
Slurm plugin for HPC operation with

time-dependent cluster-wide power capping

Alexander Kammeyer∗†, Florian Burger∗, Daniel Lübbert∗ and Katinka Wolter†

0000-0002-7858-0354, 0000-0003-4745-5515, 0000-0003-3852-5665, 0000-0002-8630-0869
∗Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany

Email: {alexander.kammeyer, florian.burger, daniel.luebbert}@ptb.de
†Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany

Email: {a.kammeyer,katinka.wolter}@fu-berlin.de

Abstract—HPC systems are shared between many users. Man-
aging their resources and scheduling compute jobs is a central
task of these clusters. Scheduling also allows to control the
workload and energy consumption of an HPC system. A Digital
Twin of an HPC cluster can aid in the scheduling process by
providing energy measurements about the system and predict
scheduling decisions with a simulation. For a real-world use case,
an integration of the Digital Twin with the scheduler is necessary.
A possible use case are energy limitations as part of a demand
response process between the HPC operator and energy supplier.

Therefore, this paper introduces a plugin for Slurm, an open-
source scheduler, that implements a scheduling algorithm for
time-dependent cluster-wide power capping. It uses a node energy
model to predict the energy consumption of jobs and can start
jobs at different frequencies to stay below the configured power
limit. The plugin interfaces with the Digital Twin that provides
energy measurements for the compute nodes to track the system
power consumption in real time and update the power limitations
if necessary.

The plugin is tested on a cluster and compared against a
scheduling simulation of the algorithm. The analysis compares
the power profile of the simulation and the real system and the
allocation of the jobs over time. Differences in the execution and
the power trace are analysed and discussed.

I. INTRODUCTION

T
HE High-Performance Computing (HPC) community has

focussed on achieving maximum performance for a long

time. This doctrine has recently come under pressure by rising

energy prices and a transformation of the energy market

towards renewable energies while HPC systems continue to

grow in size and energy demand. A trend that is further

accelerated by the recent shift towards artificial intelligence.

An HPC system under full load has a relatively constant

energy requirement. However, a shift towards renewable en-

ergy production means greater volatility in the energy pro-

duction. HPC systems need a mechanism to respond to these

fluctuations. Solely relying on fossil energy source is also not

an option, as regulatory frameworks, such as the Blue Angel

for data centres [1], define upper bounds for carbon-dioxide

emissions.

Dynamically adapting the energy consumption of an HPC

system has further use cases. It can help stabilize the energy

grid by reducing the load in the grid or by increasing the load

if enough energy is available. Additionally, such a mechanism

allows the continued automatic operation of the cluster in case

of energy shortages.

Reacting to limited energy availability is sometimes referred

to as demand response. While it is common practice for

large energy consumers, HPC centres have not yet widely

adopted such mechanisms [2]. However, first mechanism have

been proposed. One possible demand response mechanism was

presented in [3]. A Digital Twin is used to collect data about

the system energy consumption and together with information

about energy availability, the scheduler can adapt the overall

energy consumption to stay below a defined threshold. The

algorithm in the original paper was validated with a simulation.

This paper implements the algorithm as a plugin for the

popular cluster scheduler Slurm [4].

This paper makes the following contributions:

• The algorithm uses a node energy model to predict the

energy consumption of the jobs. This paper uses a new

test platform for the evaluation of the plugin. Thus, an

updated node energy model is necessary that has been

created for the new test system.

• The algorithm from the original facilitates time-

dependent cluster-wide power capping. This paper im-

plements this algorithm as a plugin for the open-source

scheduler Slurm.

• The algorithm was previously only evaluated in a sim-

ulation of the Digital Twin. This paper compares the

simulation against the performance on a real cluster. The

evaluation includes power traces of the real system and

the node allocation to the jobs.

The remainder of this paper is structured as follows:

Section II introduces Slurm in detail and presents relevant

literature, especially regarding cluster operation under a power

limitation. Preparatory work such as the updated node energy

model and a recap of the scheduling algorithm is presented in

Section III. In Section IV, the implementation of the Slurm

plugin is discussed. The plugin is then evaluated in the real

world and compared to simulation results in Section V.

II. RELATED WORK

An HPC system consists of many individual components

and is typically shared among users for running their compute

jobs. These systems thus need a resource manager to avoid

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 175–183

DOI: 10.15439/2025F0376
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 175 Topical area: Computer Science & Systems



slurmctld

scontrol

squeue

sbatch

srun

User

apps

slurmd

Compute node daemons

Cluster control

daemon

slurmd slurmd slurmd slurmd

slurmd slurmdslurmd slurmd

Figure 1: Overview of the Slurm components. The

slurmctld is the central controller of the cluster while

slurmd handles each compute node. Client components such

as scontrol, squeue, sbatch and srun allow the user

to interact with the cluster and submit and manage compute

jobs.

resource conflicts between users as well as a strategy to assign

the available resources to the requests of the users, referred

to as scheduling strategy. Different resource managers and

schedulers exist such as e.g. Moab, PBS, Grid Engine and

Slurm [4].

Being open-source software written in the C programming

language, Slurm has been widely adopted by the research

community. Slurm works both as a resource manager and

as scheduler and also starts and monitors the compute jobs

on the cluster. Additionally, it is able to handle accounting

of the resource usage and supports resource reservation in

advance. The software consists of multiple components: the

Slurm control daemon slurmctld, the Slurm daemon on

the compute nodes slurmd and command-line utilities for

the users to manage Slurm and submit (sbatch) and control

(scontrol) their jobs. Slurm also handles the MPI con-

figuration for the jobs and offers the launch program srun.

