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Abstract—Rough set theory provides a robust framework for
dealing with inconsistent data by utilizing equivalence relations
to group indiscernible instances. A significant extension of this
framework is the concept of covering-based rough sets, where
equivalence relations are replaced with coverings. The effective-
ness of covering-based rough sets in practical applications largely
depends on the choice of an appropriate covering. To guide this
selection, various metrics have been proposed to evaluate the
quality of coverings, including entropy. While entropy serves as
a valuable measure, its exact computation is often prohibitively
expensive. In this paper, we propose an efficient method for
estimating the entropy of covering-based rough set approximation
operators, making the metric more feasible for practical use. We
assess the accuracy of these estimates through experiments on
both synthetic coverings and coverings for real-world datasets,
the latter constructed using the Mapper algorithm, from the field
of topological data analysis.

I. INTRODUCTION

N 1982 Pawlak introduced rough set theory as a framework

to handle possibly inconsistent data [1]. Rough set theory
revolves around the notion of an information system: a couple
(U, A), where U is a universe of instances (objects, data sam-
ples) and A is a set of attributes for which these instances take
values. The set .4 naturally gives rise to an equivalence relation
E on U, by partitioning U into equivalence classes that have
the same values for all the attributes in 4. Instances in each
equivalence class are called indiscernible. Rough set theory
then proceeds to provide lower and upper approximations of
concepts that are represented by a set A C U. The lower
approximation is the union of all equivalence classes that
are contained entirely within A. This can be viewed as the
set of instances that certainly belong to A (every instance in
the lower approximation is only indiscernible to elements of
A). The upper approximation is the union of all equivalence
classes that have non-empty intersection with A. Semantically
this is the set of instances that possibly belong to U (every
instance in the upper approximation is indiscernible with an
element in A). Sets A C U for which the lower approximation
and upper approximation equal A itself are called consistent,
or exact. It can be verified that the lower approximation is the

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

195

largest consistent subset of A, while the upper approximation
is the smallest consistent set that includes A.

Various researchers have proposed generalizations of clas-
sical rough sets by replacing the equivalence relation with a
covering of U [2, 3, 4], resulting in a more flexible framework.
Recall that a covering of U is any collection of subsets of U
whose union is equal to U. By contrast to a partition, elements
of a covering are allowed to overlap. This is useful in various
situations, for example:

« handling missing data [5]: when the value of an instance
for an attribute is unknown, it is considered indiscernible
from any other (known or unknown) value.

« tolerance-based rough sets [6]: when dealing with numer-
ical data, two objects are often considered indiscernible
when their distance is lower than a given threshold.

Clearly, such indiscernibility relations are no longer transitive.
These covering-based rough sets have been studied extensively
from a theoretical perspective ([7, 8, 9, 10]) and used in
many applications, in particular concerning attribute reduc-
tion [11, 12, 13]. However, selecting the right covering for
an application can be hard because there may be multiple
important factors to consider. One such factor is the granularity
of the covering. This measures how fine the covering is and
how detailed the rough set approximations are; it can also be
interpreted as the amount of information that remains when
the approximation operators are executed. To find coverings
that have a certain granularity, the concept of entropy (which
was originally introduced as a measure of information content)
was extended to rough set approximations in [14]. Many
applications in rough set theory use the notion of entropy
[15, 16]. However, when it comes to covering-based rough set
theory, it is computationally very expensive to calculate this
naively since it takes into account all of the possible subsets
of the universe U. For this reason, we propose an efficient
way to estimate the entropy.

In [17] a promising method to generate coverings of datasets
using the Mapper algorithm from the field of topological
data analysis [18] was introduced. We use these coverings
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to evaluate the convergence of our estimates. We choose this
method because it produces coverings that closely resemble
the original dataset topologically. Moreover, one can easily
control several aspects of the coverings, such as the number
of subsets in the covering, and the amount of overlap between
them.

The remainder of this paper is structured as follows. We
first recall the concepts of covering-based rough sets and
entropy in Sections 2 and 3. Then, in Section 4, we outline a
method to estimate the entropy of a given covering using the
so-called strong granule-based approximations from covering-
based rough set theory. To obtain the estimation, we first
consider the method from [19] which allows us to estimate the
entropy of any probability distribution. However, we observe
that it is restrictively slow for our purposes. Therefore, we
adapt this method using some properties of covering-based
rough sets to find better estimates that are calculated more
quickly. In Section 5, we evaluate the convergence of our
estimates experimentally on a number of synthetic and bench-
mark datasets. Finally, in Section 6, we give a discussion and
introduce some ideas for future exploration.

