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Abstract—We propose a statistical hypothesis test for deter-
mining whether a given integer n > 2 is prime. Under the null
hypothesis H,, we assume that n is not a prime (i.e., composite).
The test operates by randomly sampling integers from the
candidate divisor set D = {2,3,..., |/n|} and checking whether
any of them divide n. If a proper divisor is found, H, is not
rejected and n is declared composite. If no divisor is found among
an initial set of ko, samples, additional k& samples are drawn, and
a p-value is computed based on the probability of missing all
actual divisors under H,. This probability is calculated exactly
via a hypergeometric distribution and approximated using an
exponential bound. We derive a closed-form upper bound for
the minimal number of trials k required to reject Hy at a given
significance level o under the conservative assumption of only
one true divisor (m = 1). The algorithm has worst-case time
complexity O(y/n), matching that of classical trial division, but
its expected runtime is substantially lower when n has multiple
divisors. The proposed test is simple, statistically interpretable,
and well-suited both as an educational tool and as a lightweight
probabilistic pre-check in layered primality testing pipelines.

I. INTRODUCTION

HE problem of determining whether a given integer n
T is a prime number is a fundamental question in number
theory and theoretical computer science. Primality testing has
widespread applications in modern cryptography (such as RSA
encryption [1]), secure key generation, error-correcting codes,
hashing schemes, and symbolic computation. In many such
contexts, fast and reliable primality tests are crucial for both
correctness and efficiency [2].

A straightforward approach to primality testing is to check
whether any integer in the range {2,3,...,n — 1} divides n,
or, more effectively, the range of possible divisors is firstly
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reduced to {2,3,...,|+/n]} and each one is tested whether
divides n. If no such divisor is found, then n is declared prime.
While conceptually simple, this method becomes computa-
tionally expensive for large n, as it requires up to O(y/n)
divisibility tests in the worst case. This naive method does not
scale well for applications involving large integers or repeated
primality checks.

Several more advanced primality tests have been developed,
many of which rely on algebraic or number-theoretic proper-
ties. Notable examples include the following.

o The Fermat primality test, based on Fermat’s little the-
orem, assumes Hy : n is prime, and checks whether
a” ' =1 (mod n) for a random base a [3]. Failure to
satisfy this congruence implies n is composite, but pass-
ing it does not guarantee primality due to pseudoprimes
and Carmichael numbers [4].

o The Miller—Rabin test, a widely used probabilistic test,
strengthens the Fermat test by testing additional congru-
ences derived from factorization of n — 1. It is efficient
and has a controllable error probability [5].

o The AKS primality test, a deterministic polynomial-time
algorithm, decides primality unconditionally. However, it
is relatively complex and not competitive in practice for
large inputs [6].

While these methods are powerful, most of them assume
the null hypothesis that n is prime and look for algebraic
contradictions [7]. In this paper, we propose a novel statis-
tical hypothesis test for primality that takes a fundamentally
different approach: we assume the null hypothesis Hy that n is
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not prime, and assess how “surprising” the observed outcomes
of random divisor tests are under this assumption.

Specifically, we randomly sample integers from the set
{2,3,...,|v/n]} and test whether they divide n. If a proper
divisor is found, we do not reject Hy and declare that n
is composite. If no divisor is found, we compute a p-value
based on the probability of missing all actual divisors under
Hy, using both exact combinatorial formulas and exponential
approximations. We also derive closed-form bounds for the
minimum number of integers that must be tested as potential
divisors to achieve a given significance level a, and we analyze
the algorithmic complexity of this test in comparison to the
classical exhaustive approach.

The proposed test is simple to implement, statistically
interpretable, and often requires significantly fewer checks
than exhaustive search — especially when n has many proper
divisors. It can serve as a practical and educational tool, or
as a component in probabilistic or layered primality testing
frameworks.

II. PRELIMINARIES

This section establishes basic mathematical facts used in the
formulation and justification of the proposed test.

We begin by showing that it is sufficient to restrict our
attention to potential divisors of n that are less than or equal

to [Vl.

Lemma 1 (Sufficiency of checking divisors up to /n). Let
n > 2 be an integer. Then n is composite if and only if there
exists a proper divisor d such that 2 < d < [\/n].

