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Abstract—The impact of brain tumors as a global health
concern is due to their aggressive behavior, high mortality, and
complexities in their diagnosis. While MRI remains the gold
standard for identifying, monitoring, and detecting brain tumors,
automated classification methods encounter many complications
with respect to the diverse morphologies of tumors, similarities
in their imaging features, and the potential variability in imaging
conditions.CNNs can capture spatial hierarchies, but cannot
generalize effectively and ViTs rely on the context to characterize
the image modalities which means that, whilst they address
some deficiencies of CNNs, they require extensive data and
computational resources. To remedy some of the issues that each
approach presents, we present multiscale MoE that leverages
CNNs and attention-oriented modules. The proposed architecture
uses multi-scale feature extraction, channel-spatial attention, and
dynamic expert routing, which adequately collects tumor-specific
features efficiently. We applied two different publicly available
datasets, namely the Bangladesh Brain Cancer MRI and Figshare
Brain Tumor dataset. For the Bangladesh dataset, the proposed
model achieved overall accuracy of 96.92% and for FigShare
dataset, the highest results achieved 96.42% accuracy. In contrast
to state-of-the-art models, multiscale MoE achieved the highest
testing accuracy 96.14%, and the lowest Brier score 0.0603. The
proposed model has shown to have balanced classification results
across the tumor classes and reduced the number of false pre-
dictions whilst maintaining efficient computational performance
and thus has the potential to provide a valuable resource for
clinical practice with respect to real-time applications.

I. INTRODUCTION

RAIN tumors, whether they are primary or metastatic,
Bare a major global health challenge because of their
high mortality rates and difficult clinical presentations [1].
Symptoms of brain tumors vary broadly sometimes dependent
on location, size, or growth speed and can include debilitating
headaches, seizures, neurological deficits, cognitive deficits,
and problems with speech or vision [2]. Global health data
suggests that this burden is increasing: in 2020, an estimated
308,000 new brain and CNS tumors were diagnosed around the
world which led to approximately 251,000 deaths [3]. In the
United States, the estimated number of new malignant brain
tumors for 2023 to 2025 is expected to reach nearly 24,000
new cases per year with the projection of approximately
18,330 brain tumor related deaths in 2025. Despite advances in
their treatment, the overall five-year survival rate is still below
35%, with even lower rates for more aggressive brain tumor
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types like glioblastoma at close to 7%. This clearly highlights
the need for better methods for diagnosis and treatment [4].

Brain tumors are usually approached with a multi-modality
approach involving surgical excision, chemotherapeutics, and
radiotherapy, which is additionally accompanied with corti-
costeroids to control intracranial pressure, and anticonvulsant
medications to control seizures [5]. Currently, MRI imaging is
the gold standard in brain tumor imaging, used for identifying,
localizing, and monitoring tumors because it is non-invasive
and has greater spatial resolution than the other imaging
modalities, and it gives the surgeon an idea of structural
and functional information regarding tumor heterogeneity [6].
The advent of automated imaging approaches, driven by MRI
precision, has prompted an interest in a collection of imaging
variants to assist radiologists in classifying brain tumors based
on multimodal MR imaging datasets and to provide images
a radiologist would have a unique understanding of and the
stages could potentially be determined as well [7].

Al and deep learning specifically, has arisen as a powerful
remedy to this issue with unique advancements in assessing
the vast amounts of medical images we produce each day
[8]. CNNs are the current state-of-the-art for classifying brain
tumors as they are able to learn spatial hierarchies and dif-
ferences based on the spatial relationships between features in
MRIs [9]. Recently, ViTs have emerged as a promising rival by
modelling global dependencies and self-attention across patch
data. Regardless, both approaches address limitations [10].
CNNs rely on intensive training with finite and homogeneous
training sets and their performance is symptomatic of their
training process, as their ability to classify imaged tumors are
less generalizable across imaging conditions[11]. ViTs strug-
gle as they require large amounts of training data and rigorous
computational resources to offset their limitations. They also
depend upon well-performing patch models over large regions
of space and subject to varying spatial biases, which is more
frequently defined differently in medical domains because of
variability and size [12].

Another problem is the need to develop explainable Al
models, which could provide the explanation and justification
of its decision [13], [14].