These components are shown in Figure 1. Slurm has further

components that are responsible for accounting and billing but

they are not relevant in the context of this paper.

HPC systems are composed of individual compute nodes

which might feature different hardware, e.g. CPU cores,

memory and additional components such as storage, GPUs or

TPUs. The nodes can be grouped into partitions for bundling

nodes with identical hardware or for aiding the scheduling

process, e.g. when certain nodes are reserved for short or long

running jobs or similar. When users want to run a task on

the HPC system, they submit a job. The job defines what the

user wants to compute, the required resources to complete

the computation and for how long the job will need those

resources. Slurm can further divide jobs into job steps, that

define tasks that may be executed in parallel or contain pre-

and post-processing and do require different resources.

The specific scheduling algorithm and resource allocation

can contribute to the energy efficiency and stability of the

system and thus has been subject to many research studies.

The surveys by Czarnul [5] and Kocot [6] provide an overview

of tools for energy and power management and power-aware

scheduling.

Simulating the scheduling process is a common approach

in HPC research. One example is CQSim [7]. Based on trace

data, the authors propose a scheduling approach for demand

response, and test it in their simulation [8]. To retrieve such

traces, the system needs to be actively monitoring the energy

consumption of each job. Not every cluster is designed to

do that because the hardware does not provide the necessary

measurements, or because the scheduling environment does

not track the data, or both. Another important aspect is taking

the specifics of the different applications into account, when

imposing a power cap on the cluster [9]. The scheduler may

automatically change the frequencies and thus runtime of

the jobs to dynamically distribute the power. Other demand

response methods rely on power traces to create a node model

and limit power consumption of the HPC clusters [10]. None

of these approaches have been tested in the real world.

One approach in system management and system modelling

has attracted increased interest over the last years: Digital

Twins [11]. A Digital Twin is a virtual representation of a

real-world object, in this context an HPC cluster. A real-

world object is represented as a Digital Twin in the virtual

world. Data about the object is collected and integrated into

the Digital Twin. With their characteristic bi-directional data

linkage, changes in the real world are reflected in the digital

domain and vice versa. The Digital Twin models the behaviour

in the real world and can test new parameters before they are

applied to the real system. Simulations are often cheaper and

faster and a negative impact on the real system can be avoided.

In the HPC context, these simulations are generally scheduling

simulations as they describe changes in the system state well.

Digital Twins are under development for HPC systems

ranging from small clusters to one of the world’s largest

systems, Frontier [12]. As part of their smart campus ini-

tiative [13], the Physikalisch-Technische Bundesanstalt (PTB)

is developing a Digital Twin for their HPC system [14]. It

has been demonstrated that it can be used to reduce system

emissions. One major use case of the Digital Twin is the

operation of HPC systems under a time-dependent cluster-

wide power cap. The power can be capped by the Digital

Twin, depending on the currently available energy [3]. Precise

energy measurements also allow the Digital Twin to track the

data centre Power Usage Effectiveness (PUE) [15].

Similar to the node energy model in Section III-B, ap-

plication power profiles are a common technique used in

application modelling and have been done for a wide variety

of applications, including WZ factorisation [16] and matrix

factorisation [17]. An alternative to Dynamic Voltage and

Frequency Scaling (DVFS) is the implementation of a power

cap as a hardware driver [18].

176 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



III. PRELIMINARY WORK

This section introduces the test system used in this paper,

and shows how Slurm has been configured for this specific

system. Since the test system differs from the system in [3], a

new node energy model has been created. Furthermore, a cap

on the implemented scheduling algorithm is given.

A. Test System

For the practical test of the Slurm plugin, this paper relies

on a cluster consisting of Raspberry Pis. While this setup is

not typical for a commercial HPC system, it has a similar

structure and allows the development of the plugin without

interrupting the production HPC system of PTB. The setup is

based upon a design found proposed in [19].

The system is equipped with a total of 10 Raspberry Pi 4B

with 8 GB RAM each. They are connected via their 1Gbit/s
Ethernet ports. Each Pi also has the Power over Ethernet (PoE)

HAT (Hardware Attached on Top) installed that allows the

nodes to be supplied with power from the Ethernet switch.

All run the Raspberry Pi OS Bookworm.

The switch, a Netgear GS316EPP, supplies power via Power

over Ethernet (PoE) to the nodes and offers a gigabit in-

terconnect. It has a rudimentary management interface that

provides energy information for each of the ports and allows

management and power cycling of individual ports. These

features thus allow us to track the per-node energy usage and

to turn nodes off and on when needed as the Raspberry Pi

does not support Wake-On-LAN. The energy data is queried

by a collector agent of the Digital Twin and provided via the

Digital Twin database.

One node is designated as the head node while the remain-

ing 9 nodes act as compute nodes. The head node provides

a global file system via NFS to all compute nodes. For

this purpose, a single SDD is connected via an SATA-to-

USB adapter and provides the necessary storage space. It

also contains scratch space that is shared between the nodes.

The compute nodes themselves are disk-less and get their

image via TFTP from the head node when they boot. An

additional Ethernet-to-USB adapter establishes a connection to

the outside world while a DHCP server provides the internal

cluster network with addresses for the compute nodes. The

head node uses NAT to forward the internet connection to the

compute nodes. This is necessary because the Raspberry Pi

does not have a real-time clock and the clocks of the compute

nodes would be out of sync after a reboot.