Proof. Let n > 2 be arbitrary. Suppose first that n is
composite. Then there exist integers d,q such that n = d - ¢
with 2 < d < n and 2 < ¢ < n. Without loss of generality,
assume d < ¢q. Then itis d-d < d-q, butd-q = n, so
d* < d-q=mn, or simply d®> < n. Consequently, it is d < v/n,
and since d € N, it is also d < |y/n]. So, d is a proper divisor
of n and satisfies 2 < d < [y/n], the claim follows.
Conversely, suppose there exists a proper divisor d of n
such that 2 < d < |/n]. Then d | n, so n is not a prime.
Hence, n must be composite. ]

The following lemma formalizes the intuitive fact that, when
sampling from a finite population with few successes, drawing
without replacement decreases the chance of obtaining no
successes at all compared to drawing with replacement.

Lemma 2 (Probability of no success is lower or equal without
replacement). Let N > 1 and 1 < M < N be integers
representing a population of N items, M of which are marked
as successes. Consider drawing k items from this population
with 1 < k < N — M. Then the probability of drawing zero
successes without replacement is less than or equal to the
probability of drawing zero successes with replacement.
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Proof. The probability of no success in k draws with replace-
ment is given by

M\ E
Pyitn(0) = <1 - N) . (D

The probability of no success in k draws without replace-
ment is
N—-M k—1
Pyithout (0) = ((;@)) =11 (1 - NA{) 2
k =0
Since foreach 7in 0 < i <k —1 we have N —i < N, it
follows that % > %, and thus

1 M <1 M
N—-i) ™ N’
Consequently, the product of k such terms satisfies

() <11 (-

=0

M0-5%)<(-%)

(1,2)
Pwithout(o) S Pwith(o)-

Hence, the probability of no success is lower than or equal
to when drawing without replacement. O

x> =
= O

III. PROPOSED METHODOLOGY

We now introduce a statistical hypothesis testing procedure
for primality, based on the idea of randomly sampling potential
divisors of a given integer n. The method is built upon
a probabilistic interpretation of missing actual divisors under
the assumption that n is composite. In addition to defining
the logic, hypotheses, and operational steps of the proposed
test, we derive exact and approximate expressions for the
resulting p-value and analyze the algorithm’s time complexity
in comparison to classical exhaustive methods.

A. Test logic and procedure

Let D = {2,3,...,|[v/n]} be the set of candidate proper
divisors of n € N with n > 2 large. Using Lemma 1, we
know that investigating potential divisors not lower than or
equal to [/n] is sufficient to determine primality. Denote its
cardinality by |D|, where obviously

|D‘:|{2737“'7\_\/ﬁj}|:L\/HJ_L (3)

If n is composite, then it must have at least one divisor
in D. This observation motivates a statistical hypothesis test
based on sampling elements from D and checking whether
they divide n.

We define the null and alternative hypotheses as follows.

H()Z

n is not a prime, i.e., there exists at least one d € D
such that d | n.

H; : nis a prime, i.e., no element of D divides n,
oralsoVd € D:dtn.
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The test consists of the following steps.

(i) We randomly select ky > 0 integers from the set D
without replacement, and test each to see whether it
divides n.

o If any sampled value divides n, we do not reject Hy
and declare that n is composite.
o If no divisor is found, we proceed to the next step.

(i) We randomly select an additional k£ > 1 integers from
the remaining elements of D, again without replacement,
and test them for divisibility.

« If any sampled value divides n, we do not reject H
and declare that n is composite.

« If no divisor is found, we compute the p-value under
H,.

(iii) We define the p-value as the probability that none of the
k additional randomly selected integers divide n, under
the assumption that n is composite and has m > 1 actual
divisors in D. Although the exact value of m is unknown
in practice — if it were known, we could straightforwardly
decide whether n is prime — we can still compute valid
upper bounds on this probability. The smaller the p-value,
the more extreme the observed outcome (i.e., absence of
divisors) appears under Hy, and the stronger the evidence
against the assumption that n is composite. If the p-value
is less than or equal to a given significance level o, we
reject Hy and declare that n is likely a prime.

This method enables a sequential, interpretable, and prob-
abilistically grounded test for primality. The exact and ap-
proximate computation of the p-value, as well as guidance for
selecting k given a desired confidence level, are discussed in
the following subsections.

B. Exact derivation of the p-value

We now derive the exact p-value used in the proposed hy-
pothesis test. This value represents the probability of observing
no divisors among a randomly selected subset of potential
divisors, under the assumption that n is composite.

Let D = {2,3,...,[v/n]} be the set of candidate proper
divisors of n. Suppose — under H, — that n is composite and
has exactly m > 1 proper divisors in D. We assume m is
fixed but unknown.

After testing an initial set of ko < |D| integers from D with
no observed divisor, we draw an additional £ values uniformly
at random without replacement from the remaining |D| — ko
elements. We are interested in the probability that none of
these k values divide n, conditioned on the assumption that n
is composite and has m proper divisors in D.