In order to overcome these challenges and limitations, the
Mixture of Experts (MoE) framework serves as a promising
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path forward because it combines multiple sub-model, allow-
ing each expert to focus on different features of the input such
as shape of tumor, texture, and surrounding tissue context. In
MoE architecture, each expert focuses on a different feature
representation, while a gating mechanism selects the best
expert for a given input and its properties. MoE can even
manage inter-patient differences, irregular morphologies of
tumors, and inconsistencies in medical imaging that often
complicate single model approaches. By integrating the ad-
vantages of both CNNs and transformers in to a modular
framework, the MoE framework can improve classification and
generalizability and can improve interpretability of decision
making processes. Thus, the Mixture of Experts approach not
only addresses the various issues regarding current approaches
to automated brain tumor classification but also opens up
the possibility for more reliable, rigorously, sensitive and
clinically useful Al-supported diagnostic tools. In this work,
we proposed a multiscale MoE for the precise classification
of brain tumors.
The contributions of this study are as follows:

e A novel Multiscale MoE architecture consist of five
experts, multiscale feature extraction, channel-spatial at-
tention, and dynamic expert routing mechanism has been
proposed.

o Comprehensive evaluation has been conduction based on
two benchmark MRI datasets based on calibration, and
inference speed comapred to the SOTA methods.

o Expert utilization analysis revealing dataset-specific
specialization patterns, improving interpretability of
decision-making.

II. RELATED WORKS

In recent years, a number of researchers have proposed sev-
eral methods for using MRI scans to detect brain cancers [15].
These methods include both conventional machine learning
algorithms and deep learning models [16]. Here is a presen-
tation of the pertinent research on brain tumor identification
utilizing brain tumor datasets [17]. For example Muhammad et
al.[18] presented a comprehensive examination of the various
grades used to classify brain tumors. A detailed explanation
was given of the procedures used to categorize brain tumors
(BTCs), including preprocessing the tumor, determining deep
learning features, and classification. They discussed the partic-
ular limitations and achievements of the existing deep learning
techniques for Bitcoin. The importance of transfer learning for
deep learning feature extraction was also covered.

Narmatha et al. [19] presented a methods for classification
and segmentation using a fuzzy brain-storm optimization al-
gorithm. With this approach, the target brain cluster’s greatest
priority is provided by the storm optimization. To find the
best answer, the fuzzy procedure is iterated several times. An
accuracy of 93.85% is given for the experimental procedure,
which was conducted using the BRATS2018 dataset.

Sajad et al.[20] presented a CNN-based multimodal tumor
categorization method. They first separated the tumor regions
in the MRI data using CNN. They then performed an extensive
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data augmentation to train an efficient CNN model. Later,
they improved the CNN model that was already trained using
improved brain data. Tumors were classified using the final
layer of the presented method, and it was shown that improved
data yielded superior results on the selected datasets.

Mzoughi et al. [21] presented a method for making neu-
roradiology simple. This study’s primary goal was to use
volumetric 3D MRI to detect brain tumors. The authors
classified the tumors using a Multiscale 3D CNN architec-
ture to increase process efficiency. By using tiny kernels,
the suggested approach can lessen the weight of both local
and global information. Additionally, the data augmentation
technique is used to improve model training. Ultimately, they
used experimental findings to demonstrate the effects of data
augmentation.

III. PROPOSED MULTISCALE MOE

Convolutional Neural Networks have been used for image
classification tasks for more than a decade now, demonstrating
great potential in various domains particularly in medical
imaging. Despite their good performance, there were some
issues in traditional CNNs which needed to be addressed such
as their inability to extract global patterns, handle diverse
features and focus on important regions. Although these issues
were addressed individually through attention modules and
multi-scale architectures in different studies but there is no
comprehensive model that can tackle all the issues together.
In this paper, we proposed a new model which can handle all
these limitations single handedly by incorporating attention
modules, multi scale feature extraction block and Multi scale
Mixture of experts in a single architecture to ensure efficient
and robust image classification for diverse feature maps.

A detailed diagram of proposed architecture is shown in
Figure 1.

Stage 1 begins with initial feature extraction using a 7x7
convolution, batch normalization, ReLU activation, and max
pooling, followed by the first MoE block consisting of five
parallel expert networks and a dynamic router that assigns
adaptive weights to each expert’s output. The aggregated ex-
pert features are refined through a Channel Attention module,
which applies both max-pooling and average-pooling opera-
tions to emphasize important channels, and a Spatial Attention
module, which uses mean and max pooling across spatial
dimensions to highlight critical spatial regions. An Auxiliary
Classifier is connected at the end of this stage to provide
intermediate supervision.

The proposed model starts with an initial feature extraction
block which lays the foundation for deep feature extraction.
This block accepts an input of size (224 x 224 x 3) and passes
it to a 7 X 7 convolutional layer with a stride of 2 to process
low-level features such as textures and edges. It is followed
by a batch normalization layer S to normalize the features
for stabilized training and a ReLU activation function o to
introduce non-linearity in order to capture complex features.
After that, a max pooling layer M,, with a kernel size of 3 x 3
and a stride of 2 is applied to reduce the spatial dimensions
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Fig. 1. Detailed architecture of the proposed Multiscale Mixture of Experts (MoE) framework for brain tumor classification. The model operates in three

sequential stages, each comprising specialized processing modules.

from 224 x 224 to 56 x 56. However, after this block, the
number of channels is increased from 3 to 64 for deep feature
processing. Mathematically, this block can be represented as:

Zy =M, (o (B(W1%X)+b1)) (0

Here, X represents the input tensor, * represents the con-

volutional operation, W; represents the convolutional weights,
and by represents the bias term.

