Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F0376

Science and Intelligence Systems (FedCSIS) pp. 175-183 ISSN 2300-5963 ACSIS, Vol. 43

Slurm plugin for HPC operation with
time-dependent cluster-wide power capping

Alexander Kammeyer*f, Florian Burger*, Daniel Liibbert* and Katinka Wolter
0000-0002-7858-0354, 0000-0003-4745-5515, 0000-0003-3852-5665, 0000-0002-8630-0869
*Physikalisch-Technische Bundesanstalt, Abbestrafie 2-12, 10587 Berlin, Germany

Email: {alexander.kammeyer, florian.burger, daniel.luebbert} @ptb.de
tFreie Universitit Berlin, TakustraBe 9, 14195 Berlin, Germany
Email: {a.kammeyer,katinka.wolter} @fu-berlin.de

Abstract—HPC systems are shared between many users. Man-
aging their resources and scheduling compute jobs is a central
task of these clusters. Scheduling also allows to control the
workload and energy consumption of an HPC system. A Digital
Twin of an HPC cluster can aid in the scheduling process by
providing energy measurements about the system and predict
scheduling decisions with a simulation. For a real-world use case,
an integration of the Digital Twin with the scheduler is necessary.
A possible use case are energy limitations as part of a demand
response process between the HPC operator and energy supplier.

Therefore, this paper introduces a plugin for Slurm, an open-
source scheduler, that implements a scheduling algorithm for
time-dependent cluster-wide power capping. It uses a node energy
model to predict the energy consumption of jobs and can start
jobs at different frequencies to stay below the configured power
limit. The plugin interfaces with the Digital Twin that provides
energy measurements for the compute nodes to track the system
power consumption in real time and update the power limitations
if necessary.

The plugin is tested on a cluster and compared against a
scheduling simulation of the algorithm. The analysis compares
the power profile of the simulation and the real system and the
allocation of the jobs over time. Differences in the execution and
the power trace are analysed and discussed.

I. INTRODUCTION

HE High-Performance Computing (HPC) community has

focussed on achieving maximum performance for a long
time. This doctrine has recently come under pressure by rising
energy prices and a transformation of the energy market
towards renewable energies while HPC systems continue to
grow in size and energy demand. A trend that is further
accelerated by the recent shift towards artificial intelligence.

An HPC system under full load has a relatively constant
energy requirement. However, a shift towards renewable en-
ergy production means greater volatility in the energy pro-
duction. HPC systems need a mechanism to respond to these
fluctuations. Solely relying on fossil energy source is also not
an option, as regulatory frameworks, such as the Blue Angel
for data centres [1], define upper bounds for carbon-dioxide
emissions.

Dynamically adapting the energy consumption of an HPC
system has further use cases. It can help stabilize the energy
grid by reducing the load in the grid or by increasing the load
if enough energy is available. Additionally, such a mechanism

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

175

allows the continued automatic operation of the cluster in case
of energy shortages.

Reacting to limited energy availability is sometimes referred
to as demand response. While it is common practice for
large energy consumers, HPC centres have not yet widely
adopted such mechanisms [2]. However, first mechanism have
been proposed. One possible demand response mechanism was
presented in [3]. A Digital Twin is used to collect data about
the system energy consumption and together with information
about energy availability, the scheduler can adapt the overall
energy consumption to stay below a defined threshold. The
algorithm in the original paper was validated with a simulation.
This paper implements the algorithm as a plugin for the
popular cluster scheduler Slurm [4].

This paper makes the following contributions:

o The algorithm uses a node energy model to predict the
energy consumption of the jobs. This paper uses a new
test platform for the evaluation of the plugin. Thus, an
updated node energy model is necessary that has been
created for the new test system.

o The algorithm from the original facilitates time-
dependent cluster-wide power capping. This paper im-
plements this algorithm as a plugin for the open-source
scheduler Slurm.

o The algorithm was previously only evaluated in a sim-
ulation of the Digital Twin. This paper compares the
simulation against the performance on a real cluster. The
evaluation includes power traces of the real system and
the node allocation to the jobs.

The remainder of this paper is structured as follows:
Section II introduces Slurm in detail and presents relevant
literature, especially regarding cluster operation under a power
limitation. Preparatory work such as the updated node energy
model and a recap of the scheduling algorithm is presented in
Section III. In Section IV, the implementation of the Slurm
plugin is discussed. The plugin is then evaluated in the real
world and compared to simulation results in Section V.

II. RELATED WORK

An HPC system consists of many individual components
and is typically shared among users for running their compute
jobs. These systems thus need a resource manager to avoid

Topical area: Computer Science & Systems

176

User
apps

Cluster control

scontrol
daemon

= shurmetld

sbatch

Compute node daemons

slurmd slurmd slurmd slurmd

slurmd

slurmd slurmd slurmd slurmd

Figure 1: Overview of the Slurm components. The
slurmctld is the central controller of the cluster while
slurmd handles each compute node. Client components such
as scontrol, squeue, sbatch and srun allow the user
to interact with the cluster and submit and manage compute
jobs.

resource conflicts between users as well as a strategy to assign
the available resources to the requests of the users, referred
to as scheduling strategy. Different resource managers and
schedulers exist such as e.g. Moab, PBS, Grid Engine and
Slurm [4].

