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Abstract—Optical Character Recognition (OCR) systems are
frequently used to digitise text, but often produce noisy results,
especially with historical, poor-quality or multilingual data.
Despite advances in OCR technology, post-processing remains
a significant bottleneck. We propose TOOL (Treating OCR
Output as a Language), a new approach that understands OCR
correction as a machine translation task. By treating noisy OCR
text as a language in its own right, TOOL employs sequence-
to-sequence models like Marian to translate it into clean, stan-
dardised text. This method is scalable, model-independent and
language-flexible. We demonstrate this approach by translating
“OCR German” to Standard German from around 1871 to the
present day, improving accuracy at the token level by using
matched training pairs of OCR output and base text.

I. INTRODUCTION

O
CR (Optical Character Recognition) systems are widely

used to digitise printed and handwritten documents.

However, their output is often noisy, particularly when dealing

with low-quality scans, historical materials or multilingual

content. While recent advancements in computer vision and

language modelling have enhanced OCR (Optical Character

Recognition) accuracy, post-processing remains a critical bot-

tleneck, especially in error-prone scenarios. OCR text recogni-

tion errors tend to follow systematic, learnable patterns, similar

to those found in low-resource language translation or noisy

text correction.

TOOL (Treating OCR Output as a Language) introduces

a novel paradigm: treating OCR output as a textual language

that can be translated into clean text (free from errors) us-

ing Seq2Seq (Sequence-to-Sequence) models. By leveraging

translation models such as BART (Bidirectional and Auto-

Regressive Transformers) [14], Marian [13] or other LLMs

(Large Language Models), TOOL frames OCR correction as

a machine translation task. This enables robust, model-agnostic

and domain-adaptable post-processing. The approach offers a

scalable and language-independent framework for improving

OCR results without requiring any modifications to the OCR

engine itself.
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There is a need for such a flexible, general-purpose so-

lution that can learn to correct OCR errors in a data-driven

manner. This approach addresses the problem by training

Seq2Seq models on aligned pairs of noisy OCR output and

the corresponding GT (Ground Truth) text. In this paper,

we specifically address the task of translating from “OCR

German” to standard German from 1871 to the present day

to improve token accuracy.

II. RELATED WORK

Seq2Seq modelling plays a foundational role in tasks

such as machine translation, text summarisation, and now,

OCR post-correction. The original Seq2Seq framework was

introduced by Sutskever et al. (2014) [24], who proposed

using RNs (Recurrent Networks) with LSTM (Long Short-

Term Memory) units to encode an input sequence into a

fixed-length vector and decode it into an output sequence.

This approach demonstrated promising results for translations

but had difficulties with long sequences due to information

bottlenecks in the fixed-size context vector. To address this

limitation, Bahdanau et al. (2015) [3] introduced the attention

mechanism, allowing the decoder to access different parts of

the input sequence dynamically. This innovation significantly

improved translation quality and became a core component of

subsequent Seq2Seq models.

The Transformer architecture by Vaswani et al. (2017) [26]

replaced recurrence entirely with self-attention mechanisms,

enabling more efficient training and better performance on

long sequences. Transformers rapidly became the standard

architecture for Seq2Seq tasks. Building on the Transformer,

Lewis et al. (2020) [14] introduced BART, a denoising au-

toencoder for Seq2Seq generation. BART combines a bidi-

rectional encoder (similar to BERT (Bidirectional Encoder

Representations from Transformers) [9]) with an autore-

gressive decoder (similar to GPT (Generative Pre-trained

Transformer) [21]), making it well-suited for text generation,

correction and translation tasks; particularly when input text

is noisy, such as in OCR outputs.

Around the same time, Marian [13] was developed as

a highly efficient, production-grade translation system opti-

mised for multilingual environments. As shown by Junczys-
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Dowmunt et al. (2018) [12], Marian is particularly effective in

low-resource settings, making it a strong candidate for OCR

correction across diverse languages.

III. USE CASE

This section begins by outlining the background of edu-

cation, followed by an examination of the data availability

concerning VET (Vocational Education and Training), which

serves as the primary data source and use case for the proposed

TOOL approach.