Stage 2 introduces a multiscale feature extraction block
with parallel convolutional layers of varying kernel sizes
and pooling operations to capture features at different spatial
resolutions. The output is processed by a second MoE block
with its dynamic router, followed again by channel and spatial



attention modules and a second auxiliary classifier.

Mixture of Experts: After initial feature extraction, the
feature map is passed to the first block of the Mixture of
Experts to extract complex features. This block is composed
of 5 expert blocks and a dynamic router which assigns weights
to each expert block. An expert block is a convolutional neural
network that contains several convolutional, batch normaliza-
tion, and activation layers to extract specialized features based
on the input image.

In an expert block, the feature map is first passed through
two 3 x 3 convolutional layers to extract features, where each
convolutional layer is followed by a batch normalization layer
to normalize the activations. A ReLU activation function is
applied at the end to introduce non-linearity. All the expert
blocks share the same architecture but have different weights
that were initially assigned during training, making them
specialized for different types of tumors. An expert block can
be defined as:

E—o ([3 (W” «f (W’ « 7y + b’) n b)) )

Here, W' and W" represent the weights of both convolu-
tional layers, and E; represents the output of the i-th expert
block.

On the other hand, a router is composed of an adaptive
average pooling layer to summarize spatial information and
two dense layers that produce a probability distribution over
the 5 expert blocks. A ReLU activation is also applied between
both dense layers. It can be defined as:

Ri=v¢ (Wy-o(Wyi-Ap(Z1))) 3)

Here, A, represents adaptive average pooling, W7 and Ws
represent the weights of the dense layers, and ¢/ represents the
SoftMax activation function which converts the router weights
into a probability distribution.

In the MoE block, the input is passed to each expert block
and the dynamic router at the same time. The router analyzes
the image and assigns weights to each expert block according
to their specificity, ensuring that the most relevant experts
receive the maximum weightage. The input is processed by
each expert individually, and their outputs are multiplied with
their respective weights and then added to generate the final
feature representation. It can be defined as:

5
Y=Y Ri-Ei(Z) @)
i=1

The block diagrams of the expert block and dynamic router
are shown in Figure 2 and Figure 3, respectively.

Stage 3 incorporates deeper feature representations via a
third MoE block, followed by attention modules and a Final
Classifier consisting of global average pooling (GAP), fully
connected layers, ReLU activation, dropout regularization, and
a final dense layer for tumor type prediction. The architecture’s
modular design allows dynamic expert utilization, multi-scale
feature capture, and attention-guided refinement, enabling
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Fig. 2. Structure of an individual expert block used in the proposed Multiscale
Mixture of Experts (MoE) framework. The block receives the input tensor and
processes it through a sequence of layers: a 3x3 convolutional layer for local
feature extraction, followed by batch normalization to stabilize training and
ReLU activation to introduce non-linearity. A second convolutional layer with
a 2x2 kernel is then applied for further feature refinement, again followed by
batch normalization and ReLU activation. The output of this block provides
specialized feature representations that contribute to the MoE’s adaptive expert

routing mechanism.
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Fig. 3. Architecture of the dynamic router module in the proposed Multiscale
Mixture of Experts (MoE) framework. The router receives the input tensor and
applies an average pooling operation to capture global spatial information. The
pooled features are passed through a fully connected (dense) layer, followed
by a ReLU activation to introduce non-linearity, and then through a second
dense layer to generate expert routing scores. These scores are normalized
into a probability distribution, which determines the relative contribution of
each expert in the MoE to the final feature aggregation.
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robust and efficient classification across diverse MRI tumor
appearances.

Channel and Spatial Attention: The output of the Mix-
ture of Experts block is passed to the channel attention module
to calculate the channel-wise importance and emphasize the
important features. For this purpose, the feature map is passed
through two parallel blocks simultaneously. Each block is
composed of a pooling layer, two convolutional layers, and a
ReLU activation function. The only difference is that one block
contains an average pooling layer while the other contains a
max pooling layer to extract both local and global channel
information. The outputs of both blocks are added, and a
sigmoid activation function is applied to them to produce
attention weights, which can be defined as:

Ac=A|F. (4, (V) +F. (M, (V)]

Where

®)
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F.=Wyxo(Wa*Y +b,) + by (6)

Here, A represents the sigmoid activation function, A, and
M, represent average and max pooling, W, and W}, represent
the weight matrices of the convolutional layers, and b, and b,
are their respective bias terms.