Being open-source software written in the C programming
language, Slurm has been widely adopted by the research
community. Slurm works both as a resource manager and
as scheduler and also starts and monitors the compute jobs
on the cluster. Additionally, it is able to handle accounting
of the resource usage and supports resource reservation in
advance. The software consists of multiple components: the
Slurm control daemon slurmctld, the Slurm daemon on
the compute nodes slurmd and command-line utilities for
the users to manage Slurm and submit (sbatch) and control
(scontrol) their jobs. Slurm also handles the MPI con-
figuration for the jobs and offers the launch program srun.
These components are shown in Figure 1. Slurm has further
components that are responsible for accounting and billing but
they are not relevant in the context of this paper.

HPC systems are composed of individual compute nodes
which might feature different hardware, e.g. CPU cores,
memory and additional components such as storage, GPUs or
TPUs. The nodes can be grouped into partitions for bundling
nodes with identical hardware or for aiding the scheduling
process, e.g. when certain nodes are reserved for short or long
running jobs or similar. When users want to run a task on
the HPC system, they submit a job. The job defines what the
user wants to compute, the required resources to complete
the computation and for how long the job will need those
resources. Slurm can further divide jobs into job steps, that
define tasks that may be executed in parallel or contain pre-
and post-processing and do require different resources.

The specific scheduling algorithm and resource allocation
can contribute to the energy efficiency and stability of the

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

system and thus has been subject to many research studies.
The surveys by Czarnul [5] and Kocot [6] provide an overview
of tools for energy and power management and power-aware
scheduling.

Simulating the scheduling process is a common approach
in HPC research. One example is CQSim [7]. Based on trace
data, the authors propose a scheduling approach for demand
response, and test it in their simulation [8]. To retrieve such
traces, the system needs to be actively monitoring the energy
consumption of each job. Not every cluster is designed to
do that because the hardware does not provide the necessary
measurements, or because the scheduling environment does
not track the data, or both. Another important aspect is taking
the specifics of the different applications into account, when
imposing a power cap on the cluster [9]. The scheduler may
automatically change the frequencies and thus runtime of
the jobs to dynamically distribute the power. Other demand
response methods rely on power traces to create a node model
and limit power consumption of the HPC clusters [10]. None
of these approaches have been tested in the real world.

One approach in system management and system modelling
has attracted increased interest over the last years: Digital
Twins [11]. A Digital Twin is a virtual representation of a
real-world object, in this context an HPC cluster. A real-
world object is represented as a Digital Twin in the virtual
world. Data about the object is collected and integrated into
the Digital Twin. With their characteristic bi-directional data
linkage, changes in the real world are reflected in the digital
domain and vice versa. The Digital Twin models the behaviour
in the real world and can test new parameters before they are
applied to the real system. Simulations are often cheaper and
faster and a negative impact on the real system can be avoided.
In the HPC context, these simulations are generally scheduling
simulations as they describe changes in the system state well.

Digital Twins are under development for HPC systems
ranging from small clusters to one of the world’s largest
systems, Frontier [12]. As part of their smart campus ini-
tiative [13], the Physikalisch-Technische Bundesanstalt (PTB)
is developing a Digital Twin for their HPC system [14]. It
has been demonstrated that it can be used to reduce system
emissions. One major use case of the Digital Twin is the
operation of HPC systems under a time-dependent cluster-
wide power cap. The power can be capped by the Digital
Twin, depending on the currently available energy [3]. Precise
energy measurements also allow the Digital Twin to track the
data centre Power Usage Effectiveness (PUE) [15].

Similar to the node energy model in Section III-B, ap-
plication power profiles are a common technique used in
application modelling and have been done for a wide variety
of applications, including WZ factorisation [16] and matrix
factorisation [17]. An alternative to Dynamic Voltage and
Frequency Scaling (DVES) is the implementation of a power
cap as a hardware driver [18].

ALEXANDER KAMMEYER ET AL.: SLURM PLUGIN FOR HPC OPERATION WITH TIME-DEPENDENT CLUSTER-WIDE POWER CAPPING

III. PRELIMINARY WORK

This section introduces the test system used in this paper,
and shows how Slurm has been configured for this specific
system. Since the test system differs from the system in [3], a
new node energy model has been created. Furthermore, a cap
on the implemented scheduling algorithm is given.

A. Test System

For the practical test of the Slurm plugin, this paper relies
on a cluster consisting of Raspberry Pis. While this setup is
not typical for a commercial HPC system, it has a similar
structure and allows the development of the plugin without
interrupting the production HPC system of PTB. The setup is
based upon a design found proposed in [19].

The system is equipped with a total of 10 Raspberry Pi 4B
with 8 GB RAM each. They are connected via their 1 Gbit/s
Ethernet ports. Each Pi also has the Power over Ethernet (PoE)
HAT (Hardware Attached on Top) installed that allows the
nodes to be supplied with power from the Ethernet switch.
All run the Raspberry Pi OS Bookworm.

The switch, a Netgear GS316EPP, supplies power via Power
over Ethernet (PoE) to the nodes and offers a gigabit in-
terconnect. It has a rudimentary management interface that
provides energy information for each of the ports and allows
management and power cycling of individual ports. These
features thus allow us to track the per-node energy usage and
to turn nodes off and on when needed as the Raspberry Pi
does not support Wake-On-LAN. The energy data is queried
by a collector agent of the Digital Twin and provided via the
Digital Twin database.