II. COVERING-BASED ROUGH SETS

When working with real-world classification problems, in-
consistencies often occur in datasets; intuitively, this happens
when two instances are indiscernible but belong to different
classes. Pawlak introduced rough sets in 1982 to handle such
inconsistencies [1]. In Pawlak’s seminal work, an approxi-
mation space is defined as an ordered pair (U, E), where E
is an equivalence relation that groups indiscernible instances
together over the universe U. Based on this setup, the lower
and upper approximations of a set can be described in several
equivalent ways. In this paper, we adopt the granule-based
approach:

apr(A) = {[z]p € U/E | [2]p € A}
apr(A) = {[z]p € U/E | [l N A # 0}

For a subset A of U, its rough set approximation is represented
as the pair (apr(A),apr(A)). These approximation operators
are dual in the sense that apr(A) = apr(A°)°, where © refers
to the classical set complement. These approximations have
been used in many applications ranging from classification
[20] (especially rule extraction [21, 22]) to feature selection
[23, 24, 25].

Classical rough set theory often struggles with continuous
features, as the indiscernibility relation may no longer satisfy
the properties of an equivalence relation. To overcome this
limitation, various generalizations of classical rough sets have
been proposed. One such generalization are covering-based
rough sets, which replace the partition given by the indis-
cernibility relation with a covering. This defines a covering
approximation space: an ordered pair (U,C), where C is
a covering of U, that is, a collection of subsets whose
union equals U. While it is tempting to generalize Pawlak’s
definitions by replacing the equivalence classes [z]g € U/E
with elements K € C, this substitution does not preserve the
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duality between the approximations. To address this, Yao [2]
introduced two dual pairs of granule-based approximations for
covering approximation spaces.

apr’ (A) = U{K eC: K C A} (1)
apr'c(A) = apr o (A%)° 2
apr” (A) = apr’ o (A%)° &)
apr’C(A):U{KE(C|KﬂA7é(Z)} (4)

Equations (1) and (2) are called the strong approximation
operators, while Equations (3) and (4) are referred to as the
weak approximations. The rationale behind this terminology
is explained by the following property:

apr” (A) € apr’ (A) € A C apr'c(A) € apr’’c
Example 1. Ler U = {z1,...,29} be a

universe which has the following covering, C =

{{.Z'O,.’L']},{l’l,l'z},{.’I}Q,"L’{)},{$3,x4,x7}7{.Z'G,.’L'7,.’I}8,LU9}}
and A = {x1,x9,23,24,25}. A has the following
approximations:

(4)

apr’ (A) = {z1, 22, 75}

apr’c(A) = {wo, 1,22, 3, 24, 05}

MC(A) = {@2, 25}

apr” «(A) = {xo, x1, T2, T3, T4, T5, T7}
Generating suitable coverings for a particular application is

an important but challenging task. To assist with this process,
we associate an ordering to the set of all coverings.

Definition 1. [9] Let C and C' be two coverings of U. C <« C’
if and only if for all L € C' there exists a set S C C such
that L = Uges K. When C < C', we also say that C is finer
than C'.

We have the following proposition [9]:

Proposition 1. Let C and C' be coverings of U. Then
apr/c,(A) - apr/(c(A) C A Capr'c(4) C apr'c/(A) for
all AC U, if and only if C < C'.

Example 2. To illustrate  the previous  propo-
sition we  continue Example 1. Ler C' =
Hwo, w1, 2}, {2, 25}, {ws, w4, w6, ¥7, 28, 29 } }. Then

we clearly have that C < C'. If we now recalculate the
approximations of A, using C, we get:

apr'C,(A) = {x9, x5}
apr'c/(A) = {xo, 21, T2, T3, T4, T5, T6, T7, T8, To }

In [17] a promising new method was introduced to generate
coverings for classification problems, using the Mapper algo-
rithm that originated in the field of topological data analysis
(TDA). It generates coverings of a universe U, as shown
in Algorithm 1, which generally represent the topological
structure of the dataset and are therefore useful for our
purposes. The algorithm uses a lens function f : U — R%, an
input covering I of f(U), and a clustering algorithm. Often
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the lens function is chosen to be a projection on particular
attributes or PCA components. The input covering I is in
practice constructed using a number of (hyper-)cubes among
each dimension in R?, such that consecutive cubes have a
certain overlap percentage p.

