

and decide how it can be satisfied. For this, we arbitrarily

order the blocks X ⊆ Y which are still undecided. Then we

vary the type of the first X among all types that are consistent

with the requested lower and upper approximation. We repeat

this process until Y is satisfied. Notice that this implies we can

leave some X ⊆ Y undecided. We also take into consideration

that a block with only one element can never be in P2(A).
Once all Y ∈ C are satisfied, we count the number of sets

A ⊆ U for which the type of each X ∈ PC coincides with the

assignment and add this to a running counter. That is:

ΠX∈P2
(2|X| − 2) ·ΠX∈N (2|X|)

where N denotes the set of blocks for which no decision

was made. By using recursion, we exhaustively generate all
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possible assignments that satisfy every Y in C and thus we

count all sets A with the right approximations.

The pseudo-code of this approach can be found in Algo-

rithm 3. Below, we detail some optimizations that can be

performed:

• When deciding the type of a block X for a Y ∈ C that

already has some elements in P1, it is enough to decide

whether X is in P1 or in P2 ∪ P3, instead of deciding if

it is in P1, P2 or P3. Therefore the branching factor of

the recursion is reduced from 3 to 2 in such cases.

• Instead of picking an arbitrary unsatisfied Y ∈ C, we

can choose a more specific Y in order to speed up

the algorithm. A common heuristic is to make the next

decision about the object with the fewest possibilities.

In this case, we choose the Y with the least amount of

undecided blocks left.

• The partition of U into blocks can be redefined dynami-

cally during the runtime of the algorithm. Particularly if a

Y ∈ C gets satisfied but has some undecided blocks left,

it is no longer relevant that they are in Y , and therefore

they could possibly be merged with other blocks. We

chose not to implement this in general because it requires

a lot of ’bookkeeping’, but we used a limited variant.

After the initial assignment of types to blocks that can

be made without guessing, we make the partition coarser

just once.

We will call the estimator of entropy that uses this ap-

proach to determine |Ak| the Horvitz-Thompson-exact esti-

mator (HTEE).

Example 4. Let U be a universe and C be the covering with

three elements, shown in Figure 1, such that PC has 5 blocks:

X1, . . . , X5 and C = {X1 ∪X2, X2 ∪X3 ∪X4, X4 ∪X5}.
We want to calculate the number of sets A ⊆ U so that

apr′
C
(A) = X4 ∪ X5 and apr′C(A) = U. We do this by

exhaustively generating all possible assignments1 of P1, P2, P3

and N , using Algorithm 3 . These are shown in Table I. For

example, for the first assignment, we see that even though the

type of X3 is undecided, all elements in C are satisfied. The

amount of sets that are realizations of assignment 5 are:

count(assignment 5) =
(

2|X1| − 2
)(

2|X2| − 2
)

2|X3|

If we add up the amount of realizations of all possible

assignments we get the following result:

2|X3|
(

2(|X1|+|X2|) − 2
)

− 2|X1| + 1

If we set the size of all blocks equal to 10 we have that the

probability of a random subset of U having (X4 ∪X5, U) as

approximations is equal to:

2|X3|
(

2(|X1|+|X2|) − 2
)

+ 1

250
=

1073738753

1125899906842624
≈ 9.537× 10−7

1We assume that all blocks have at least two elements such that the
assignment of type P2 makes sense for each block.

Algorithm 3: Exact approximation counting

Input: covering C; approximation (A,A)
// Preprocessing

Check which Y ∈ C lie in A, and which are disjoint

with A
Assign their elements the required type

C′ ← {Y ∈ C | Y is still unsatisfied}
Identify the ’blocks’ with respect to C′

total← 0
assign()

Result: total contains the number of sets with the

given approximation

Function assign():

if all Y ∈ C′ are satisfied then

total← total+ΠX∈P2
(2|X| − 2) ·ΠX∈N (2|X|)

else
Y ← unsatisfied Y ∈ C′ with fewest amount of

unassigned blocks

satisfy (Y )

end

Function satisfy(Y ):

if Y is satisfied then
assign()

else

X ← first unassigned block in Y
for j ∈ {1, 2, 3} do

typeX ← Pj

satisfy (Y )

end

typeX ← N
end

Fig. 1. C and its blocks from Example 4

Example 5. We take Example 3 and inspect how the HTEE

estimator will evaluate the entropy of C. If we generate

k sets of the universe U , we can safely assume that no

collisions occur and no set is in the class of size two if k
is small enough, since it is statistically very unlikely. Using

the method described above, we can calculate the exact size of

the equivalence class of each approximation that is generated
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TABLE I
ALL ASSIGNMENTS OF PC GENERATED BY ALGORITHM 3 WHERE apr′

C
(A) = X4 ∪X5 AND apr′C(A) = U .

Assignments 1 2 3 4 5 6 7 8 9
P1 X1, X4, X5 X1, X4, X5 X2, X4, X5 X2, X4, X5 X4, X5 X4, X5 X2, X4, X5 X2, X4, X5 X4, X5

P2 X2 ∅ X1, X3 X1 X1, X2 X1 X3 ∅ X2

P3 ∅ X2 ∅ X3 ∅ X2 X1 X1, X3 X1

N X3 X3 ∅ ∅ X3 X3 ∅ ∅ X3

Fig. 2. The result of HTEE for the covering C with n = 100

and we get the following estimate:

Ĥ = −
k

∑

i=1

log(2−n)

2n(1− (1− 2−n)k)

=
kn

2n(1− (1− 2−n)k)

≈
kn

2nk2−n

= n

The third line follows from:

(

1−
1

2n

)k

=
k

∑

i=0

(

k

i

)

(−2)ni ≈ 1−
k

2n
,

which holds when k is significantly smaller than 2n.