One node is designated as the head node while the remain-
ing 9 nodes act as compute nodes. The head node provides
a global file system via NFS to all compute nodes. For
this purpose, a single SDD is connected via an SATA-to-
USB adapter and provides the necessary storage space. It
also contains scratch space that is shared between the nodes.
The compute nodes themselves are disk-less and get their
image via TFTP from the head node when they boot. An
additional Ethernet-to-USB adapter establishes a connection to
the outside world while a DHCP server provides the internal
cluster network with addresses for the compute nodes. The
head node uses NAT to forward the internet connection to the
compute nodes. This is necessary because the Raspberry Pi
does not have a real-time clock and the clocks of the compute
nodes would be out of sync after a reboot.

As the scheduler and resource manager we have opted to
use Slurm [4]. Being open source software, the Digital Twin
can be integrated with the scheduler. Slurm is configured with
a single partition spanning all 9 compute nodes. Since the
cluster is not intended for production use with many users,
only basic logging is configured.

The head node is running the slurmctld control daemon
that manages the scheduling logic and interfaces with the
Digital Twin. The compute nodes run the slurmd daemons
that connect the nodes to the control daemon. The user

connects to the head node and can use the Slurm utilities,
e.g. sbatch, to control the cluster and submit batch jobs.

Slurm provides some power saving functionalities [20],
most notably node suspension and resumption. The scheduler
monitors the nodes. If a node has been idle for a certain
amount of time, it is shut down. When the node is needed
again, Slurm issues a restart. This is implemented by power-
cycling the Ethernet port of the switch, resulting in the
Raspberry Pi booting again. The Slurm daemon on the node
then contacts the Slurm controller, signalling that the node is
ready to receive the next job. For this experiment, Slurm has
been configured to turn of a compute node after 10 minutes
of inactivity.

B. Node Energy Model

The node energy model is an integral part of the scheduling
algorithm. It allows the algorithm to estimate the energy
consumption of a job. It is the part that makes the algorithm
hardware specific. The remaining logic works independently
from any underlying hardware characteristics. However, it
needs to be updated if the algorithm should run on a different
cluster with new workloads. Hence, this section presents the
node energy model for the test system used in this paper. For
this experiment, a total of 4 different benchmarks and parallel
applications have been selected, namely the HPL and HPCG
benchmarks as well as OpenFOAM and Geant4.

The High-Performance Linpack (HPL) [21] is used to create
the TOP500 ranking of supercomputers. The benchmark is
a linear equation solver and uses highly optimized vector
instructions, thus serving as a kind of upper bound for
the model. The second benchmark, the High Performance
Conjugate Gradients (HPCG) [22], complements the HPL
benchmark by adding more memory intensive operations.

The two benchmarks are supplemented by two numeric ap-
plications. The first, Open Field Operation And Manipulation
(OpenFOAM) [23], is a computational fluid dynamics package
and the second, Geometry and Tracking (Geant4) [24], is a
Monte Carlo simulation toolKkit.

To create the node energy model, each of the 4 jobs was run
on the nodes on all supported frequencies. The switch provides
an energy measurement that allows to monitor the jobs energy
consumption. From these measurements, the Time-to-Solution
(TtS) and Energy-to-Solution (EtS) can be derived. Figure 3
shows the results for all supported frequencies from 0.6 GHz
to 1.8 GHz. Pareto-optimal points [25], [26] are coloured in
orange. For the model shown in Table I, three points have been
selected: the highest frequency of 1.8 GHz and if available two
pareto-optimal points. The scaling factor is used to adjust the
job runtime for the increased runtime required if the job runs
at a lower frequency setting.

This model shows a downside of the Raspberry Pis as
a test platform. They have a relatively high offline energy
consumption, especially compared to their idle consumption
and the consumption under load [27]. This amounts to 22.1 W
offline consumption for the compute nodes of the cluster.
While 2.70 W is not much compared to other platforms, it is

177

178

Ethernet connection
to the network

Head

Node Node 1

Node 2 Node 3

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Switch

Node 4 Node 5

Node 6 Node7 Node8 Node9

Figure 2: Schematic overview of the test cluster. It consists of one head node and a total of 9 compute nodes. They are
connected via Ethernet and receive power via PoE. The head node has an additional Ethernet port to connect the cluster to a
network. The SSD is also connected to the head node and provides storage for the compute nodes.

Table I: The node energy model

Job type Frequency Power Scaling factor
1.8 GHz 6.20 W 1.000
HPL 1.6 GHz 5.74 W 1.049
1.5 GHz 5.47TW 1.055
1.8 GHz 5.06 W 1.000
HPCG 1.3GHz 4.25W 0.911
1.2 GHz 4.13W 0.933
1.8 GHz 5.95W 1.000
OpenFOAM 1.4 GHz 5.17TW 1.015
1.1 GHz 4.89 W 1.064
1.8 GHz 6.62W 1.000
Geant4 1.5 GHz 5.55 W 1.208
1.1 GHz 4.92W 1.625
Idle - 3.12W -
Offline - 270 W -

almost half as high as the busy consumption. This behaviour
can be changed by forcibly disabling PoE on the switch instead
of only issuing a software shutdown.