Let X denote the number of divisors observed in the
additional %k draws. Under Hy and fixed m, the distribution
of X follows the hypergeometric distribution,

X ~ Hypergeometric(|D| — ko, m, k).

Then, the p-value is defined as the probability of observing
X = 0 under Hy,

(|D\—m—k0)
p-value = P(X = 0| Hy) = (ID‘%%) )
k
or also
B (\D\—Z’L—ko) B m—1 |D| —ko—k—i
p-value = O g} D—ho—i (&)

This expression quantifies the likelihood of missing all
true divisors in the %k additional samples, under the null
hypothesis that n is not a prime. Inspecting formulas (4) and
particularly (5), we can see that as k increases or m increases,
the p-value decreases, providing stronger evidence against H.
Thus, the exact p-value decreases as the number of actual
divisors m increases. That is, the more true divisors exist in
the candidate set D, the less likely it is that a random sample
of size k misses all of them. Formally,

(\lemfko) (Ilelfko)
P S
or also
(P )
p-ValueSW = 1—m =
@,k
T T Wal—1—ke ©

for all m > 1, where m < |\/n] — 1 — ko — k. Thus, the case
m = 1 corresponds to the worst-case scenario (i.e., highest
possible p-value under Hj), and can be used as a conservative
upper bound. This allows the test to remain valid even when
the number of actual divisors is unknown. Also, controlling
the p-value under m = 1 yields a conservative test.

C. Exponential approximation and upper bound of the p-value

While the exact p-value expression in (4) is combinatorially
precise, it can be computationally demanding to evaluate,
especially when one wishes to determine the minimal value of
k for which the p-value falls below a given significance level
«, particularly under the worst-case assumption m = 1.

To enable more practical reasoning and simplify the esti-
mation of the required sample size k, we now derive an upper
bound on the p-value using an exponential approximation.

Let’s assume k < |D| — m — kg, which is natural
since k is typically chosen much smaller than |D| =
{2,3,...,|v/n]}| = [v/n] — 1. Under this assumption,
sampling without replacement is numerically close to sam-
pling with replacement. In particular, using Lemma 2, the
probability of missing all m true divisors when drawing
without replacement is slightly lower than when sampling with
replacement, and hence,

|D|—m—ko k
w < <1 m> . 7

p-value = (‘D‘;ko) — D]~ ko
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This bound follows from the fact that each draw with-
out replacement strictly reduces the remaining pool size,
increasing the probability of hitting a true divisor. On the
other hand, when drawing with replacement, the chance of
selecting a true divisor remains constant across draws. As
a result, sampling with replacement underestimates the chance
of detection, making the bound conservative.

D. Minimum number k of potential divisors to satisfy a given
significance level

Having derived an exponential upper bound on the p-value
in (7), we now invert this inequality to estimate the minimum
number k£ of integers that need to be checked as potential
divisors of n to ensure that the p-value falls below a desired
significance level o, where 0 < o < 1.

Combining formulas (4) and (7) and comparing the result
to the significance level «, we obtain

|D]—m—ko
( k () < <1 m

k
—— ) <a,
(P1=ko) D[ — ko) =«

and focus on the rightmost inequality to solve for k. Taking
logarithms on both sides yields

p-value =

m
k -log (1 — M) < log(a). (8)

Since log(1 — z) < 0 for z € (0, 1), inequality (8) leads to
the following lower bound

. log(«)
- log (1 - \D\L—k)

3

or also

3)
s log ()

log (1 - LﬁJTl—kfo)

This expression provides a closed-form estimate of the
number of random checks needed after the initial ky samples
in order to reject Hy at significance level «. The most
conservative bound arises under the worst-case scenario m = 1
(i.e., n has exactly one proper divisor in D). Substituting
m =1 into (9) gives

)

. log(Oé)1
log (1 - 7\73\71@0)

)

or also

3
s log(a)

s (1~ )

This value of k guarantees that the p-value under H does
not exceed a for any possible number of actual divisors
m > 1, thus ensuring a valid and conservative decision thresh-
old even when m is unknown.

(10)
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IV. PRACTICAL USAGE OF THE PROPOSED TEST

The proposed statistical hypothesis test for primality can
be applied in two main modes: a classical version with
a precomputed sample size k, and an adaptive version that
incrementally samples potential divisors until a statistically
justified conclusion can be reached. We describe both ap-
proaches in this section.

A. Fixed-sample usage with conservative decision threshold

A straightforward way to use the test is to choose a fixed
sample size k of candidate divisors in advance, based on a de-
sired significance level «. This guarantees that the computed
p-value will fall below « unless a divisor is found, as long
as k satisfies the inequality derived in formula (10) under the
worst-case assumption that n has only one proper divisor in D
(i.e., when m = 1). The steps for such usage are as follows.