As the scheduler and resource manager we have opted to

use Slurm [4]. Being open source software, the Digital Twin

can be integrated with the scheduler. Slurm is configured with

a single partition spanning all 9 compute nodes. Since the

cluster is not intended for production use with many users,

only basic logging is configured.

The head node is running the slurmctld control daemon

that manages the scheduling logic and interfaces with the

Digital Twin. The compute nodes run the slurmd daemons

that connect the nodes to the control daemon. The user

connects to the head node and can use the Slurm utilities,

e.g. sbatch, to control the cluster and submit batch jobs.

Slurm provides some power saving functionalities [20],

most notably node suspension and resumption. The scheduler

monitors the nodes. If a node has been idle for a certain

amount of time, it is shut down. When the node is needed

again, Slurm issues a restart. This is implemented by power-

cycling the Ethernet port of the switch, resulting in the

Raspberry Pi booting again. The Slurm daemon on the node

then contacts the Slurm controller, signalling that the node is

ready to receive the next job. For this experiment, Slurm has

been configured to turn of a compute node after 10 minutes

of inactivity.

B. Node Energy Model

The node energy model is an integral part of the scheduling

algorithm. It allows the algorithm to estimate the energy

consumption of a job. It is the part that makes the algorithm

hardware specific. The remaining logic works independently

from any underlying hardware characteristics. However, it

needs to be updated if the algorithm should run on a different

cluster with new workloads. Hence, this section presents the

node energy model for the test system used in this paper. For

this experiment, a total of 4 different benchmarks and parallel

applications have been selected, namely the HPL and HPCG

benchmarks as well as OpenFOAM and Geant4.

The High-Performance Linpack (HPL) [21] is used to create

the TOP500 ranking of supercomputers. The benchmark is

a linear equation solver and uses highly optimized vector

instructions, thus serving as a kind of upper bound for

the model. The second benchmark, the High Performance

Conjugate Gradients (HPCG) [22], complements the HPL

benchmark by adding more memory intensive operations.

The two benchmarks are supplemented by two numeric ap-

plications. The first, Open Field Operation And Manipulation

(OpenFOAM) [23], is a computational fluid dynamics package

and the second, Geometry and Tracking (Geant4) [24], is a

Monte Carlo simulation toolkit.

To create the node energy model, each of the 4 jobs was run

on the nodes on all supported frequencies. The switch provides

an energy measurement that allows to monitor the jobs energy

consumption. From these measurements, the Time-to-Solution

(TtS) and Energy-to-Solution (EtS) can be derived. Figure 3

shows the results for all supported frequencies from 0.6GHz

to 1.8GHz. Pareto-optimal points [25], [26] are coloured in

orange. For the model shown in Table I, three points have been

selected: the highest frequency of 1.8GHz and if available two

pareto-optimal points. The scaling factor is used to adjust the

job runtime for the increased runtime required if the job runs

at a lower frequency setting.

This model shows a downside of the Raspberry Pis as

a test platform. They have a relatively high offline energy

consumption, especially compared to their idle consumption

and the consumption under load [27]. This amounts to 22.1W
offline consumption for the compute nodes of the cluster.

While 2.70W is not much compared to other platforms, it is

ALEXANDER KAMMEYER ET AL.: SLURM PLUGIN FOR HPC OPERATION WITH TIME-DEPENDENT CLUSTER-WIDE POWER CAPPING 177



Switch

1 2 3 4 5 6 7 8 9 10

Head

Node
Node 1 Node 2 Node 9Node 8Node 7Node 6Node 5Node 4Node 3

SSD

Ethernet connection

to the network

Figure 2: Schematic overview of the test cluster. It consists of one head node and a total of 9 compute nodes. They are

connected via Ethernet and receive power via PoE. The head node has an additional Ethernet port to connect the cluster to a

network. The SSD is also connected to the head node and provides storage for the compute nodes.

Table I: The node energy model

Job type Frequency Power Scaling factor

HPL
1.8GHz 6.20W 1.000

1.6GHz 5.74W 1.049

1.5GHz 5.47W 1.055

HPCG
1.8GHz 5.05W 1.000

1.3GHz 4.25W 0.911

1.2GHz 4.13W 0.933

OpenFOAM
1.8GHz 5.95W 1.000

1.4GHz 5.17W 1.015

1.1GHz 4.89W 1.064

Geant4
1.8GHz 6.62W 1.000

1.5GHz 5.55W 1.208

1.1GHz 4.92W 1.625

Idle - 3.12W -
Offline - 2.70W -

almost half as high as the busy consumption. This behaviour

can be changed by forcibly disabling PoE on the switch instead

of only issuing a software shutdown.

C. Algorithm Recap

The goal is to run the HPC cluster under a variable power

limitation while maximizing the system usage. The algorithm’s

pseudocode is shown in Algorithm 1. This section briefly

describes the idea behind the algorithm while an in-depth

description was given in [3]. The algorithm uses two main

concepts to improve the throughput: DVFS, and turning off

nodes. The node energy model provides the optimal frequency

settings, while turning off unused compute nodes further

decreases the system power consumption.