C. Algorithm Recap

The goal is to run the HPC cluster under a variable power
limitation while maximizing the system usage. The algorithm’s
pseudocode is shown in Algorithm 1. This section briefly
describes the idea behind the algorithm while an in-depth
description was given in [3]. The algorithm uses two main
concepts to improve the throughput: DVFS, and turning off
nodes. The node energy model provides the optimal frequency
settings, while turning off unused compute nodes further
decreases the system power consumption.

The scheduling algorithm receives a list of eligible jobs, and
sorts them by time of arrival. The first "if" statement checks
whether there are enough online and offline nodes available to
start the job, and starts offline nodes if necessary.

The second "if" statement checks whether enough online
nodes are available to start the job. If that is the case, it uses the
node energy model to estimate the job’s power consumption.
If starting the job would exceed the power limit, the job is
deferred; otherwise, the job is started.

When a job is deferred, the routine moves on to the next
job in the queue. This allows the algorithm to backfill jobs
that might fit within the available resources.

IV. SLURM PLUGIN

The Slurm control daemon slurmctld is responsible for
job scheduling. Two scheduling algorithms are included in
the package as plugins. The first plugin is called builtin
and implements a simple FCFS algorithm. The second plugin
is called backfill and, as the name implies, implements
FCFS with backfilling. This paper presents an additional,
new scheduling plugin which implements the algorithm from
Section III-C that can be used instead of the integrated plugins.

By default, Slurm schedules jobs automatically without
consulting the scheduling plugin, as long as no resource
conflicts arise. E.g. a job submitted to an empty cluster that
fits in terms of compute nodes gets scheduled without the
scheduling plugin. This circumvents the energy limit check
of the scheduling plugin, and in our case could lead to the
power consumption exceeding defined limits. To avoid such a

ALEXANDER KAMMEYER ET AL.: SLURM PLUGIN FOR HPC OPERATION WITH TIME-DEPENDENT CLUSTER-WIDE POWER CAPPING

® non-optimal
optimal 0.6 GHZ
5400 -
=
c 52004 0.7 GHz
o
=
=3
°
%]
] .8 GHz
> 5000 - /1
g /1.7 GHz
0.9 GH
S /1_6 GHz x (o.a GHz
4800 1.1 GH; 1.0 GHz
1.4 GH: o ¢
L5 GHz 1.2 GHz
1.3 GHz
T T T T T T
800 900 1000 1100 1200 1300
Time to Solution [s]
(a) Pareto front for HPL.
360001 & @ non-optimal
18 Gz optimal
35000 4 —
g o
c
=l
El 0.6 GH
3 34000)
%]
8 6 GHz
3 " 0.7 GHz
g 's
[
c 33000 4
w
(1.5 GHz
0.9 GH: 0.8 GHz
320001 Mg a26H 10 ;: ¢
! o
L4GHZ 4 4 GHo4
T T T T T T T T
6000 6250 6500 6750 7000 7250 7500 7750

Time to Solution [s]

(c) Pareto front for OpenFOAM.

0.6 GHZ
1150 1.8 GHR. ./1,7 GHz
0.7 GHz
's
1.6 GHz
1100 4 @

= .4 GHz
=
g 1.5 GHz
5 1050 A
2
o
3 .8 GHz
o (0
< 1000
& 0.9 GHz
S ¢
&

9501 1.0 GHz

g 1.1 GH -
900 136Hz @ ’ ® non-optimal
é #-1.2 GHz optimal

T T T T T T T T
200 220 240 260 280 300 320 340
Time to Solution [s]

(b) Pareto front for HPCG.

® non-optimal
2800 4 optimal 0.6 GHZ
2600 4 (0.7 GHz
= 0.8 GHz
§ 2400 1 ¢
=}
=l
<} 0.9 GHz
2 2200 [&
2
§ (1.0 GHz
(‘U
s 2000 - 1.1 GHz
L7GHz GHx
1800 {1.8GHz 1.3 GH
4 GH
|J.5 GHxK.
1600 1 1.6 GHz
T T T T T
300 400 500 600 700

Time to Solution [s]

(d) Pareto front for Geant4.

Figure 3: Pareto fronts for the four different applications in the node energy model. Pareto-optimal frequencies in terms of EtS
and TtS are coloured orange. The remaining frequencies are coloured blue.

situation, all jobs must be submitted in the hold state with
a priority of zero. This prevents Slurm from automatically
scheduling jobs [28].

The Slurm control daemon periodically consults the
scheduling plugin. The plugin first consults the database
and updates the power limits and queries the current power
consumption of the system from the database. It contains a
set of functions that allow it to connect to the InfluxDB of
the Digital Twin. InfluxDB does not offer a native C client
implementation. However, since Slurm includes the cURL
library, the plugin uses cURL to connect to the REST API
of the database in order to query both the power consumption
of the nodes and the power limitations. This provides a level
of abstraction of the database calls from the rest of the code.
Furthermore, helper functions convert the reply from csv to
C-structs for further use.

During this periodic invocation, the plugin uses the core
scheduling routine _backfill_power () which is shown
in Algorithm 2. It does not use the usual scheduling queue but
the entire job list. First, it checks if any jobs are pending but

have not started yet in the first while loop (lines 13-21). Those
are jobs that have been scheduled by the plugin but have not
yet been started by Slurm. This avoids releasing to many jobs
that later conflict with one another. If a job is waiting to start,
the function is exited and waits for the periodic scheduling
before making the next attempt.