(i) The user first selects kg > 0 initial values to test.

(ii) Then, they choose k based on the exponential bound
from formula (10) to ensure that the p-value will be
sufficiently low if no proper divisor of n is found.

(iii) If any of the tested values divide n, the number is
declared composite, since Hj cannot be rejected.

(iv) If no divisor is found and the computed p-value is
below «, then Hj is rejected, and n is declared probably
prime (at the given statistical significance level «).

(v) Otherwise (i.e., if k£ was chosen too small), the test may
be inconclusive: no divisors of n are found in D (so n
may be a prime), but p-value > «, and thus Hy (claiming
that n is composite) cannot be rejected.

This fixed-sample approach is simple and deterministic, but
may be inefficient if k& is much larger than necessary, or
inconclusive if k is too small.

B. Adaptive usage with incremental k sampling

An alternative approach is to use the test adaptively: incre-
mentally draw one candidate divisor at a time, and terminate
as soon as either a divisor is found (in which case H cannot
be rejected), or the p-value’s upper bound, calculated using
formula (6), drops below « (in which case Hy is rejected).
This version avoids the need to specify k in advance and can
potentially stop earlier, depending on the observed evidence.

We present this version formally in Algorithm 1, which
assumes a conservative worst-case bound with m = 1 and
computes the p-value after each additional draw.

This variant can be seen as a probabilistic filter with
automatic stopping conditions and is particularly useful when
computational efficiency is critical or when n is large and
sparsely divisible.

V. ALGORITHMIC COMPLEXITY ANALYSIS

We now analyze the computational complexity of the
proposed statistical primality test. The analysis is based on
the number of basic divisibility checks required to reach
a statistically justified conclusion, assuming that a single test
of the form d | n takes constant time.
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Algorithm 1: Adaptive statistical primality test via
incremental k& sampling

Input : Integer n > 2; significance level «; initial
batch size kg > 0

Output: Decision: “n is composite” or “n is
probably prime (at statistical
significance «)”

Let D+ {2,3,...,|v/n]}

Randomly sample kg integers from D without

replacement
foreach d in the ky-sample do
if d | n then

5 L return do not reject Hy = n is

composite

D=

s W

=)

Let D' « D\ {already tested values}

7 Set k<« 0 // counter of post—-initial
checks
8 while D’ is not empty do
9 Randomly select one d € D’ and remove it from
D/
10 if d | n then
11 L return do not reject Hy =— n is
composite
12 k+—Fk+1
13 Compute p-value’s upper bound:
6) k
p-valueypper L 1 N
14 if p-value,p,er < o then
15 return reject Hy = n is probably
L prime (at statistical significance «)

A. Search space size

Let D = {2,3,...,|+/n]} be the set of candidate proper
divisors. Its cardinality satisfies

D] = |vn] — 1 =6(Vn). (11)
A classical exhaustive trial division test checks all values in
D, resulting in a worst-case complexity of O(y/n).

B. Worst-case bound for the proposed test

Unlike exhaustive search, the proposed statistical test sam-
ples values randomly from D and stops either when a divisor
is found or when the computed p-value drops below the
significance threshold a.

From formula (9), the minimum number of values k to
sample (after initial ko values) that guarantees p-value < « is

log(e)

kmin = -7 N |~»

(12)
log (1 - 1575

where m is the number of proper divisors in D. In the worst-
case, m = 1, yielding

Eunin = _ logla) ) (13)

log (1 — Im%ko)

Using the standard approximation log(1—x) ~ —x for small
x > 0 coming from Taylor series, we derive the asymptotic
behavior as

log(a) Q)
log (1 ~ B )

o[ 22 -
" IDl=ko

~ O ([—log(e)(|D] = ko)]) =

~0 Ubg (i) (D] - kO)D 1y
av o Glog (;) \/HD N
~0 (log (;) \/,;) N

~ 6 (vn). (14)

Thus, the number of divisor checks required to make a valid
decision at level « is bounded by O (y/n).