These attention weights are then multiplied with the original
feature map to enhance the important features while suppress-
ing the less important ones. Mathematically, it can be defined
as:

Yo=A,xY @)

These channel-wise refined features are then passed to
the spatial attention module to emphasize spatially important
locations. Here, the feature map is passed through average and
max pooling layers simultaneously to capture both average and
max features. The outputs of both layers are then concatenated
and passed through a 7 x 7 convolutional layer and a sigmoid
activation function to produce a spatial feature map, which
is then used to weigh the spatial features according to their
importance. Mathematically, it can be represented as:

Ay = XN (W * [AP(YC) | MP(YC)] + bs) 3

Here, || represents concatenation. This weighted feature map
is then multiplied with the channel-wise recalibrated feature
map to generate a channel and spatial-wise emphasized feature
representation:

Y, =A,xY, )

Here, Y. and Y represent the outputs of the channel and
spatial attention modules, respectively.

Multi-scale Feature Learning: The recalibrated feature
map is then passed to the multi-scale feature extraction block,
which consists of four parallel layers, each with a different ker-
nel size to extract information at various scales. Each branch
is composed of a convolutional layer, batch normalization, and
a ReLU activation function to extract and normalize features.

In Branch 1, the convolutional layer has a kernel size
of 1 x 1 to capture pointwise features while reducing the
dimensionality of the feature map. In Branch 2, the kernel size
is increased to 3 x 3 to capture small and mid-sized tumors,
while in Branch 3, a convolutional layer with kernel size 5 x 5
is used to extract contextual information.

The last branch, Branch 4, consists of a max pooling layer
to summarize spatial information, followed by a 1 x 1 con-
volutional layer, batch normalization, and a ReLLU activation
to enhance spatial robustness in the model. The outputs of all
the branches are concatenated before being passed to the next
block. Mathematically, this operation can be represented as:

Y = concat[Y, Ys, Vs, Y4] (10)

Where the output of each branch is calculated as:

Yi=c(B(W;*Ys)+0b;), fori<3 (11)

Y, =Yi(M,), fori=4 (12)

Here, W, and b; denote the weights and bias of the i-th
convolutional layer, ( is the batch normalization function, o
is the ReLU activation, M, is max pooling, and Y is the input
from the spatial attention module.

These multi-scale extracted features are then passed through
another Mixture of Expert block with same architecture as
before, however the depth of network is increased to 256
channels. This block ensures that features are extracted at
various level of abstractions and model can learn to handle
diverse range and types of tumors. Another channel and
spatial attention module is incorporated after this Moe block
to remove the noise from feature map and to pay attention
on more tumor relevant features. It is then followed by
another set of Moe block and attention modules incorpo-
rated in the very same architecture but with higher depth to
extract progressively complex features. So, the input tensor
after passing through three Moe blocks followed by attention
modules, finally headed towards the main classifier for final
classification.

Final and Auxiliary Classifier:

In the main classifier, the feature map is first passed through
an adaptive average pooling layer to summarize the spatial
information, and the output is passed to a dense layer that
projects this information from a higher-dimensional feature
space to a lower-dimensional feature space. A ReLLU activa-
tion function is applied afterward to introduce non-linearity,
followed by a dropout layer with a dropout rate of 0.5, which
randomly deactivates 50% of the neurons to prevent the model
from overfitting. Finally, another dense layer is used to convert
the feature maps into class logits. Mathematically, this can be
defined as:

c=w, -a(a (W{ -A,,(Y))) (13)

Here, O represents the dropout layer, and Wll and WQI
represent the weights of the dense layers.

Apart from the main classifier, two auxiliary classifiers
are also introduced in the model—one after the first spatial
attention module and another after the second spatial atten-
tion module. These auxiliary classifiers predict class labels
from intermediate features, helping the model improve feature
learning during the early stages of training.

Each auxiliary classifier consists of an adaptive average
pooling layer followed by a dense layer, a ReLU activation,
a dropout layer, and another dense layer—configured in the
same way as the main classifier. The auxiliary losses are added
to the model’s overall loss only during training. During model
evaluation (testing), only the loss from the main classifier is
considered.
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Fig. 4. al-a5 presented the samples of Bangladesh brain cancer MRI and
bl-a5S presented the sample images of Figshare dataset.