The second while loop (starting in line 25) handles the
actual scheduling. The plugin first consults job_test_-
resv () (lines 30.32), a Slurm function that tests whether
enough nodes are available. Afterwards, select_g_job_-
test () (lines 31-49) tries to select the optimal nodes and
tests whether the job can start immediately. Last but not
least, check_power_dvfs () (lines 57-58) uses the node
energy model to estimate the energy requirement of the job
and whether the current power limitations allow the job to
start. It is also responsible to set the frequency and adjust the
runtime of the job according to the numbers in Table 1. If
enough energy is available, the priority of the job is increased
which releases the job from the hold state. The slurmctld
recognizes that and starts the job. It is also responsible to

179

180

Algorithm 1 Pseudocode of the core scheduling routine

backfill_power (eligible_jobs) {
for (Job j eligible_jobs) {

// test if nodes need to be booted
// check if enough nodes are offline
if (j.nodes > online_nodes (Jj) &&
j.nodes <= online_and_offline_nodes(j)) {
// how many nodes need to be booted?
toboot = j.nodes - online_nodes(j);

// check if the nodes would

// exceed the power limit

if (!check_power (j, get_offline (],
continue;

toboot))) {

}
boot_nodes (7,

}

toboot) ;

// test if enough nodes are online
// and available
if (j.nodes <= online_nodes(j)) {

// check if the job and nodes would

// exceed the power limit

if (!check_power_dvfs(j)) {
continue;

}

assign_nodes (J);
j.wait_time = tick -
running.add(j);
eligible_jobs.remove (J);

Jj.submit_time;

// trigger an event in the simulation

// on job completion

e = new JobEvent (tick + j.run_time_scaled,
j, JobState.COMPLETED) ;

eventQueue.add (e) ;

select the nodes and start them if necessary. Slurm also sets
the configured frequency.

So far, the implementation has been tested on a homoge-

neous cluster with a single partition. It does not yet consider)
multi-partition scheduling or other features such as multi-
step jobs. Another aspect the algorithm cannot control yet
is energy usage during the boot process of the nodes, which
can lead to power spikes. One possible way to control this is
by introducing a delay in the boot script that Slurm uses to
power-cycle the ports on the switch. An early loaded power ;
cap driver, as proposed in [18] might also help.

V. EVALUATION

This paper presents a Slurm plugin based on a scheduling

algorithm, evaluated previously only through simulation. To
compare the simulated results with the real-world, both the
simulation and the plugin are configured with the node energy
model from Section III-B and an identical number of compute
nodes.

The workload for the evaluation is generated with the

improved Feitelson job model [29], [30]. The model generates
a job trace in the Standard Workload Format (SWF) [31].
While the format encodes which application was run, the

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Algorithm 2 Actual code: Core scheduling routine of the
Slurm plugin

45
47
49

51

54

56
57
58
59
60

S F

6.
64

66

67

68

70

=

static void _backfill_power (void) {
int j, rc = SLURM_SUCCESS, job_cnt = 0;
job_record_t+ Jjob_ptr;

bitstr_t xalloc_bitmap = NULL;
bitstr_t xavail_bitmap = NULL;
bool resv_overlap = false;
resv_exc_t resv_exc = { 0 };

time (NULL) ;
NULL;

time_t now =
list_itr_t xiter =

// check if a job has been scheduled
// and has not started yet, defer further
// scheduling in this case
iter = list_iterator_create(job_list);
while ((job_ptr = list_next (iter))) {
if (IS_JOB_PENDING (job_ptr) == true
&& job_ptr->priority > 0) {
list_iterator_destroy(iter);
return;
}
}

list_iterator_destroy (iter);

// go through the list of held jobs
iter = list_iterator_create(job_list);
while ((job_ptr = list_next (iter))) {
if (IS_JOB_PENDING (job_ptr) == true
&& Jjob_ptr->priority == 0) {
// Determine which nodes a job can use
// based upon reservations
j = job_test_resv (job_ptr,
&avail_bitmap, &resv_exc,
&resv_overlap, false);
if (j != SLURM_SUCCESS) {
FREE_NULL_BITMAP (avail_bitmap);
reservation_delete_resv_exc_parts (
&resv_exc);
continue;
}
// Select the "best" nodes for given job
// from those available
rc = select_g_job_test (job_ptr,
avail_bitmap,
job_ptr->details->min_nodes,
job_ptr->details->max_nodes,
job_ptr->details->max_nodes,
SELECT_MODE_RUN_NOW,
NULL, NULL,
&resv_exc,
NULL) ;
FREE_NULL_BITMAP (avail_bitmap);
reservation_delete_resv_exc_parts (&resv_exc);
if (rc != SLURM_SUCCESS) {
continue;
}
// We are certain that a job can start
// check the power limit and adjust DVFS
if (check_power_dvfs (job_ptr,
get_req_nodes (job_ptr))
continue;
} else {
// release the job
// slurmctld will start the job
job_ptr->priority = 1;
job_ptr->state_reason =
break;

&now, true,

< 0) A

WAIT_NO_REASON;

}
}
list_iterator_destroy (iter);

}

ALEXANDER KAMMEYER ET AL.: SLURM PLUGIN FOR HPC OPERATION WITH TIME-DEPENDENT CLUSTER-WIDE POWER CAPPING

Feitelson model does not generate this information. Hence, an
equal distribution is used to generate the workload information
with equal probability for each of the 4 different applications.
Slurm only supports runtime limits with minute resolution for
the job while the Feitelson model produces job lengths with
seconds resolution. All job runtimes are therefore rounded up
to the next full minute.