Mapper proceeds in the following way: the lens function
transforms the original dataset U to the lower-dimensional
space f(U), on which the covering I is defined. Then, for each
I inside the input covering, the instances from U projected
onto it by f (i.e., f~'(I)) are partitioned by means of
a clustering algorithm, another parameter of the algorithm.
These clusters form the resulting covering.

In [26] we proved the following result which holds when the
clustering algorithm is equal to the single-linkage clustering
algorithm [27] (shown in Algorithm 2).

Proposition 2. Let U be a dataset, f : U — R™ Let K
denote the single linkage clustering algorithm. Let T and I’ be
coverings of f(U), and let Cy . and Cy . denote the coverings
generated by the Mapper algorithm using lens function f,
the single linkage algorithm with parameters ¢ and €' and
coverings Land I'. If 1 < T and € < €/, then Cy. < Crp ¢

Algorithm 1: The Mapper algorithm

Input: a dataset U with an associated metric, a lens
function f : U — R (or R™), a covering
I={l;|j=1,...n}of f(U), and a
clustering algorithm ¢l on U.

for j € {1,2,...,n} do

‘ Aj = {Ajh R Ajk | i=1,... k} — Cl(fil(lj));
end

Result: UA;

Algorithm 2: The Single Linkage algorithm

Input: a dataset U, with an associated metric d and a
real number € > 0
Construct a graph G, with U as vertices and an edge
between z and y when d(z,y) <e. ;
{A4,..., Ax} < The connected components of G.;
Result: {A,,..., A}

III. ENTROPY

In order to be able to control the fineness of the constructed
coverings, we require a measure that reflects granularity. A
suitable candidate for this is entropy, which is classically
defined for probability distributions:

Definition 2. [28] Let Pr be a probability distribution over a
finite universe U. The entropy of Pr is defined as:

H(Pr) :=— Z Pr(z) log Pr(z)
zelU

This definition can be naturally adjusted to partitions:

Definition 3. [19] Let m = {A4, ..
We define the entropy of ™ as:

., Ar} be a partition of U.

k
o Al 1A
H(m): ; 0] log Tk
The entropy indeed reflects the fineness of a partition. When
every element resides in its own equivalence class, the entropy
is maximal and equal to log|U|. When there is only one
equivalence class, the entropy is minimal and equal to 0.
We also have the following property:

Proposition 3. [14] Let m < 7' be two partitions of U, then
H(m) > H(7").

Since we work with coverings instead of partitions, Def-
inition 3 is not directly applicable. Instead, we adopt the
proposal from [14] that computes the entropy associated with
an arbitrary pair of covering-based approximation operators.

Definition 4. [/4]

o Let (apr,apr) be a pair of covering-based approxi-
mation operators over a finite universe U. We define
Hg as the set of equivalence classes of P(U) of the
equivalence relation A ~ B & (apr(A),apr(A)) =
(apr(B), apr(B)).

o We define the entropy of (apr,apr) as follows:

H(IIZ5)

HEgr = HULE,

Again we observe that a high entropy occurs when approxi-
mation operators are very fine and a low entropy occurs when
approximation operators are very rough. When we have for all
A C U that (apr(A),apr(A)) = (A, A) (the approximation
operator is maximally fine), the size of each class in H% is
equal to 1 and thus the entropy reaches its the maximal value,
|U|. When an approximation operator is maximally rough, i.e.
(apr(A),apr(A)) = (0,U) for all A, TIZPT is equal to {U}
and thus the entropy is minimal and equal to O.

Example 3. Let U = STpt and C =
{{xi»xi+1} | 1<1< TL}

We calculate the entropy of the strong approximations by
first constructing TI2E"c

{z1,..