IV. DATASET COLLECTION AND AUGMENTATION

The experimental design of this work uses two pub-
licly available datasets of brain tumor image classification:
https://data.mendeley.com/datasets/mk56jw9rns/1 and https://
figshare.com/articles/dataset/brain_tumor_dataset/1512427. In
both the Brain Cancer raw MRI data and the Figshare brain
tumor dataset, which are displayed in Figure 4, there are
three classes in the image classification data for brain tumors.
The first dataset contains Brain_Glioma, Brain_menin, and
Brain Tumor, while the second dataset includes Meningioma,
Glioma, and Pituitary Tumor.

Consequently, Figshare dataset has limited number of im-
ages, which are insufficient to train deep learning models
effectively. To solve this problem, the original images are
splitted into 55% for training, 15% for validation, and 30%
for testing. After that,we employed the data augmentation
technique on training portion. In this method, three image
translations are performed such as flip left, flip right, and
rotation to increase the diversity of the dataset. The whole
description of the datasets are described in Table I.

TABLE I
BRAIN TUMOR DATASETS WITH NUMBER OF CLASSES, IMAGES, AND
SPLITS
No.of Class [ Original Images | Train:Test: Validation
Bangladesh Brain Cancer - MRI dataset
Brain_Glioma 2004 1102 / 602 / 300
Brain_Menin 2004 1102 / 602 / 300
Brain_tumor 2048 11026 / 615 / 307
Figshare brain Tumor dataset

Glioma 1426 784 7429 /213
Meningioma 708 784 /213 /106
Pituitary tumor 930 784 /280 / 139

V. EXPERIMENTAL SETUP AND EVALUATION
A. Training and Parameters

For the training of proposed Mutliscale MoE model, 55%
of data is used for training, 15% for validation during the
learning phase, and the remaining 30% is allocated for testing.
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The training process is configured with a mini-batch size
of 16, a learning rate of 0.00001, epochs is 50, number
of experts is 5, auxiliary weights is 0.03, and the Adam
optimizer. To prevent overfitting, early stopping is applied
with a learning rate decay factor of 0.2, a patience value of 5
epochs, and a minimum learning rate threshold of 0.00001.
All experiments are conducted using Python in a PyTorch
environment, executed on a desktop system equipped with an
NVIDIA RTX 3060 GPU 12 GB and 24 GB of system RAM.

B. Evaluation Metrics

To rigorously assess the performance of the proposed mul-
tiscale MoE model, we based on a comprehensive range of
standard and complex evaluation metrics. The standard metrics
are Precision, Recall, F1 score, and Support, which together
provide a solid assessment of the models discriminative abil-
ity, sensitivity, and assessment of classification accuracy. In
addition, we incorporated complex metrics such as Balanced
Accuracy, F-beta score, Expected Calibration Error (ECE),
Brier Score, and an Overall Testing. These metrics provide
a fairly complete review of a models efficacy, including
dealing with class imbalance, evaluating the tradeoff between
precision versus recall when tailoring importance weights,
and exploring the calibration of the predicted probabilities.
Balanced Accuracy is important in providing equal perfor-
mance for all classes, no matter how prevalent they are, while
the F-beta score provides adjustable weighting so inferences
can emphasize recall according to the requirements of any
particular application. ECE and Brier Score are important
measures of probabilistic reliability, measuring the covariance
between predicted certainty and actual outcomes. Calibration-
aware metrics are very important in clinical decision making,
especially when it comes to high-stakes environments, when
both predictive certainty and balanced performance for all
classes are important to achieve accurate diagnosis, optimal
treatment planning, and ultimately improve overall patient
care. the complex metrices are mathematically defined as:

c
1 TP;
BA = — P —— 14
C’;TPﬂrFNi (19
Precision - Recall
Fz=(1+p8%- 15
p=(1+5) (/8% - Precision) + Recall (15)
1N
BS = — i — yi)? 16
N ;_l(p Yi) (16)
o |Bul
ECE = E ]G” lacc(B,,) — conf(B,,)| 17)

m=1

Where C is the number of classes, [ calculates the weighting
between precision and recall, and N is the number of samples.
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VI. RESULTS OF PROPOSED MULTISCALE MOE

The classification performance of the proposed Multiscale
MOoE model on the Figshare dataset shows excellent discrimi-
native performance for all three brain tumors, a shown in Table
II. Class-wise results indicate that pituitary tumor is classified
with the highest precision which is 0.99, demonstrating that
while the model correctly classified almost every tumor type,
it had an excellent ability to correctly avoid false positives
for pituitary tumor while maintaining a high sensitivity to
pituitary tumor classification. Glioma classification similarly
showed robust performance across both precision and recall
with a score of over 0.97 and culminating in an Fl-score of
0.98., Meningioma classification while still showing strength
precision is0.92, recall is 0.93, and Fl-score is 0.93 showed
a greater degree of incorrect classification then the other
tumors. Examination of the confusion matrix in Figure 5
shows that of the 76 meningioma cases, 12 were found to be
glioma and 3 were classified as pituitary tumors. Moreover,
of the 59 gliomas, 8 were misclassified as meningiomas.
These errors are likely a result of the similarity of radiological
appearance for these tumor subtypes, particularly when tumors
have overlapping anatomy, as well as more subtle similarities
in texture and intensity data that could challenge the MoE
model’s ability to create distinct class separation boundaries
from the MRI scans of these tumor types.