The scheduling algorithm receives a list of eligible jobs, and

sorts them by time of arrival. The first "if" statement checks

whether there are enough online and offline nodes available to

start the job, and starts offline nodes if necessary.

The second "if" statement checks whether enough online

nodes are available to start the job. If that is the case, it uses the

node energy model to estimate the job’s power consumption.

If starting the job would exceed the power limit, the job is

deferred; otherwise, the job is started.

When a job is deferred, the routine moves on to the next

job in the queue. This allows the algorithm to backfill jobs

that might fit within the available resources.

IV. SLURM PLUGIN

The Slurm control daemon slurmctld is responsible for

job scheduling. Two scheduling algorithms are included in

the package as plugins. The first plugin is called builtin

and implements a simple FCFS algorithm. The second plugin

is called backfill and, as the name implies, implements

FCFS with backfilling. This paper presents an additional,

new scheduling plugin which implements the algorithm from

Section III-C that can be used instead of the integrated plugins.

By default, Slurm schedules jobs automatically without

consulting the scheduling plugin, as long as no resource

conflicts arise. E.g. a job submitted to an empty cluster that

fits in terms of compute nodes gets scheduled without the

scheduling plugin. This circumvents the energy limit check

of the scheduling plugin, and in our case could lead to the

power consumption exceeding defined limits. To avoid such a

178 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



800 900 1000 1100 1200 1300
Time to Solution [s]

4800

5000

5200

5400

En
er

gy
 to

 S
ol

ut
io

n 
[k

J]

0.6 GHz

0.7 GHz

0.8 GHz0.9 GHz

1.0 GHz1.1 GHz

1.2 GHz

1.3 GHz

1.4 GHz

1.5 GHz

1.6 GHz

1.7 GHz

1.8 GHz

non-optimal
optimal

(a) Pareto front for HPL.

200 220 240 260 280 300 320 340
Time to Solution [s]

900

950

1000

1050

1100

1150

En
er

gy
 to

 S
ol

ut
io

n 
[k

J]

0.6 GHz

0.7 GHz

0.8 GHz

0.9 GHz

1.0 GHz

1.1 GHz

1.2 GHz
1.3 GHz

1.4 GHz

1.5 GHz

1.6 GHz

1.7 GHz1.8 GHz

non-optimal
optimal

(b) Pareto front for HPCG.

6000 6250 6500 6750 7000 7250 7500 7750
Time to Solution [s]

32000

33000

34000

35000

36000

En
er

gy
 to

 S
ol

ut
io

n 
[k

J]

0.6 GHz

0.7 GHz

0.8 GHz0.9 GHz

1.0 GHz

1.1 GHz

1.2 GHz1.3 GHz

1.4 GHz

1.5 GHz

1.6 GHz

1.7 GHz

1.8 GHz
non-optimal
optimal

(c) Pareto front for OpenFOAM.

300 400 500 600 700
Time to Solution [s]

1600

1800

2000

2200

2400

2600

2800

En
er

gy
 to

 S
ol

ut
io

n 
[k

J]

0.6 GHz

0.7 GHz

0.8 GHz

0.9 GHz

1.0 GHz

1.1 GHz
1.2 GHz

1.3 GHz
1.4 GHz

1.5 GHz

1.6 GHz

1.7 GHz

1.8 GHz

non-optimal
optimal

(d) Pareto front for Geant4.

Figure 3: Pareto fronts for the four different applications in the node energy model. Pareto-optimal frequencies in terms of EtS

and TtS are coloured orange. The remaining frequencies are coloured blue.

situation, all jobs must be submitted in the hold state with

a priority of zero. This prevents Slurm from automatically

scheduling jobs [28].

The Slurm control daemon periodically consults the

scheduling plugin. The plugin first consults the database

and updates the power limits and queries the current power

consumption of the system from the database. It contains a

set of functions that allow it to connect to the InfluxDB of

the Digital Twin. InfluxDB does not offer a native C client

implementation. However, since Slurm includes the cURL

library, the plugin uses cURL to connect to the REST API

of the database in order to query both the power consumption

of the nodes and the power limitations. This provides a level

of abstraction of the database calls from the rest of the code.

Furthermore, helper functions convert the reply from csv to

C-structs for further use.

During this periodic invocation, the plugin uses the core

scheduling routine _backfill_power() which is shown

in Algorithm 2. It does not use the usual scheduling queue but

the entire job list. First, it checks if any jobs are pending but

have not started yet in the first while loop (lines 13-21). Those

are jobs that have been scheduled by the plugin but have not

yet been started by Slurm. This avoids releasing to many jobs

that later conflict with one another. If a job is waiting to start,

the function is exited and waits for the periodic scheduling

before making the next attempt.

The second while loop (starting in line 25) handles the

actual scheduling. The plugin first consults job_test_-

resv() (lines 30.32), a Slurm function that tests whether

enough nodes are available. Afterwards, select_g_job_-

test() (lines 31-49) tries to select the optimal nodes and

tests whether the job can start immediately. Last but not

least, check_power_dvfs() (lines 57-58) uses the node

energy model to estimate the energy requirement of the job

and whether the current power limitations allow the job to

start. It is also responsible to set the frequency and adjust the

runtime of the job according to the numbers in Table I. If

enough energy is available, the priority of the job is increased

which releases the job from the hold state. The slurmctld

recognizes that and starts the job. It is also responsible to

ALEXANDER KAMMEYER ET AL.: SLURM PLUGIN FOR HPC OPERATION WITH TIME-DEPENDENT CLUSTER-WIDE POWER CAPPING 179



Algorithm 1 Pseudocode of the core scheduling routine

1 backfill_power(eligible_jobs) {

2 for (Job j : eligible_jobs) {

3

4 // test if nodes need to be booted

5 // check if enough nodes are offline

6 if (j.nodes > online_nodes(j) &&

7 j.nodes <= online_and_offline_nodes(j)) {

8 // how many nodes need to be booted?