Let = be the equivalence relation corresponding to HZg:;‘C.
Then A =~ B if either A = B or A and B are equal fo
{r; |1 <i<nandi =0 (mod2)} and {x; | 1 < i <
nand i =1 (mod 2)}.

To see this, first note that

apr’ (A) = {z; | z; € A and (v;-1 € A or z;41 € A)}
apr’«(A) ={z; | vi € Aor (i1 € Aand x;41 € A)}

Suppose that A # B but A ~ B. Let i be an integer such
that x; € A and x; ¢ B. Since x; € apr'c(A), xi11 € B and
zi—1 € B. Since x; ¢ apr’ (B), x;-1 € A and z;11 ¢ A.
We can repeat the same procedure for x;_1 and x;11 and in
the end we conclude that A and B have the requested shape.
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Thus, Hag,ﬁ has one equivalence class of size two and all

——C .
other classes have size one. We can now calculate the entropy:

2" —2

apr7.  —log2 ntl 1 1
apr’c
Haw = ot~ L %y
i=1
n—1 (2" —-2)n
- 2n—1 + on
_ 2n—2+n2" —2n
= 5
B 1
=n- 2n71

We also prove that entropy increases monotonically with
increasing fineness in coverings. This is useful because, as
mentioned in Proposition 2, we are able to construct chains
of coverings under <. Therefore, we may exploit this mono-
tonicity to guide the search for coverings that possess a certain
entropy.

Proposition 4. Let C < C' be coverings of U. If
(apr' (A),apr'c(A)) = (apr’ (B),apr’c(B)) then also
(apr (A),apr’ i (A)) = (apr (B),apr/(c/(B)).

Proof. First assume apr’ (A) = apr’ .(B). We now have for
every K € C that K C A if and only if K C B. Assume
by contradiction that apr’ ., (A) # apr’.,(B) then (w.lo.g.)
there exists a K € C’ such that K C A but K SZ B. Because
C <« C’ we have that K = UpcgL for some S C C. However,
for all L € S, it holds that L. C A and thus L C B. This is a
contradiction. Thus, apr’ ., (A) = apr’ ,,(B).

Because of the duality of the strong approximation operator,
also apr’c/(A) = apr'c:(B).

O
This implies the following theorem:
Theorem 1. Let C <« C' be coverings of a universe U, then

7_[apr c > ,Hapr o

apr’ T/
Pr . apr’ .

Proof. This follows from Proposition 4 and Proposition 3. [

There does not exist a similar result establishing mono-
tonicity between the weak granule-based approximations and
entropy. Because of this, we only consider the strong approx-
imations in the remainder of this paper.

IV. ESTIMATING ENTROPY

Since our definition of entropy takes into account all subsets
of U, it is computationally expensive to calculate its exact
value. Because of this, we will estimate the value of the
entropy. It is well-known that there is no unbiased estimator
for the entropy of a probability distribution when there is
no external knowledge about the probability distribution [29].
There exist, however, some good estimators that do not depend
on external knowledge. We will also use our knowledge about
covering-based rough sets to estimate and determine the exact
size of certain equivalence classes of Hgg:, which will lead to
an unbiased estimator anyway.
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We proceed in the following way: Let Y equal the multiset
{7‘2"41}“ log L’ﬁ;“ | A; € TIZPT}. Estimating the entropy is then
equivalent to estimating the sum of Y.

Inspired by [19] and [30], we do this using the
Horvitz—Thompson estimator [31]. This estimator is unbiased
and counts the sum of all elements y; in a universe Y by

sampling a set S from Y without replacement. The estimator

is equal to
> b s
Lo Prlvi € S)’

where Pr(y; € S) is the probability of a sample y; belonging
to S. However, this estimator is only unbiased if we know the
size of each A; exactly.