Meanwhile, compared to the Bangladesh dataset in Table II,
the proposed model provides greater consistency and balance
in performance for each tumor class overall, with each tumor
class exhibiting precision, recall and Fl-score values exceed-
ing 0.95. Glioma detection remains highly superior precision
is 0.98, recall is 0.98, and Fl-score is 0.98, meningioma
detection achieves balanced precision which is 0.96 and recall
is 0.95, pituitary tumor showed exceptional recall is 0.99
with precision of 0.96. In Figure 6, the confusion matrix
shows few false predicted classifications with meningioma
10 samples predicted as glioma and 22 samples predicted as
pituitary tumor. In addition, a few pituitary tumor such as 9
cases were predicted as meningioma. Generally, the confu-
sion matrix shows fewer cross-class prediction errors when
compared to the Figshare results which could be attributed to
differing greater inter-class separability. Nevertheless, as can
be concluded from both results, the few predicted cases can
be easily explained by the overlapping tumor morphology,
similar distributions of partial volume effects related to the
MRI acquisition.

The extensive performance evaluation of the proposed
Multiscale MoE, on the Figshare and Bangladesh datasets,
supports the models apparent classification performance, ro-
bustness and likely generalization from several sources of
data (Figshare and Bangladesh). For the Balance Accuracy
measure which is useful to evaluate overall performance across
all classes independent of sample distribution was shown
to achieve 0.958 for Figshare and 0.9691 in Bangladesh.
Both values highlights that the model consistently provides
high recognition accuracy independent, or with major class

TABLE II
CLASSIFICATION RESULTS OF PROPOSED MULTISCALE MOE ON BOTH
SELECTED DATASETS

Class | Precision | Recall | Fl-score | Support
Figshare Results
Glioma 0.97 0.98 0.98 429
Meningioma 0.92 0.93 0.93 213
Pituitary Tumor 0.99 0.96 0.98 280
Bangladesh Results
Glioma 0.98 0.98 0.98 602
Meningioma 0.96 0.95 0.96 602
Pituitary Tumor 0.96 0.99 0.97 615
400
350
Glioma 8 o
300
250
g Meningioma 12 198 3
= 200
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Fig. 5. Confusion matrix of proposed multiscale MoE on Bangladesh brain
cancer dataset.
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Fig. 6. Confusion matrix of proposed multiscale MoE on Figshare dataset.

imbalances. Similarly, the F-beta scores that coincidentally
achieved the same values (0.9591 for Figshare and 0.9691
for Bangladesh) supports the model’s performance aspect of
maintaining a fair balance between positive predictive value
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(PPV) and sensitivity on both datasets. With the clinically
important aim in not creating potential false negatives in brain
tumours, we believe the model’s F-beta performance being
high shows that the model was successfully able to prioritize
sensitivity for precision at some gotten trade-off.

Not surprisingly on reliability predictors, both the Expected
Calibration Error (ECE) were quite low at 0.0229 for Figshare
(and quite low at 0.0086 for Bangladesh) suggestively showing
that close the predicted probability provided by model is to
the actual observed outcome (the Bangladesh suggesting near
perfect calibration). The Brier Score which is a metric of
the mean squared difference between predicted probabilities
(prediction) and actual outcomes (ground truth), were again
shown to be lower in the Bangladesh dataset (0.0456) than
Figshare dataset (0.0617), suggesting that model was making
more confident and accurate probability assessments. The
Overall Testing accuracy achieved over 96% for both datasets
(96.42% for Figshare dataset and 96.92% for Bangladesh
dataset) and demonstrated good fit and discriminative ability
of the model supports its adaptable nature across datasets.

In sum, the performance results all imply that the proposed
MoE model is able to provide excellent accuracy in classi-
fication, together with probability calibration which is very
important in clinical environments where diagnostic accuracy
remains paramount while confidence in predicted probabilities
play a large role to reliable decision making and effective
planning of the treatment decision.