9 toboot = j.nodes - online_nodes(j);

10

11 // check if the nodes would

12 // exceed the power limit

13 if(!check_power(j, get_offline(j, toboot))){

14 continue;

15 }

16 boot_nodes(j, toboot);

17 }

18

19 // test if enough nodes are online

20 // and available

21 if (j.nodes <= online_nodes(j)) {

22

23 // check if the job and nodes would

24 // exceed the power limit

25 if (!check_power_dvfs(j)) {

26 continue;

27 }

28

29 assign_nodes(j);

30 j.wait_time = tick - j.submit_time;

31 running.add(j);

32 eligible_jobs.remove(j);

33

34 // trigger an event in the simulation

35 // on job completion

36 e = new JobEvent(tick + j.run_time_scaled,

37 j, JobState.COMPLETED);

38 eventQueue.add(e);

39 }

40 }

41 }

select the nodes and start them if necessary. Slurm also sets

the configured frequency.

So far, the implementation has been tested on a homoge-

neous cluster with a single partition. It does not yet consider

multi-partition scheduling or other features such as multi-

step jobs. Another aspect the algorithm cannot control yet

is energy usage during the boot process of the nodes, which

can lead to power spikes. One possible way to control this is

by introducing a delay in the boot script that Slurm uses to

power-cycle the ports on the switch. An early loaded power

cap driver, as proposed in [18] might also help.

V. EVALUATION

This paper presents a Slurm plugin based on a scheduling

algorithm, evaluated previously only through simulation. To

compare the simulated results with the real-world, both the

simulation and the plugin are configured with the node energy

model from Section III-B and an identical number of compute

nodes.

The workload for the evaluation is generated with the

improved Feitelson job model [29], [30]. The model generates

a job trace in the Standard Workload Format (SWF) [31].

While the format encodes which application was run, the

Algorithm 2 Actual code: Core scheduling routine of the

Slurm plugin

1 static void _backfill_power(void) {

2 int j, rc = SLURM_SUCCESS, job_cnt = 0;

3 job_record_t* job_ptr;

4 bitstr_t *alloc_bitmap = NULL;

5 bitstr_t *avail_bitmap = NULL;

6 bool resv_overlap = false;

7 resv_exc_t resv_exc = { 0 };

8 time_t now = time(NULL);

9 list_itr_t *iter = NULL;

10

11 // check if a job has been scheduled

12 // and has not started yet, defer further

13 // scheduling in this case

14 iter = list_iterator_create(job_list);

15 while ((job_ptr = list_next(iter))) {

16 if(IS_JOB_PENDING(job_ptr) == true

17 && job_ptr->priority > 0) {

18 list_iterator_destroy(iter);

19 return;

20 }

21 }

22 list_iterator_destroy(iter);

23

24 // go through the list of held jobs

25 iter = list_iterator_create(job_list);

26 while ((job_ptr = list_next(iter))) {

27 if(IS_JOB_PENDING(job_ptr) == true

28 && job_ptr->priority == 0) {

29 // Determine which nodes a job can use

30 // based upon reservations

31 j = job_test_resv(job_ptr, &now, true,

32 &avail_bitmap, &resv_exc,

33 &resv_overlap, false);

34 if (j != SLURM_SUCCESS) {

35 FREE_NULL_BITMAP(avail_bitmap);

36 reservation_delete_resv_exc_parts(

37 &resv_exc);

38 continue;

39 }

40 // Select the "best" nodes for given job

41 // from those available

42 rc = select_g_job_test(job_ptr,

43 avail_bitmap,

44 job_ptr->details->min_nodes,

45 job_ptr->details->max_nodes,

46 job_ptr->details->max_nodes,

47 SELECT_MODE_RUN_NOW,

48 NULL, NULL,

49 &resv_exc,

50 NULL);

51 FREE_NULL_BITMAP(avail_bitmap);

52 reservation_delete_resv_exc_parts(&resv_exc);

53 if (rc != SLURM_SUCCESS) {

54 continue;

55 }

56 // We are certain that a job can start

57 // check the power limit and adjust DVFS

58 if(check_power_dvfs(job_ptr,

59 get_req_nodes(job_ptr)) < 0) {

60 continue;

61 } else {

62 // release the job

63 // slurmctld will start the job

64 job_ptr->priority = 1;

65 job_ptr->state_reason = WAIT_NO_REASON;

66 break;

67 }

68 }

69 }

70 list_iterator_destroy(iter);

71 }

180 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



Feitelson model does not generate this information. Hence, an

equal distribution is used to generate the workload information

with equal probability for each of the 4 different applications.

Slurm only supports runtime limits with minute resolution for

the job while the Feitelson model produces job lengths with

seconds resolution. All job runtimes are therefore rounded up

to the next full minute.

As a baseline, the job trace was simulated by the scheduling

simulation component integrated in the Digital Twin. The

power trace is shown in Figure 4a and the allocation of the

jobs to the nodes in Figure 5a. In comparison, the same job

trace was run with identical power limitations on the cluster.