We proceed as follows: first, we generate n random subsets
{B1,...,By} of U. Let M be the set of approximations
{(apr’ ((Bi),apr'c(B;)) | 1 < i < n}. We observe that the
probability of B; belonging to a certain equivalence class .4;
of II%2T is equal to the proportion of the size of the equivalence

apr
class to the number of possible subsets: %.
We define p, = |2“‘4[}“‘| for every 1 < k < |M]| (note that

|M| < n), where Ay, = {B C U | (apr’ .(B),apr'c(B)) =
(A, Ar)}, and (A, Ay) is the k-th element of M. The
probability of not generating a set from A; is equal to
(1 — p)™ and thus the probability of generating a set inside
Ay is equal to 1 — (1 — p)™. Therefore, the result from the
Horvitz-Thomson estimator is:

Dk Ingk
1L—(1—pp)r

llp’“ c _
apr’ -

(%)
We also have an estimator for the variance of the Horvitz-
Thomson estimator [31]:

()
k

apr
o apr’
- ap7
-~ Z (pk log pi) (p; log p;)
1= =pe)" = (L =py)" + (L= pr —py)"
When we have exact values for pj available, both of these
estimators are unbiased [31] and can thus be used to estimate
the entropy and the corresponding confidence interval. A
new problem presents itself: determining p;. We can do this
by empirically estimating pj (Section IV-A) or we can use
properties of the covering itself to determine it exactly (Section
IV-B).

Z (pi log pi,)?
1—(1—pg)

Q)

A. Coverage-adjusted estimator

The coverage-adjusted estimator was introduced in [19] and
uses the Horvitz-Thomson estimator to estimate the entropy
of a probability distribution. According to the observations
of the authors of [19], the most intuitive way to estimate py
empirically is by letting p;, equal the number of generated sets
B; that have (A;,, Ax) as their approximations divided by n.
However, they introduced a more useful approximation, where



WANNES DE MAEYER ET AL.: ESTIMATING THE ENTROPY OF COVERING-BASED ROUGH SET APPROXIMATION OPERATORS

the estimator converges faster to the true value of the entropy.
Here C = 1 — %, where f; equals the number of approxi-
mations (A, Ay) such that there is only one B; which has
(A, Ay) as its approximation. We will call approximations
which are reached more than once collisions. We now define

b= 1B | (apr' (B ap7e(B)) = (A A ()

This estimation of entropy based on Equation (5) and Equa-
tion (7) is called the coverage-adjusted estimator. It converges
to the true value of entropy as follows. Let H be the coverage-
adjusted entropy estimate of H generated using n samples. We
now have that |H — H| = O(1/log(n)) [19]

The main downside of this estimator is that we need to
choose a large enough n to ensure that there is an approxima-
tion (A, Ay) that is reached at least twice. When there are
no such sets, C = 0 and thus all pr = 0 which will lead to
an entropy of 0 (convention states that 0log 0 = 0). When the
entropy is high this often means that n needs to be unfeasibly
large. When the entropy is equal to e, we expect this to happen
on average after generating O(2°/2) sets [32]. To mitigate
this problem the authors of [19] replaced the deﬁmtlon of

+1
same asymptotic behavior. However, when the true value of

the entropy is too high, this can still cause problems. When no
collisions occur the coverage-adjusted estimator is equal to:

Y~ C/nlog(C/n)
"= Z1—(1—é/n)n
_ log(n(n + 1))
Z “n(n+1)(1—(1
log(n(n + 1))
(n+1)(1 — (Mot
= O(log(n))

i=1

— )"

We would thus need exponentially many samples to estimate
an entropy accurately when no collisions occur. This can be
intractable when the entropy is large.

B. Horvitz-Thompson Exact Estimator

In this section we introduce a different way of estimating
the entropy by determining the exact size of 4 so that we
can use Equation (5) to get an unbiased estimator.

To do this, we introduce the following definition: F¢ is the
partition of U given by the equivalence relation ~, defined as
follows:

(Vz,yeU)(z~y{KecClzeK}={KeC|ye K})
In other words, points that are equivalent always occur together

in the covering. Also note that every element K of C can be
written as the union of elements in FPc.

We will call elements of Pr blocks, and we define a

tripartition of P¢ for every A C U:

Pi(A)={XeR | XCA}
Py(A)={XeP: |0#XNA#X}
Py(A):={XeP | XNnA=0}

The strong approximations are fully characterized by P;, P,
and P3 because:

apr’(A)

—U{KeC|(VXeP)XCK=XecP(A)}
apr'c(A) (

=U{XeP|VKeC)(XNK#D
= (3X' e P(AUPA) X' CK))}

For a given tripartition (P, Py, P3) of Pc the number of sets
A C U that have P;(A) = P; (for i € {1,2,3}) is equal to:

I (-

XeP;

Because of this we can count all A € A; by generating all
possible assignments (P;, P, P3) that have the correct lower
and upper approximations.