G(kmin) =0

C. Expected number of checks

In practice, the number of checks is usually smaller due to
the following two stopping mechanisms,
(1) a divisor is found early, particularly when m is large;
(i) no divisor is found, but the p-value falls below a.
Assuming uniform sampling without replacement from D
and a uniform distribution of the m divisors within D, there
is, on average, one divisor in every %-fraction of the set.
Therefore, we expect to check approximately % = %
potential divisors. Thus, the expected number of trials until
the first divisor is observed is approximately
m m m
Alternatively, if no divisor is found, the test terminates when
k = kmin as given in (12). Therefore, the number of checks
is bounded by

(15)

(11,12,15)

T(n,m) = vn

Vn log(a)
m’ log (1 - %)

min

D. Summary

The test adapts to the actual number of divisors: it runs
faster when n has many proper divisors. In the extreme
case m = ©(y/n), the expected number of checks becomes
constant. The worst-case complexity of O(log(1/a) - /n)
arises only when m = 1. This adaptivity makes the proposed
method significantly more efficient in practice compared to
exhaustive search, which always requires O(y/n) steps.
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VI. ILLUSTRATION OF p-VALUE BEHAVIOR FOR VARYING
NUMBER OF DIVISORS

To better understand the behavior of the p-value in the
proposed test, we analyze how it changes as a function of
the number of random trials k& for different values of m,
the number of actual proper divisors in the candidate set
D = 2,3,...,|v/n]. Fig. 1 illustrates this relationship for
n = 10007, where |D| = |+/10007] — 1 = 99.

=}
— 7 — m=1
-— m=2
w | —s m=5
< == m=10
‘ —— m=20
o _| 1 “‘ \\
i:) [=} “\ Ky \\
z Ly AN
Y <Or I Y .
\ \ . \\\
\\ ‘\ R \\\\
IS . T=a
< \ \‘\ el To~-a
\ S, Tl
e | N Tmea T EEETT PPN ol
< I I I I I I
0 20 40 60 80 100

number of additional samples k&

Fig. 1. Decay of the p-value with increasing number & of additionally sampled
candidate divisors from D for various numbers m of true divisors under Hy.

The horizontal dotted line marks the significance level o« = 0.05. Each curve
shows the upper bound (1 — Im%ko on the p-value, highlighting how

the test becomes more decisive as either m or k increases.

Table I shows corresponding values of the minimum number
kmin of samples required to reduce the p-value below the sig-
nificance threshold o« = 0.05, based on the exponential bound

(1= o5
especiL111|y Eor small values of m, and in some cases leads
to estimates ki, exceeding the size of the candidate set, i.e.,
kmin > |v/n] —1. This inefficiency illustrates that the bound is
useful for providing safe, but not necessarily tight, thresholds.

from formula (7). This bound is conservative,

TABLE 1
MINIMUM NUMBER OF RANDOM DIVISOR CHECKS ki, TO REJECT Hg AT
SIGNIFICANCE LEVEL o = 0.05, FOR VARIOUS NUMBERS OF ACTUAL
DIVISORS m, USING THE EXPONENTIAL BOUND WITH n = 10007, WHERE

|D| = [v/10007] — 1 = 99.

m  kmin such that p-value < 0.05  is kpin < [V/n] — 1?
297 no

DO =
—_
S
)

no

5 59 yes
10 30 yes
20 15 yes
40 8 yes
75 4 yes

Obviously, the p-value decreases exponentially with %, and
this decay is faster when the number of divisors m increases.
This demonstrates the adaptivity of the proposed method:
when a composite number has more divisors, fewer random
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checks are typically needed to either discover one or to obtain
a statistically significant p-value.

VII. CONCLUSION

We have proposed and rigorously analyzed a statistical
hypothesis test for assessing the primality of a given integer n.
The test is based on randomly sampling potential divisors from
the set D = {2,3,...,][v/n]} and computing a p-value under
the null hypothesis Hy that n is composite. If no divisor is
found and the p-value falls below a given significance level
a, the test rejects Hy, suggesting that n is likely a prime.

We derived both exact and exponential approximations of
the p-value and provided a closed-form expression for the
minimum number of additional checks k£ needed to guarantee
a statistically valid conclusion. The exponential upper bound
for the p-value decreases as either the number of actual
divisors m or the number of random trials k increases. The test
allows for an optional initial sample of kg > 0 values, which
can be used for early termination or warming up the process,
and is fully accounted for in the p-value computations and
bounds. Moreover, we analyzed the worst-case and expected
algorithmic complexity of the test, showing that the method
is adaptive: it performs significantly better when the tested
number has more divisors.

Compared to classical exhaustive methods, the proposed
approach offers some practical advantages: it is statistically
interpretable, simple to implement, and can terminate early
in favorable cases. While the worst-case complexity remains
O(y/n), the average-case performance is often much better,
especially for composite numbers.

This paper provides a theoretical introduction to the pro-
posed statistical primality test. Practical evaluations, method-
ological improvements, simulations, and comparisons with ex-
isting methods are part of ongoing work and will be addressed
in future research.
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