A script processed the job trace file and submitted the jobs

accordingly. The power trace is shown in Figure 4b and the

node allocation in Figure 5b.

In the simulation, the algorithm uses the gaps between the

power limit while staying below the set limit. Larger jobs did

not fit below the limit and were delayed beyond the limitation.

This effect can also be seen in the node allocation in Figure 5a.

The results are comparable to the first iteration of tests with

the other node energy model [3].

In the experiment on the test system, looking at the power

trace, the cluster mostly stays below the limit. Sometimes the

limit is slightly exceeded in the order of ≤ 3% which can be

attributed to booting nodes and job initialization. In contrast

to the simulated system where energy needed to start the

nodes is not accounted for, the real system constantly tracks

consumed energy also while booting additional nodes. When

the operating system and Slurm are fully loaded, controlling

the energy use is rather simple. However, especially during

the early boot phase, the system draws a lot of power while

not offering a mechanism to control it.

Another difference is that larger jobs start earlier in the

real system test. This increases the system utilization and

reduces the time required to complete the job trace. This

again hints towards slight differences in the energy calculation

between the plugin and the simulation. While the simulation

considers the idle energy usage of the nodes, the plugin

considers the energy usage of all running jobs and assumes

that unused nodes are shut down by Slurm. The plugin only

checks whether the running jobs allow an additional job to

start. Furthermore, the node energy model upon which in both

cases scheduling decisions rely on, represents the in average

power consumption over time of jobs - not their maximum

values. Therefore it is clear, that the real system will exhibit

these maxima in power consumption by slightly surpassing

the power limit. This could of course be cured in future by a

more refined and time-resolved node energy model.

The time the scheduling and start of the job actually takes

makes up a third difference between the simulation and the

real world. In the simulated run, jobs are tightly packed as the

simulation starts jobs instantly. In contrast, the Slurm plugin

first releases them from the hold state and subsequently waits

for the job to actually start before making the next scheduling

decision. This causes a slight delay, thus creating small gaps

between the jobs visible in Figure 5b.

To summarize, this experiment has demonstrated that the

power-capping algorithm is feasible on a real system via a

Slurm plugin, with a few initial limitations. The next step

in the development will be to align the real-world and the

simulation more closely with one another. The Slurm logic

is complex and hard to replicate in a pure simulation. The

simulation also does not simulate everything. This includes

accurate power models for the boot process, and time required

to start and stop jobs on the nodes.

The test system only has a single node type and has one

partition configured. The plugin remains to be tested in a

heterogeneous system configuration: Slurm allows to configure

different hardware in a single partition, which will make the

check more complex. Our plugin does not yet consider shared

node allocation, but this can be complemented in a next step,

as it is supported by Slurm.

In the current implementation, the node energy model is

hard-coded in the plugin, which reduces portability of the

code. For a broader use, the parameters will be moved to a

configuration file. The accuracy of the algorithm depends on

the accuracy of the node energy model. So far, no changes

in the power consumption of the jobs have been considered.

Additionally, the model is static and does not adapt to new

workloads. Another possible improvement for the plugin are

malleable jobs, which can be extended in their runtime when

they are switched to a lower frequency during their runtime.

VI. CONCLUSION AND FUTURE WORK

This paper presented a new scheduling plugin for the widely

used scheduling and resource management software Slurm.

The plugin allows an HPC cluster to operate under a system-

wide power cap. The plugin works by holding jobs until

enough power is available. Jobs can be configured by the

plugin with a specific frequency according to the node energy

model to reduce energy consumption. If the budget allows,

the plugin releases the job from the hold state and sets the

frequency. The Slurm infrastructure then handles the job start

and node configuration.

The scheduling algorithm uses a node energy model to

estimate the energy consumption of a compute job. For this

paper, a new model has been created for the specific hardware

of the test system. It has been demonstrated that this approach

can be adapted to different systems, making the scheduling

algorithm portable.

The plugin was demonstrated on the test system against a

simulation with an identical job trace. Differences between

the simulation and plugin have been discussed, especially job

start times and energy calculation. While the plugin was able

to stay below the power limit, booting compute nodes might

briefly surpass the configured limit. Possible fixes have been

discussed. The plugin was able to schedule jobs efficiently,

and shows higher utilization than the simulation.

The Slurm plugin presented in this paper was tested with

a homogeneous system configuration with identical nodes in

a first step. Modern HPC systems often use heterogeneous

system configurations with different node types and different

ALEXANDER KAMMEYER ET AL.: SLURM PLUGIN FOR HPC OPERATION WITH TIME-DEPENDENT CLUSTER-WIDE POWER CAPPING 181



18:45
19:00

19:15
19:30

19:45
20:00

20:15
20:30

20:45

time

0

10

20

30

40

50

60

Cl
us

te
r P

ow
er

 C
on

su
m

pt
io

n 
[W

]

Cluster Power Power Limit

(a) Power trace of the simulation by the Digital Twin.

18:45
19:00

19:15
19:30

19:45
20:00

20:15
20:30

time

0

10

20

30

40

50

60

Cl
us

te
r P

ow
er

 C
on

su
m

pt
io

n 
[W

]

Cluster Power Cluster Power

(b) Power trace of the test cluster.