TABLE III
COMPLEX METRICES PERFORMANCE OF PROPOSED MULTISCALE MOE ON
SELECTED DATASETS

Metrics Figshare Results | Bangladesh Results
Balanced Accuracy 0.958 0.9691
F-beta Score 0.9591 0.9691
ECE 0.0229 0.0086
Brier Score 0.0617 0.0456
Overall Testing 96.42 96.92

VII. ABLATION STUDIES
A. Model Computational Complexity

In the first experiment, an ablation study has been conducted
aomng the proposed multiscale MoE model against state-
of-the-art architectures such as Swin-T, SMViTv2-H and V-
MoE based on parameters, GFLOPs and inference time, as
shown in Table IV. The comparative results show that although
SMViTv2-H [22] has the largest number of parameters 667M
and GFLOPs 120.6, it has the highest inference time which
is 24.50 seconds. Next, V-MoE [23] has the largest number
of parameters which is 14.7B but a moderate GFLOPs value
12.35 and a reasonable inference time which is 11.71 sec,
showcasing the efficiency of the expert-based architecture.
Given the size of the model, while [24] had the least number
of parameters which is 28M and GFLOPs 4.5, its inference
time of 12.08 seconds may indicate a smaller representa-
tional capacity based on the reduced computational load. Our
proposed multiscale MoE model returns a decent trade-off,
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remaining a lightweight model 25.27 million parameters with
competitive computation complexity which is 11.95 GFLOPs.
Furthermore, the proposed model exhibits the fastest inference
time which is 10.85 sec of the entire study which we believe
indicates that the proposed model is able to use multiscale
feature processing and expert routing effectively, enabling
the delivery of insights quickly and efficiently in a real-time
eniviroment.

TABLE IV
COMPARISON OF SOTA AND PROPOSED MODEL BASED ON PARAMETERS,
GFLOPS, AND INFERENCE TIME.

Models No. of Parameters GFLOPS Inference Time (s)
Swin T [24] 28 4.5 12.08
SMViTv2-H [22] 667M 120.6 24.50
V-MoE [23] 14.7B 12.35 11.71
Proposed 25.27 11.95 10.85

B. Comparison with state of the Art Models

The second ablation study described compares proposed
multiscale MoE with leading state-of-the-art models, as shown
in Table V. In performance measure F-beta, the proposed
multiscale MoE model had the highest score for F-beta which
is 0.951 indicating that proposed model provided the most
focused balance between precision and recall score, and was
best suited for classification tasks where the cost of both false
positives and false negatives are critical. The ECE score of
proposed model 0.0223 was slightly worse than the SMViTv2-
H [22] model, which is 0.018, indicating that while our
model was simultaneously reliable, SMViTv2-H [22] had a
very slightly better measure of confidence with the prediction
probability. Importantly, For the Brier Score the MoE had
totally lowest value calculated for the Brier Score which is
0.0603 indicating that our proposed model had the highest
accuracy of probability prediction. Finally, in testing accuracy
score, our proposed MoE model had the highest score of
96.14% compared to all SOTA methods. While each individual
performance measure demonstrates that the proposed MoE
outperformed some of the competing methods, the collective
measures prove that our proposed model not only had predic-
tive performance better than state-of-the-art models, but also
more reliable prediction probability and estimates.

TABLE V
ABLATION STUDY BASED ON F-BETA, ECE, BRIER SCORE, AND
ACCURACY AMONG THE PROPOSED AND SOTA METHODS

Methods F-beta ECE Brier Score  Accuracy (%)
Swin T [24] 0.925 0.030 0.075 94.30
SMViTv2-H [22] 0.945 0.018 0.062 95.90
V-MoE [23] 0.935 0.025 0.067 95.40
MViTv2-B [25] 0.940 0.020 0.065 95.60
Proposed MoE 0.951 0.0223 0.0603 96.14

C. Expert Utilization Across Selected Datasets

In this experiment, the utilization of each experts of
proposed mutilscale MoE has been measured across the
bangladesh brain cancer dataset, as shown in Figure 7. this
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Fig. 7. Expert utilization patterns across the three stages of the proposed
Multiscale Mixture of Experts (MoE) model on the Bangladesh Brain Cancer
MRI dataset. The radar plot shows the percentage of routing weight assigned
to each expert (Expert 1-Expert 5) by the dynamic router during different
processing stages. In stages 1 and 2 (red and orange lines), the routing
distribution is relatively balanced across experts, with moderate emphasis on
Experts 1, 2, 4, and 5. In stage 3 (green line), Expert 3 dominates with nearly
40% routing weight, indicating its specialization in extracting high-level, fine-
grained features critical for final classification, while other experts contribute
in supporting roles.

plot clearly illustrates a distinct usage pattern of the pro-
posed multiscale MoE experts in three stages. During the
early stages, Experts 1, 2, 4, and 5 have relatively balanced
and moderate routing weights, demonstrating the use of a
distributed feature extraction approach in the beginning stages.
A major shift occurred in stage 3 when the routing weight of
Expert 3 increased substantially, to nearly 40%. This routing
weight reflects that Expert 3 was the most prominent expert
contributing to the eventual prediction decision. The increased
weight of Expert 3 suggests that it was especially proficient
at producing the fine-grained, high-level features required to
classify thesubtle cases within the Bangladesh dataset. The
other experts clearly contributed during this stage but their
routing weights had decreased considerably, suggesting they
were only being used in a supportive role of general feature
representation rather than specific discrimination. The reliance
on Expert 3 at the final stage represents the most low-level
decision making and should provide a perspective about the
versatility of the proposed model where the routing mechanism
initiated relevant extremely relevant experts depending on the
specific feature characteristics of the dataset.