For each A € Ay, every block X € Pc is in some P;(A);
we call i the type of X with respect to A. We will count all
sets A € Ay, by deciding for each block X € Pr which type
it has. This needs to be done in such a way that every Y € C
is ’satisfied’, meaning:

o« If Y C A, all blocks X CY must be in P;(A)

o« IfY N A, =0, all blocks X CY must be in P5(A)

« Else, at least one block X C Y should be in P;(A) U

P,(A) and at least one block X C Y should be in
Py (A)U P3(A).
It is clear that every A for which these conditions hold has
(A, Ay) as its approximations.

Based on the first two cases above, for some blocks X we
can immediately establish their type. For others (blocks that
do not appear in the first two cases) we need to perform a
backtracking search. Note that for every unsatisfied Y € C,
YNA,#0and Y ¢ A,.

The process proceeds as follows: as long as there are
unsatisfied Y € C, we recursively pick one such Y arbitrarily
and decide how it can be satisfied. For this, we arbitrarily
order the blocks X C Y which are still undecided. Then we
vary the type of the first X among all types that are consistent
with the requested lower and upper approximation. We repeat
this process until Y is satisfied. Notice that this implies we can
leave some X C Y undecided. We also take into consideration
that a block with only one element can never be in Py(A).
Once all Y € C are satisfied, we count the number of sets
A C U for which the type of each X € P¢ coincides with the
assignment and add this to a running counter. That is:

Myep, (2% - 2) - xen(2™)

where N denotes the set of blocks for which no decision
was made. By using recursion, we exhaustively generate all
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possible assignments that satisfy every Y in C and thus we
count all sets A with the right approximations.

The pseudo-code of this approach can be found in Algo-
rithm 3. Below, we detail some optimizations that can be
performed:

« When deciding the type of a block X for a Y € C that
already has some elements in P, it is enough to decide
whether X is in P; or in P, U Ps, instead of deciding if
it is in Py, P or Pj5. Therefore the branching factor of
the recursion is reduced from 3 to 2 in such cases.

o Instead of picking an arbitrary unsatisfied ¥ € C, we
can choose a more specific Y in order to speed up
the algorithm. A common heuristic is to make the next
decision about the object with the fewest possibilities.
In this case, we choose the Y with the least amount of
undecided blocks left.

o The partition of U into blocks can be redefined dynami-
cally during the runtime of the algorithm. Particularly if a
Y € C gets satisfied but has some undecided blocks left,
it is no longer relevant that they are in Y, and therefore
they could possibly be merged with other blocks. We
chose not to implement this in general because it requires
a lot of ’bookkeeping’, but we used a limited variant.
After the initial assignment of types to blocks that can
be made without guessing, we make the partition coarser
just once.

We will call the estimator of entropy that uses this ap-

proach to determine |Aj| the Horvitz-Thompson-exact esti-
mator (HTEE).

Example 4. Let U be a universe and C be the covering with
three elements, shown in Figure 1, such that Pc has 5 blocks:
Xl,...,X5 and C = {X1 UXQ,XQ UXgUX4,X4UX5}.
We want to calculate the number of sets A C U so that
apr’ (A) = X4 U X5 and apr’(A) = U. We do this by
exhaustively generating all possible assignments' of Py, Ps, P3
and N, using Algorithm 3 . These are shown in Table 1. For
example, for the first assignment, we see that even though the
type of X3 is undecided, all elements in C are satisfied. The
amount of sets that are realizations of assignment 5 are:

count(assignment 5) = (2‘X1| — 2) (Q‘Xﬂ - 2) 2l Xs|

If we add up the amount of realizations of all possible
assignments we get the following result:

9l Xs| (2<|x1|+\><2|) _ 2) _olXil 4 q

If we set the size of all blocks equal to 10 we have that the
probability of a random subset of U having (X4 U X5,U) as
approximations is equal to:

9| Xs] (2(|X1|+\X2D — 2) +1
250

1073738753

= 1125899906842624
~ 9.537 x 1077

'We assume that all blocks have at least two elements such that the
assignment of type P> makes sense for each block.
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Algorithm 3: Exact approximation counting