A. Education Stages

Education comprises a sequence of structured stages, each

contributing uniquely to an individual’s personal and in-

tellectual development [19]. The stages usually begin with

ECEC (Early Childhood Education and Care), which includes

programmes and services for children from birth to five years

of age. This period is vital for the development of foundational

cognitive, social and emotional skills. Evidence suggests that

high-quality ECEC programs can have long-term positive

effects on academic performance and social integration [17],

[25].

Following ECEC, school education is generally categorised

into primary and secondary levels. Primary education lays

the groundwork for essential academic skills such as read-

ing, writing, mathematics and science while fostering critical

thinking and communication. Secondary education expands on

this base, introducing more complex subjects and sometimes

offering specialised or vocational tracks to prepare students

for higher education or employment [10].

Higher education encompasses academic institutions like

universities and colleges that confer undergraduate and post-

graduate qualifications. These institutions provide in-depth dis-

ciplinary expertise and facilitate the development of research,

innovation and professional competencies. Higher education

is thus a significant driver of socio-economic growth and

individual career advancement [1].

VET is a parallel pathway focusing on practical and

occupational skills, tailored to specific sectors such as

healthcare, manufacturing, hospitality and technology.

VET programs often involve work-based learning, such as

apprenticeships, to ensure graduates meet industry needs.

These programs also support lifelong learning by offering

reskilling and upskilling opportunities, thereby enhancing

workforce adaptability [7], [8].

CVET (Continuing Vocational Education and Training)

plays a crucial role in supporting ongoing employability and

national competitiveness. Many European countries, including

Germany, have implemented policies to support lifelong learn-

ing and professional development through national strategies

[22]. The German system differentiates between initial vo-

cational training (German: Ausbildung), retraining (German:

Umschulung), advanced continuing training (German: Weiter-

bildung) and upgrading training (German: Fortbildung). Up-

grading training is often governed by federal regulations such

as the Vocational Training Act (German: Berufsbildungsgesetz,

BBiG) [6] and the Crafts Code (German: Handwerksordnung,

HwO) [5]. In contrast, other forms of CVET are typically more

decentralised and less regulated, though equally important for

continuous skill development.

B. OCR Processing of Documents for VET

Fig. 1 shows a document which is part of a collection

of historical VET. It is just one example of many similar

materials that outline training regulations, exam requirements

and pedagogical standards for skilled trades in early 20th-

century Germany. These documents were typically issued or

supervised by state institutions such as the Imperial Insti-

tute for Vocational Training in Trade and Industry (German:

Reichsinstitut für Berufsausbildung in Handel und Gewerbe),

which played a central role in standardising vocational train-

ing across the German Reich. The aim is to process such

Fig. 1. Exam requirements for a type lithographer teacher (orig. in German:
Prüfungsanforderungen für Schriftlithographen-Lehrmeister).

documents using OCR to make them digitally searchable and

analysable. By converting these historical printed documents

into machine-readable text, we aim to simplify research into

the development of vocational training systems, qualifica-

tion frameworks and occupation-specific pedagogical methods.

However, processing these materials presents significant tech-

nical challenges.

An important problem is the typographical style of the orig-

inal prints: Many documents from the early 20th century use

Fraktur or broken Antiqua fonts, which are very different from

modern Latin script. These fonts have unusual letter forms

(e.g., long s “ſ ” versus short s “s”) and dense ligatures that

are poorly recognised by standard OCR engines. The result is

a high rate of recognition errors, such as character confusion,

word fragmentation or misreadings that distort key terms (e.g.,

the German words: Lehrmeister, Prüfungsanforderung, etc.).

In addition, the print quality of many originals contributes

to noisy OCR output with smudges, uneven contrast and

marginal notes that are interpreted as content. Therefore, in

the following, we show a new approach to dealing with these

problems without having to change the OCR process itself.
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Fig. 2. Process flow for the TOOL-based OCR translation pipeline. Input files are first passed through the Do OCR process. Then the following processes
are executed: Split into Chunks, Translate with Fine-tuned Seq2Seq Model, and Recombine Chunks. Together, these steps produce the Final Output.

IV. METHOD

To introduce TOOL, we begin by analysing the broader

context. Specifically, we consider a comprehensive dataset

comprising scans of VET documents, which is a collection

of image files representing a set of text-based records. The

primary objective is to generate high-quality transcriptions of

these documents in a manner that is as automated as possible.