In Figshare dataset, the routing behavior of experts shows
an opposing pattern in specialization. The most apparent
observation in this context was the increase in Expert 4 usage
in stage three, overtaking Expert 3 whose share dropped
significantly, as shown in Figure 8. Expert 4 became the expert

xpert 5

Fig. 8. Expert utilization patterns across the three stages of the proposed
Multiscale Mixture of Experts (MoE) model on the Figshare Brain Tumor
dataset. The radar plot displays the percentage of routing weight assigned
to each expert (Expert 1-Expert 5) by the dynamic router during stage 1
(red), stage 2 (orange), and stage 3 (green). While stages 1 and 2 show a
relatively balanced distribution across experts with moderate emphasis on
Experts 2, 3, and 4, stage 3 exhibits a strong shift toward Expert 4, which
receives the highest routing weight (over 30%), indicating its specialization
in extracting discriminative features for the Figshare dataset’s unique imaging
characteristics.

with the highest routing weight during stage 3, with over 30%.
This suggests that Expert 4 has learned feature extraction
that is more appropriate given the unique imaging features
of the Figshare dataset, which could include variations in
tumor boundaries, texture distributions, and contrasts specific
to different imaging modalities. All other experts 1, 2 and 5
showed relatively stable routing weights across the staging,
indicating that the same experts participated consistently and
contributed relatively equally in the decision making process
when comparing with the Bangladesh dataset. Expert 3 lost
its influence by later stages; it is clear from the data that
what it had learned were less informative features for high
level refinement processes in Figshare brain tumor model.
Overall, the Figshare results exhibit more evenly shared expert
utilization, where it appears the model was able to shift the
use of experts on-the-fly as required; dynamically shifting
emphasis under the final stage to Expert 4 when classifying
images based on this dataset’s unique properties.

VIII. CONCLUSION

Brain tumors are a significant global health challenge be-
cause of their inherent aggressiveness, poor patient progno-
sis, and difficulty in diagnosis. Notably, MRI scanning is
acknowledged as the gold-standard diagnostic modality and
ongoing treatment tool for brain tumors; however, automated
classification techniques often struggle with the highly variable
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morphologies of brain tumors, overlap in features, and differ-
ent conditions on images. In this work, the study proposes
multiscale MoE, a Mixture of Experts framework that unifies
a CNN and attention-based modules in a single model that
support multiscale approaches. The framework builds into the
architecture a way to efficiently capture tumor-specific features
using multiscale feature extraction, channel-spatial attention,
and dynamic expert routing mechanism.

This study used two public datasets: the Bangladesh Brain
Cancer MRI database and Figshare Brain Tumor dataset.
the presented framework achieved precision, recall, and F1-
scores greater than 0.95 for all classes of tumors including
a balanced accuracy of 0.9691, a F-beta score of 0.9691, an
ECE of 0.0086, a Brier score of 0.0456, and a general overall
accuracy of 96.92%. With the Figshare dataset, precision
scores approached 0.99, recalls approached 0.98, the balanced
accuracy score was 0.958, the F-beta score approached 0.9591,
the ECE was 0.0229, the Brier score was 0.0617, and a general
overall accuracy of 96.42%. Compared to other state of the art
models and approaches, multiscale MoE produced the highest
testing accuracy 96.14% and the lowest Brier score 0.0603,
and was ultimately the fastest model demonstrating inference
times of 10.85 s without tuning.

Despite the promising results, there are limitations with the
proposed multiscale model. it is reliant on MRI data because
it was only trained and validated with data from two publicly
accessible datasets and may not sufficiently reflect the vast
variability routinely encountered in imaging protocols, tumor
subtypes, and demographics when treating patients globally.
This may have implications on the model’s generalizability
when implemented and applied in various medical environ-
ments.

Future work will focus on more data from more than one
institute and add additional imaging modalities such as with
PET and CT so that the model may learn from more various
characteristics in tumours. Domain adaptation and transfer
learning methods can be used to improve robustness across
scanners and imaging acquisition protocols.
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