V. EXPERIMENTS

In this section we will compare the previously discussed

estimations.

We first evaluate the entropy for n = 100 for the covering

from Example 3. When we use HTEE we see that, even after

generating only 2 sets we already get an estimate that is less

than 10−30 removed from 100− 1
2−99 , as can be seen in Figure

2. The variance estimated by Equation (6) is practically zero.

This confirms our findings from Example 5.

We may also observe that the coverage-adjusted estimator

runs into problems because the value of the entropy is too

large. Because of this there will be no collisions, which will

cause Ĉ to be too far off. For completeness we provide a plot

of the results of the coverage-adjusted estimator in Figure 3.

Fig. 3. The result of the coverage-adjusted estimator for the covering C with
n = 100

Fig. 4. The result of HTEE for the covering C with n = 20

When n is reduced to 20, both estimators produce accurate

results, as seen in Figures 4 and 5.

Next, we consider real-world datasets from the UCI repos-

itory [33] and use coverings generated by Mapper. We use

the following parameters for Mapper: the number of cubes

is equal to 4, the overlap percentage is equal to 0.2, we

use the projection onto the first PCA component as the lens

function, and as a clustering algorithm we use the single-

linkage algorithm with distance cutoff ε. The parameter ε
will depend on the dataset we use since the average distance

between points varies between datasets. We use the datasets

with corresponding ε as displayed in Table II. The size of the
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Fig. 5. The result of the coverage-adjusted estimator for the covering C with
n = 20

TABLE II
THE DATASETS USED IN SECTION V

Attributes Instances ε |C|
Iris 5 150 0.6 25

Vertebral Column 6 310 20 43
Wine 14 178 17.5 64

resulting coverings can also be found in this table.

The results obtained from the Iris dataset are presented in

Figures 6 and 7. These figures show that the HTEE estimator

converges rapidly after a small number of iterations. Addi-

tionally, the coverage-adjusted estimator consistently yields

values lower than the actual entropy, which can be reasonably

approximated as 15 based on the variance estimate of the

HTEE estimator.

For the Vertebral Column and Wine datasets the entropy is

again too high, meaning that we can only consider the HTEE

estimator.

We see promising results where the variance of the estimator

Fig. 6. The result of HTEE for the Iris dataset with ε = 0.6.

Fig. 7. The result of the coverage-adjusted estimator for the Iris dataset with
ε = 0.6.

Fig. 8. The result of HTEE for the Vertebral Column dataset

Fig. 9. The result of HTEE for the Wine dataset
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Fig. 10. The values of the HTEE and coverage-adjusted estimators for the
iris dataset with a variable ε value.

quickly approaches zero as the number of iterations increases

as shown in Figures 8 and 9.

We further analyze the Iris dataset by varying the value of

ε, which controls the scale parameter in the Mapper algorithm.

Adjusting ε generates a sequence of coverings under ≪,

as mentioned in proposition 2. We vary ε from 0.6 to 2.0

in increments of 0.1. For the HTEE estimator, we perform

100 iterations, while for the coverage-adjusted estimator, we

use 20,000 iterations—chosen to ensure comparable execution

times for both methods. The variance of the HTEE estimator

remains below 0.30 across all experiments. Based on this

setup, Figure 10 presents the resulting comparisons. As shown,

both estimators yield similar results when ε is large and the

entropy is low. However, as entropy increases, the coverage-

adjusted estimator consistently underestimates the true en-

tropy. In cases of very high entropy, its estimates deviate

significantly from the expected values.

VI. DISCUSSION AND FUTURE WORK

In this paper, we proposed an efficient method for esti-

mating the entropy of the strong granule-based approximation

operator in covering-based rough sets. Our approach involves

generating random subsets of the universe U , determining the

number of subsets that share the same rough set approxima-

tions, and applying the Horvitz-Thompson estimator to obtain

an unbiased entropy estimate. We evaluated the performance of

our estimator against the coverage-adjusted entropy estimator

from the literature and found that our method not only

yields greater accuracy but also performs more effectively in

scenarios involving high-entropy coverings.

In future work, we plan to investigate estimates to calculate

the size of Ak using properties of the covering and heuristics.

A possible start to do this can be found in the following

equation:

ΠK∈PC,K⊆Ak,K⊈A
k

(2|K| − 2) ≤ |Ak| ≤ 2|Ak|−|A
k
|

which can be proved by observing that

P1 = {K ∈ PC | K ⊆ Ak}

P2 = {K ∈ PC | K ⊆ Ak,K ⊈ Ak}

P3 = {K ∈ PC | K ⊈ Ak}

may be used to assign types to all blocks.

When C is a partition, ΠK∈PC,K⊆Ak,K⊈A
k

(2|K| − 2) is

exactly equal to |Ak|. For general coverings, this does not

hold any longer but we can use this as our approximation for

|Ak|.
Whenever |K| is large enough for all K in PC, the dif-

ference between 2|K| and 2|K| − 2 is negligible. However

in practice, most blocks in the used coverings are not that

large. Because of this, we did not include this approach in the

experimental analysis Section V. We still mention this estimate

as it can probably be improved by using more heuristics to an

even better estimate of |Ak|.
Further research should also focus on constructing meth-

ods to estimate the entropy of (covering-based) rough set

approximations other than the strong approximations. Finally,

researchers and practitioners may also use these results to

construct coverings with a given entropy. This is in partic-

ular useful for applications that require a certain degree of

granularity.
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