As a baseline, the job trace was simulated by the scheduling
simulation component integrated in the Digital Twin. The
power trace is shown in Figure 4a and the allocation of the
jobs to the nodes in Figure 5a. In comparison, the same job
trace was run with identical power limitations on the cluster.
A script processed the job trace file and submitted the jobs
accordingly. The power trace is shown in Figure 4b and the
node allocation in Figure 5b.

In the simulation, the algorithm uses the gaps between the
power limit while staying below the set limit. Larger jobs did
not fit below the limit and were delayed beyond the limitation.
This effect can also be seen in the node allocation in Figure Sa.
The results are comparable to the first iteration of tests with
the other node energy model [3].

In the experiment on the test system, looking at the power
trace, the cluster mostly stays below the limit. Sometimes the
limit is slightly exceeded in the order of < 3% which can be
attributed to booting nodes and job initialization. In contrast
to the simulated system where energy needed to start the
nodes is not accounted for, the real system constantly tracks
consumed energy also while booting additional nodes. When
the operating system and Slurm are fully loaded, controlling
the energy use is rather simple. However, especially during
the early boot phase, the system draws a lot of power while
not offering a mechanism to control it.

Another difference is that larger jobs start earlier in the
real system test. This increases the system utilization and
reduces the time required to complete the job trace. This
again hints towards slight differences in the energy calculation
between the plugin and the simulation. While the simulation
considers the idle energy usage of the nodes, the plugin
considers the energy usage of all running jobs and assumes
that unused nodes are shut down by Slurm. The plugin only
checks whether the running jobs allow an additional job to
start. Furthermore, the node energy model upon which in both
cases scheduling decisions rely on, represents the in average
power consumption over time of jobs - not their maximum
values. Therefore it is clear, that the real system will exhibit
these maxima in power consumption by slightly surpassing
the power limit. This could of course be cured in future by a
more refined and time-resolved node energy model.

The time the scheduling and start of the job actually takes
makes up a third difference between the simulation and the
real world. In the simulated run, jobs are tightly packed as the
simulation starts jobs instantly. In contrast, the Slurm plugin
first releases them from the hold state and subsequently waits
for the job to actually start before making the next scheduling
decision. This causes a slight delay, thus creating small gaps
between the jobs visible in Figure 5b.

To summarize, this experiment has demonstrated that the
power-capping algorithm is feasible on a real system via a
Slurm plugin, with a few initial limitations. The next step
in the development will be to align the real-world and the
simulation more closely with one another. The Slurm logic
is complex and hard to replicate in a pure simulation. The
simulation also does not simulate everything. This includes
accurate power models for the boot process, and time required
to start and stop jobs on the nodes.

The test system only has a single node type and has one
partition configured. The plugin remains to be tested in a
heterogeneous system configuration: Slurm allows to configure
different hardware in a single partition, which will make the
check more complex. Our plugin does not yet consider shared
node allocation, but this can be complemented in a next step,
as it is supported by Slurm.

In the current implementation, the node energy model is
hard-coded in the plugin, which reduces portability of the
code. For a broader use, the parameters will be moved to a
configuration file. The accuracy of the algorithm depends on
the accuracy of the node energy model. So far, no changes
in the power consumption of the jobs have been considered.
Additionally, the model is static and does not adapt to new
workloads. Another possible improvement for the plugin are
malleable jobs, which can be extended in their runtime when
they are switched to a lower frequency during their runtime.

VI. CONCLUSION AND FUTURE WORK

This paper presented a new scheduling plugin for the widely
used scheduling and resource management software Slurm.
The plugin allows an HPC cluster to operate under a system-
wide power cap. The plugin works by holding jobs until
enough power is available. Jobs can be configured by the
plugin with a specific frequency according to the node energy
model to reduce energy consumption. If the budget allows,
the plugin releases the job from the hold state and sets the
frequency. The Slurm infrastructure then handles the job start
and node configuration.

The scheduling algorithm uses a node energy model to
estimate the energy consumption of a compute job. For this
paper, a new model has been created for the specific hardware
of the test system. It has been demonstrated that this approach
can be adapted to different systems, making the scheduling
algorithm portable.

The plugin was demonstrated on the test system against a
simulation with an identical job trace. Differences between
the simulation and plugin have been discussed, especially job
start times and energy calculation. While the plugin was able
to stay below the power limit, booting compute nodes might
briefly surpass the configured limit. Possible fixes have been
discussed. The plugin was able to schedule jobs efficiently,
and shows higher utilization than the simulation.

The Slurm plugin presented in this paper was tested with
a homogeneous system configuration with identical nodes in
a first step. Modern HPC systems often use heterogeneous
system configurations with different node types and different

181

182

60

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

50 A

40

30 1

20 1

Cluster Power Consumption [W]

10

60

50 A

40 A

30 1

20 1

Cluster Power Consumption [W]

10 A

0 T T T T T T T T T
\,%.A‘a XQ&Q Xq'f) \9,30 \’g.pfa 10.;)0 _LQ.;;‘) 10.30 'L()'N)

time

—— Cluster Power ~ —— Power Limit

(a) Power trace of the simulation by the Digital Twin.