Input: covering C; approximation (A, A)

// Preprocessing

Check which Y € C lie in A, and which are disjoint
with A

Assign their elements the required type

C' + {Y € C|Y is still unsatisfied}

Identify the ’blocks’ with respect to C’

total < 0

assign ()

Result: total contains the number of sets with the

given approximation

Function assign():
if all Y € C' are satisfied then
total < total +HXEP2 (2|X‘ — 2) . HXGN(2|X|)
else
Y <« unsatisfied Y € C’ with fewest amount of
unassigned blocks
satisfy (Y)
end

Function satisfy (Y):
if Y is satisfied then
| assign{()
else
X < first unassigned block in Y
for j € {1,2,3} do
typex < P;
satisfy (Y)
end
typex < N

end
AN

Fig. 1. C and its blocks from Example 4

Example 5. We take Example 3 and inspect how the HTEE
estimator will evaluate the entropy of C. If we generate
k sets of the universe U, we can safely assume that no
collisions occur and no set is in the class of size two if k
is small enough, since it is statistically very unlikely. Using
the method described above, we can calculate the exact size of
the equivalence class of each approximation that is generated
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TABLE I
ALL ASSIGNMENTS OF Pz GENERATED BY ALGORITHM 3 WHERE apT'C(A) = X4 U X5 AND apr/c(A) =U.

Assignments | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Py X1, X4, X5 | X1,X4, X5 | X2, X4, X5 | X2,X4, X5 | X4, X5 | X4, X5 | X2, X4, X5 | X2,X4,X5 | X4,X5
P X2 1] X1,X3 X1 X1, X2 X1 X3 1] Xo
Py 0 X2 0 X3 0 X2 X1 X1, X3 X1
N X3 X3 1] 0 X3 X3 1] 1] X3
— target 100
104 - 00 4
80 -
102
70
2 z
g].OU— 8000000000000 g 60 1
o1 o

98 1

96

T T T T
25 50 75 100 125 150 175
iterations

Fig. 2. The result of HTEE for the covering C with n = 100

and we get the following estimate:

50 1
40 4
30 1

° e ) [ ] ]
—— farget

.
e ®
20{ ® .

T T T
6000 8000 10000

iterations

T T
2000 4000

Fig. 3. The result of the coverage-adjusted estimator for the covering C with
n = 100

22.0
i — target
~ log(27™) 21,54
H=—
23 (-2
= il 20.5
C2n(l-(1-27m)) -
kn EZU.O' 0000000000000 000
T 2nk2n m 19.5 -
=n
19.0
The third line follows from:
18.5 -
k k
1 k - k
1 I — _2 nt ~ 1 o . I I I I I I
( 2”) Z <Z>( ) on’ 180 25 50 75 100 125 150 175
=0 iterations

which holds when k is significantly smaller than 2".

V. EXPERIMENTS

In this section we will compare the previously discussed
estimations.

We first evaluate the entropy for n = 100 for the covering
from Example 3. When we use HTEE we see that, even after
generating only 2 sets we already get an estimate that is less
than 10739 removed from 100 — 2,% as can be seen in Figure
2. The variance estimated by Equation (6) is practically zero.
This confirms our findings from Example 5.

We may also observe that the coverage-adjusted estimator
runs into problems because the value of the entropy is too
large. Because of this there will be no collisions, which will
cause C' to be too far off. For completeness we provide a plot
of the results of the coverage-adjusted estimator in Figure 3.

Fig. 4. The result of HTEE for the covering C with n = 20

When n is reduced to 20, both estimators produce accurate
results, as seen in Figures 4 and 5.

Next, we consider real-world datasets from the UCI repos-
itory [33] and use coverings generated by Mapper. We use
the following parameters for Mapper: the number of cubes
is equal to 4, the overlap percentage is equal to 0.2, we
use the projection onto the first PCA component as the lens
function, and as a clustering algorithm we use the single-
linkage algorithm with distance cutoff €. The parameter ¢
will depend on the dataset we use since the average distance
between points varies between datasets. We use the datasets
with corresponding ¢ as displayed in Table II. The size of the



202

Fig. 5. The result of the coverage-adjusted estimator for the covering C with

entropy

21.00 A

20.75 A

20.50

20.25 A

20.00 -

19.75 A

19.50

19.25 A

19.00 A

L] — target

T T T T
20000 30000 40000 50000

iterations

T
10000

n = 20
TABLE II
THE DATASETS USED IN SECTION V
Attributes  Instances € [C]
Iris 5 150 0.6 25
Vertebral Column 6 310 20 43
Wine 14 178 17.5 64

resulting coverings can also be found in this table.