Figure 4: Power traces of the experiment. A job trace was simulated and run on the test cluster to compare the performance

of the algorithm in the simulation and the real world. The power trace is shown in blue and the limit is shown as the orange

dashed surface.

18:4
3

19:1
2

19:4
0

20:0
9

20:3
8

time

0

1

2

3

4

5

6

7

8

9

No
de

(a) Node allocation of the simulation.

18:4
3

18:5
7

19:1
2

19:2
6

19:4
0

19:5
5

20:0
9

20:2
4

time

0

1

2

3

4

5

6

7

8

9

No
de

(b) Node allocation of the real system.

Figure 5: Node allocation of the experiments. The width of the rectangles corresponds to the runtime and the height shows

which nodes where allocated to the job.

generations of CPUs. The test system could be extended with

newer Raspberry Pi 5s or NVIDIA Jetson boards to create

such a heterogeneous system.

Currently, the node energy model is hard-coded in the

plugin. This would need to be shifted to a configuration

file. The plugin has not been tested with heterogeneous or

multi-partition cluster configurations. Since these are common

nowadays, further development is necessary to support these

configurations.

ACKNOWLEDGEMENT

We would like to thank our colleagues from department

Q.13, first and foremost S. Thümmler, for their help with

building the case for the Raspberry Pi cluster.

REFERENCES

[1] RAL UMWELT, Rechenzentren DE-UZ 228, 2nd ed.,
Fränkische Straße 7, 53229 Bonn, Feb. 2025. [Online]. Avail-
able: https://produktinfo.blauer-engel.de/uploads/criteriafile/de/DE-UZ-
228-280225-de-Kriterien-V3.pdf

182 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



[2] T. Patki, N. Bates, G. Ghatikar, A. Clausen, S. Klingert, G. Abdulla,
and M. Sheikhalishahi, “Supercomputing centers and electricity ser-
vice providers: A geographically distributed perspective on demand
management in europe and the united states,” in High Performance

Computing, J. M. Kunkel, P. Balaji, and J. Dongarra, Eds. Cham:
Springer International Publishing, 2016. doi: 10.1007/978-3-319-41321-
1_13. ISBN 978-3-319-41321-1 p. 243–260.

[3] A. Kammeyer, F. Burger, D. Lübbert, and K. Wolter, “HPC operation
with time-dependent cluster-wide power capping,” in Proceedings of

the 19th Conference on Computer Science and Intelligence Systems,
ser. Annals of Computer Science and Information Systems, M. Ganzha,
L. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds., vol. 39, 2024. doi:
10.15439/2024F1066 p. 385–393.

[4] M. A. Jette and T. Wickberg, “Architecture of the slurm workload man-
ager,” in Job Scheduling Strategies for Parallel Processing, D. Klusáček,
J. Corbalán, and G. P. Rodrigo, Eds. Cham: Springer Nature Switzer-
land, 2023. ISBN 978-3-031-43943-8 p. 3–23.

[5] P. Czarnul, J. Proficz, and A. Krzywaniak, “Energy-aware high-
performance computing: Survey of state-of-the-art tools, techniques,
and environments,” Scientific Programming, vol. 2019, p. 8348791,
2019. doi: 10.1155/2019/8348791. [Online]. Available: https://doi.org/
10.1155/2019/8348791

[6] B. Kocot, P. Czarnul, and J. Proficz, “Energy-aware scheduling
for high-performance computing systems: A survey,” Energies,
vol. 16, no. 2, 2023. doi: 10.3390/en16020890. [Online]. Available:
https://www.mdpi.com/1996-1073/16/2/890

[7] X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan,
and M. E. Papka, “Integrating dynamic pricing of electricity
into energy aware scheduling for hpc systems,” in Proceedings

of the International Conference on High Performance Computing,

Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: Association for Computing Machinery, 2013. doi:
10.1145/2503210.2503264. ISBN 9781450323789. [Online]. Available:
https://doi.org/10.1145/2503210.2503264

[8] S. Wallace, X. Yang, V. Vishwanath, W. E. Allcock, S. Coghlan, M. E.
Papka, and Z. Lan, “A data driven scheduling approach for power man-
agement on hpc systems,” in Proceedings of the International Confer-

ence for High Performance Computing, Networking, Storage and Anal-

ysis, ser. SC ’16. IEEE Press, 2016. doi: 10.5555/3014904.3014979.
ISBN 9781467388153

[9] D. Bodas, J. Song, M. Rajappa, and A. Hoffman, “Simple power-
aware scheduler to limit power consumption by hpc system within a
budget,” in 2014 Energy Efficient Supercomputing Workshop, 2014. doi:
10.1109/E2SC.2014.8 p. 21–30.

[10] K. Ahmed, J. Liu, and K. Yoshii, “Enabling demand response
for hpc systems through power capping and node scaling,” in
2018 IEEE 20th International Conference on High Performance

Computing and Communications; IEEE 16th International Con-

ference on Smart City; IEEE 4th International Conference on

Data Science and Systems (HPCC/SmartCity/DSS), 2018. doi:
10.1109/HPCC/SmartCity/DSS.2018.00133 p. 789–796.