XQ’"D‘C) Xg,.gﬁ Xq'f) Xq?"Q Xq'bf) 20 o0 ’LQ':\() 10.30

time
—— Cluster Power ~ —— Cluster Power

(b) Power trace of the test cluster.

Figure 4: Power traces of the experiment. A job trace was simulated and run on the test cluster to compare the performance
of the algorithm in the simulation and the real world. The power trace is shown in blue and the limit is shown as the orange

dashed surface.

Node

ix “&]
| '

xg.)l 10.3%

RS RS o

time

(a) Node allocation of the simulation.

1

04
R

\’%.5’\ Xg.;l xgg_@ xq_p‘() xq_r,‘) 7_6‘99 ’LU"LD‘

time

(b) Node allocation of the real system.

Figure 5: Node allocation of the experiments. The width of the rectangles corresponds to the runtime and the height shows

which nodes where allocated to the job.

generations of CPUs. The test system could be extended with
newer Raspberry Pi 5s or NVIDIA Jetson boards to create
such a heterogeneous system.

Currently, the node energy model is hard-coded in the
plugin. This would need to be shifted to a configuration
file. The plugin has not been tested with heterogeneous or
multi-partition cluster configurations. Since these are common
nowadays, further development is necessary to support these
configurations.

ACKNOWLEDGEMENT

We would like to thank our colleagues from department
Q.13, first and foremost S. Thiimmler, for their help with
building the case for the Raspberry Pi cluster.

REFERENCES

[1] RAL UMWELT, Rechenzentren ~ DE-UZ 228, 2nd ed.,
Frinkische StraBe 7, 53229 Bonn, Feb. 2025. [Online]. Avail-
able: https://produktinfo.blauer-engel.de/uploads/criteriafile/de/DE-UZ-
228-280225-de-Kriterien- V3.pdf

ALEXANDER KAMMEYER ET AL.: SLURM PLUGIN FOR HPC OPERATION WITH TIME-DEPENDENT CLUSTER-WIDE POWER CAPPING

[2]

(3]

(4]

[5]

(6]

(71

[8]

[91

(10]

(11]

(12]

[13]

(14]

[15]

T. Patki, N. Bates, G. Ghatikar, A. Clausen, S. Klingert, G. Abdulla,
and M. Sheikhalishahi, “Supercomputing centers and electricity ser-
vice providers: A geographically distributed perspective on demand
management in europe and the united states,” in High Performance
Computing, J. M. Kunkel, P. Balaji, and J. Dongarra, Eds. =~ Cham:
Springer International Publishing, 2016. doi: 10.1007/978-3-319-41321-
1_13. ISBN 978-3-319-41321-1 p. 243-260.

A. Kammeyer, F. Burger, D. Liibbert, and K. Wolter, “HPC operation
with time-dependent cluster-wide power capping,” in Proceedings of
the 19th Conference on Computer Science and Intelligence Systems,
ser. Annals of Computer Science and Information Systems, M. Ganzha,
L. Maciaszek, M. Paprzycki, and D. §l¢zak, Eds., vol. 39, 2024. doi:
10.15439/2024F1066 p. 385-393.

M. A. Jette and T. Wickberg, “Architecture of the slurm workload man-
ager,” in Job Scheduling Strategies for Parallel Processing, D. Klusacek,
J. Corbalén, and G. P. Rodrigo, Eds. Cham: Springer Nature Switzer-
land, 2023. ISBN 978-3-031-43943-8 p. 3-23.

P. Czarnul, J. Proficz, and A. Krzywaniak, “Energy-aware high-
performance computing: Survey of state-of-the-art tools, techniques,
and environments,” Scientific Programming, vol. 2019, p. 8348791,
2019. doi: 10.1155/2019/8348791. [Online]. Available: https://doi.org/
10.1155/2019/8348791

B. Kocot, P. Czarnul, and J. Proficz, “Energy-aware scheduling
for high-performance computing systems: A survey,” Energies,
vol. 16, no. 2, 2023. doi: 10.3390/en16020890. [Online]. Available:
https://www.mdpi.com/1996-1073/16/2/890

X. Yang, Z. Zhou, S. Wallace, Z. Lan, W. Tang, S. Coghlan,
and M. E. Papka, “Integrating dynamic pricing of electricity
into energy aware scheduling for hpc systems,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: Association for Computing Machinery, 2013. doi:
10.1145/2503210.2503264. ISBN 9781450323789. [Online]. Available:
https://doi.org/10.1145/2503210.2503264

S. Wallace, X. Yang, V. Vishwanath, W. E. Allcock, S. Coghlan, M. E.
Papka, and Z. Lan, “A data driven scheduling approach for power man-
agement on hpc systems,” in Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Anal-
ysis, ser. SC ’16. IEEE Press, 2016. doi: 10.5555/3014904.3014979.
ISBN 9781467388153

D. Bodas, J. Song, M. Rajappa, and A. Hoffman, “Simple power-
aware scheduler to limit power consumption by hpc system within a
budget,” in 2014 Energy Efficient Supercomputing Workshop, 2014. doi:
10.1109/E2SC.2014.8 p. 21-30.

K. Ahmed, J. Liu, and K. Yoshii, “Enabling demand response
for hpc systems through power capping and node scaling,” in
2018 IEEE 20th International Conference on High Performance
Computing and Communications;, IEEE 16th International Con-
ference on Smart City; IEEE 4th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), 2018. doi:
10.1109/HPCC/SmartCity/DSS.2018.00133 p. 789-796.