The results obtained from the Iris dataset are presented in
Figures 6 and 7. These figures show that the HTEE estimator
converges rapidly after a small number of iterations. Addi-
tionally, the coverage-adjusted estimator consistently yields
values lower than the actual entropy, which can be reasonably
approximated as 15 based on the variance estimate of the

HTEE estimator.

estimator.

entropy

For the Vertebral Column and Wine datasets the entropy is
again too high, meaning that we can only consider the HTEE

We see promising results where the variance of the estimator

20
18 1
16 1
I P 1 I T I LI ]
14 4
12 4
10 T T T T T T T T
o 25 50 75 100 125 150 175 200
iterations

Fig. 6.

The result of HTEE for the Iris dataset with € = 0.6.
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entropy
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Fig. 7. The result of the coverage-adjusted estimator for the Iris dataset with

e = 0.6.
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Fig. 8. The result of HTEE for the Vertebral Column dataset
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Fig. 9. The result of HTEE for the Wine dataset
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coverage-adjusted
« HTEE
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Fig. 10. The values of the HTEE and coverage-adjusted estimators for the
iris dataset with a variable ¢ value.

quickly approaches zero as the number of iterations increases
as shown in Figures 8 and 9.

We further analyze the Iris dataset by varying the value of
€, which controls the scale parameter in the Mapper algorithm.
Adjusting ¢ generates a sequence of coverings under <,
as mentioned in proposition 2. We vary ¢ from 0.6 to 2.0
in increments of 0.1. For the HTEE estimator, we perform
100 iterations, while for the coverage-adjusted estimator, we
use 20,000 iterations—chosen to ensure comparable execution
times for both methods. The variance of the HTEE estimator
remains below 0.30 across all experiments. Based on this
setup, Figure 10 presents the resulting comparisons. As shown,
both estimators yield similar results when ¢ is large and the
entropy is low. However, as entropy increases, the coverage-
adjusted estimator consistently underestimates the true en-
tropy. In cases of very high entropy, its estimates deviate
significantly from the expected values.

VI. DISCUSSION AND FUTURE WORK

In this paper, we proposed an efficient method for esti-
mating the entropy of the strong granule-based approximation
operator in covering-based rough sets. Our approach involves
generating random subsets of the universe U, determining the
number of subsets that share the same rough set approxima-
tions, and applying the Horvitz-Thompson estimator to obtain
an unbiased entropy estimate. We evaluated the performance of
our estimator against the coverage-adjusted entropy estimator
from the literature and found that our method not only
yields greater accuracy but also performs more effectively in
scenarios involving high-entropy coverings.

In future work, we plan to investigate estimates to calculate
the size of Ay using properties of the covering and heuristics.
A possible start to do this can be found in the following
equation:

HKePC,Kng,KgAk(QlK‘ —2) < | Al < QIZM—\AkI

which can be proved by observing that

P={KecP:|KCA,}
Py={K P | KCAuK ¢ A}
PgZ{KEPc‘Kng}

may be used to assign types to all blocks.

When C is a partition, HKePc,Kng,th_Ak(Q‘K‘ —2)is
exactly equal to |Ag|. For general coverings, this does not
hold any longer but we can use this as our approximation for
| Ag|.

Whenever |K| is large enough for all K in Pg, the dif-
ference between 2/X1 and 2/%| — 2 is negligible. However
in practice, most blocks in the used coverings are not that
large. Because of this, we did not include this approach in the
experimental analysis Section V. We still mention this estimate
as it can probably be improved by using more heuristics to an
even better estimate of |Ag|.

Further research should also focus on constructing meth-
ods to estimate the entropy of (covering-based) rough set
approximations other than the strong approximations. Finally,
researchers and practitioners may also use these results to
construct coverings with a given entropy. This is in partic-
ular useful for applications that require a certain degree of
granularity.
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