[11] ISO Central Secretary, “Digital twin – concepts and terminology,”
International Organization for Standardization, Geneva, CH, Standard
ISO/IEC 30173:2023, Nov. 2023. [Online]. Available: https://www.iso.
org/standard/81442.html

[12] W. Brewer, M. Maiterth, V. Kumar, R. Wojda, S. Bouknight, J. Hines,
W. Shin, S. Greenwood, D. Grant, W. Williams, and F. Wang, “A
digital twin framework for liquid-cooled supercomputers as demon-
strated at exascale,” in SC24: International Conference for High Per-

formance Computing, Networking, Storage and Analysis, 2024. doi:
10.1109/SC41406.2024.00029 p. 1–18.

[13] B. Jung, A. Kammeyer, V. Peltason, M. Ulbig, M. Wehming,
and D. Hutzschenreuter, “Systems metrology in future cities – the
example smart metrology campus (smc),” Measurement: Sensors, p.
101800, 2024. doi: 10.1016/j.measen.2024.101800. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2665917424007761

[14] A. Kammeyer, F. Burger, D. Lübbert, and K. Wolter, “Developing a
digital twin to measure and optimise hpc efficiency,” Measurement:

Sensors, p. 101481, 2024. doi: 10.1016/j.measen.2024.101481.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2665917424004574

[15] ——, “Determining data centre pue with a digital twin,” in Sensor and

Measurement Science International, ser. SMSI 2025. AMA Service
GmbH, May 2025. doi: 10.5162/SMSI2025/A7.1 p. 71–72.

[16] B. Bylina, J. Bylina, and M. Piekarz, “Impact of processor frequency
scaling on performance and energy consumption for wz factorization on
multicore architecture,” in Proceedings of the 18th Conference on Com-

puter Science and Intelligence Systems, ser. Annals of Computer Science
and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, and
D. Ślęzak, Eds., vol. 35, 2023. doi: 10.15439/2023F6213 p. 377–383.

[17] B. Bylina and M. Piekarz, “The scalability in terms of the time and
the energy for several matrix factorizations on a multicore machine,”
in Proceedings of the 18th Conference on Computer Science and

Intelligence Systems, ser. Annals of Computer Science and Information
Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds.,
vol. 35, 2023. doi: 10.15439/2023F3506 p. 895–900.

[18] A. Krzywaniak, J. Proficz, and P. Czarnul, “Analyzing
energy/performance trade-offs with power capping for parallel
applications on modern multi and many core processors,” in 2018

Federated Conference on Computer Science and Information Systems

(FedCSIS), 2018. doi: 10.15439/2018F177 p. 339–346.
[19] Raspberry Pi Ltd., “How to build a Raspberry Pi cluster,” May

2025. [Online]. Available: https://www.raspberrypi.com/tutorials/cluster-
raspberry-pi-tutorial/

[20] SchedMD LLC, “Slurm power saving guide,” May 2025. [Online].
Available: https://slurm.schedmd.com/power_save.html

[21] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “Hpl - a
portable implementation of the high-performance linpack benchmark
for distributed-memory computers,” Dec. 2018, version 2.3. [Online].
Available: https://www.netlib.org/benchmark/hpl/

[22] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” The International Journal of

High Performance Computing Applications, vol. 30, no. 1, p.
3–10, 2016. doi: 10.1177/1094342015593158. [Online]. Available:
https://doi.org/10.1177/1094342015593158

[23] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to
computational continuum mechanics using object-oriented techniques,”
Computer in Physics, vol. 12, no. 6, p. 620–631, 11 1998. doi:
10.1063/1.168744. [Online]. Available: https://doi.org/10.1063/1.168744

[24] S. Agostinelli, J. Allison, K. Amako et al., “Geant4—a simulation
toolkit,” Nuclear Instruments and Methods in Physics Research Section

A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 506, no. 3, p. 250–303, 2003. doi: 10.1016/S0168-9002(03)01368-
8. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0168900203013688

[25] N. Sudermann-Merx, Fortgeschrittene Modellierungstechniken. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2023, p. 161–193. ISBN
978-3-662-67381-2. [Online]. Available: https://doi.org/10.1007/978-3-
662-67381-2_7

[26] D. Kolossa and G. Grübel, “Evolutionary computation and nonlinear
programming in multi-model-robust control design,” in Real-World

Applications of Evolutionary Computing, S. Cagnoni, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000. ISBN 978-3-540-45561-5
p. 147–157.

[27] “Rpi 4 consumes 2.5w when shut down,” May 2025. [Online].
Available: https://raspberrypi.stackexchange.com/questions/104944/rpi-
4-consumes-2-5w-when-shut-down

[28] R. P. Becker, “Entwurf und implementierung eines plugins für slurm
zum planungsbasierten scheduling,” Bachelor’s thesis, Freie Universität
Berlin, Berlin, 2021.

[29] D. G. Feitelson, “Packing schemes for gang scheduling,” in Job Schedul-

ing Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. ISBN 978-
3-540-70710-3 p. 89–110.

[30] D. G. Feitelson and M. A. Jettee, “Improved utilization and responsive-
ness with gang scheduling,” in Job Scheduling Strategies for Parallel

Processing, D. G. Feitelson and L. Rudolph, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997. ISBN 978-3-540-69599-8 p. 238–261.

[31] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby, “Benchmarks and stan-
dards for the evaluation of parallel job schedulers,” in Job Scheduling

Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. doi: 10.1007/3-
540-47954-6_4. ISBN 978-3-540-47954-3 p. 67–90.

ALEXANDER KAMMEYER ET AL.: SLURM PLUGIN FOR HPC OPERATION WITH TIME-DEPENDENT CLUSTER-WIDE POWER CAPPING 183