ISO Central Secretary, “Digital twin — concepts and terminology,”
International Organization for Standardization, Geneva, CH, Standard
ISO/IEC 30173:2023, Nov. 2023. [Online]. Available: https://www.iso.
org/standard/81442.html

W. Brewer, M. Maiterth, V. Kumar, R. Wojda, S. Bouknight, J. Hines,
W. Shin, S. Greenwood, D. Grant, W. Williams, and F. Wang, “A
digital twin framework for liquid-cooled supercomputers as demon-
strated at exascale,” in SC24: International Conference for High Per-
formance Computing, Networking, Storage and Analysis, 2024. doi:
10.1109/SC41406.2024.00029 p. 1-18.

B. Jung, A. Kammeyer, V. Peltason, M. Ulbig, M. Wehming,
and D. Hutzschenreuter, “Systems metrology in future cities — the
example smart metrology campus (smc),” Measurement: Sensors, p.
101800, 2024. doi: 10.1016/j.measen.2024.101800. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2665917424007761
A. Kammeyer, F. Burger, D. Liibbert, and K. Wolter, “Developing a
digital twin to measure and optimise hpc efficiency,” Measurement:
Sensors, p. 101481, 2024. doi: 10.1016/j.measen.2024.101481.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$2665917424004574

, “Determining data centre pue with a digital twin,” in Sensor and
Measurement Science International, ser. SMSI 2025. AMA Service
GmbH, May 2025. doi: 10.5162/SMSI2025/A7.1 p. 71-72.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

B. Bylina, J. Bylina, and M. Piekarz, “Impact of processor frequency
scaling on performance and energy consumption for wz factorization on
multicore architecture,” in Proceedings of the 18th Conference on Com-
puter Science and Intelligence Systems, ser. Annals of Computer Science
and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, and
D. Slgzak, Eds., vol. 35, 2023. doi: 10.15439/2023F6213 p. 377-383.
B. Bylina and M. Piekarz, “The scalability in terms of the time and
the energy for several matrix factorizations on a multicore machine,”
in Proceedings of the 18th Conference on Computer Science and
Intelligence Systems, ser. Annals of Computer Science and Information
Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Slgzak, Eds.,
vol. 35, 2023. doi: 10.15439/2023F3506 p. 895-900.

A. Krzywaniak, J. Proficz, and P. Czarnul, “Analyzing
energy/performance trade-offs with power capping for parallel
applications on modern multi and many core processors,” in 2018
Federated Conference on Computer Science and Information Systems
(FedCSIS), 2018. doi: 10.15439/2018F177 p. 339-346.

Raspberry Pi Ltd.,, “How to build a Raspberry Pi cluster,” May
2025. [Online]. Available: https://www.raspberrypi.com/tutorials/cluster-
raspberry- pi-tutorial/

SchedMD LLC, “Slurm power saving guide,” May 2025. [Online].
Available: https://slurm.schedmd.com/power_save.html

A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, “Hpl - a
portable implementation of the high-performance linpack benchmark
for distributed-memory computers,” Dec. 2018, version 2.3. [Online].
Available: https://www.netlib.org/benchmark/hpl/

J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” The International Journal of
High Performance Computing Applications, vol. 30, no. 1, p.
3-10, 2016. doi: 10.1177/1094342015593158. [Online]. Available:
https://doi.org/10.1177/1094342015593158

H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to
computational continuum mechanics using object-oriented techniques,”
Computer in Physics, vol. 12, no. 6, p. 620-631, 11 1998. doi:
10.1063/1.168744. [Online]. Available: https://doi.org/10.1063/1.168744
S. Agostinelli, J. Allison, K. Amako et al., “Geant4d—a simulation
toolkit,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 506, no. 3, p. 250-303, 2003. doi: 10.1016/S0168-9002(03)01368-
8. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0168900203013688

N. Sudermann-Merx, Fortgeschrittene Modellierungstechniken. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2023, p. 161-193. ISBN
978-3-662-67381-2. [Online]. Available: https://doi.org/10.1007/978-3-
662-67381-2_7

D. Kolossa and G. Griibel, “Evolutionary computation and nonlinear
programming in multi-model-robust control design,” in Real-World
Applications of Evolutionary Computing, S. Cagnoni, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2000. ISBN 978-3-540-45561-5
p. 147-157.

“Rpi 4 consumes 2.5w when shut down,” May 2025. [Online].
Available: https://raspberrypi.stackexchange.com/questions/104944/rpi-
4-consumes-2-5w-when-shut-down

R. P. Becker, “Entwurf und implementierung eines plugins fiir slurm
zum planungsbasierten scheduling,” Bachelor’s thesis, Freie Universitit
Berlin, Berlin, 2021.

D. G. Feitelson, “Packing schemes for gang scheduling,” in Job Schedul-
ing Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. ISBN 978-
3-540-70710-3 p. 89-110.

D. G. Feitelson and M. A. Jettee, “Improved utilization and responsive-
ness with gang scheduling,” in Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997. ISBN 978-3-540-69599-8 p. 238-261.
S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby, “Benchmarks and stan-
dards for the evaluation of parallel job schedulers,” in Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. doi: 10.1007/3-
540-47954-6_4. ISBN 978-3-540-47954-3 p. 67-90.

183