Additionally, a limited set of manually transcribed documents

is available, which can be used for training purposes. Gener-

ally, this situation is a common use case for OCR, but as stated

before, the OCR results do not fulfil our needs. Furthermore,

the available set of transcribed documents is too small to

be used for training of a full custom OCR model. However,

we recognise that the not-satisfying OCR output follows its

own characteristics. Typical and recurring errors are, e.g., (i)

the Umlaut “ü” in a scanned document often results in the

sequence “ii” in the recognized text or (ii) the long s “ſ ” is

recognized as “f”.

We observe that the OCR output is not correct German,

but some type of inherent language. Hence, the output can

be treated as a language, which leads us to the approach of

TOOL: Translating from the OCR output language to a correct

natural language, German in our case. Thus, TOOL consists

of two steps: the OCR step and the translate step.

The OCR step does not require any further training of

models and generalises well for different OCR models and

languages. Even though the translate step still requires an

individually trained model, this training requires only a small

amount of training data and resources.

State-of-the-art translation models are based on LLMs, just

like the translation step of TOOL. There are many different

methods for solving the OCR problem described above, several

of which we briefly outline here. These include a) Encoder,

b) Instruction LLM, and c) Seq2Seq.

a) Encoder: One potential approach involves the use of

an encoder-only model such as BERT. BERT processes an

input sequence of words and outputs a corresponding sequence

of contextualised embedding vectors. The idea is to utilise

the vector space of the embedding vectors of a default BERT

and train a custom BERT in a way that it generates for the

OCR output embeddings in the same vector space as a default

BERT. The big advantage over the instruction LLMs, such as

Llama and GPT, is that in contrast only a small BERT needs

to be fine-tuned for TOOL and a shared embedding vector

space is used, i.e., techniques like RAG (Retrieval Augmented

Generation) for retrieving documents from a collection can be

applied directly. However, there is also a need for the correct

German transcriptions of the scans and text generation from

BERT embeddings is not straightforward. Additionally, there is

no GT for the vector embeddings as our training data contains

transcribed documents and not embeddings.

b) Instruction LLM: Another possibility is to apply an

instruction LLM, like Llama or GPT, similar to [2]. Instead of

training a model for TOOL’s translation step, the instruction

LLM gets the OCR output and is prompted to correct it.

This approach works well, but there are disadvantages. While

requiring no training is an advantage, the downside is that

the process does not speed up once training is complete. An

instruction LLM is a pretty large model, and running it requires

special hardware and a lot of resources.

c) Seq2Seq: After all, TOOL’s translation step should

use a small transformer based LLM, i.e., a model taking a

sequence of words as input and returning a transformed, e.g.,

translated, version of the words. A popular choice for such

Seq2Seq models is Marian [13]. Using Marian for TOOL’s

translation step solves both issues stated before: First, there

is no need for sharing an embedding vector space as required

when using BERT. Second, Marian is a comparatively small

model and can be fine-tuned in a reasonable amount of

time. Additionally, after fine-tuning, the model can be used

with standard hardware. Following a thorough evaluation, we

selected the Seq2Seq model Marian, or more specifically,

its Python implementation called MarianMT1, to perform the

translation step within TOOL.

The full TOOL pipeline is shown in Fig. 2. On the left-hand

side, the red box depicts the input files, i.e., the scanned VET

documents. The first two purple boxes depict TOOL’s first

step, i.e., the OCR. The remaining three purple boxes represent

TOOL’s second step, the translation using a custom fine-tuned

MarianMT. As the input length of MarianMT is limited, the

OCR output is split into chunks before it is translated by

MarianMT. Finally, the translated chunks are concatenated,

and the results are ready to be stored (the red box on the

right-hand side).

Overall, the big advantages of the TOOL approach are:

• Any OCR tool can be used in the first step.

• For the second step, a pre-trained Seq2Seq LLM for

translation, like variants of MarianMT, can be used.

• It does not require much training in terms of fine-tuning.

• The resulting pipeline, OCR and translation, is quite fast

and resource efficient, especially compared to applying

an instruction LLM [2].

Next, we describe the technical details of TOOL, our

evaluation and present the results.

1https://huggingface.co/docs/transformers/model_doc/marian
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V. EXPERIMENTS AND RESULTS

In order to verify the method described in this paper, ex-

periments were conducted using the texts described in Section

III. First, the process of fine-tuning with its subprocesses a)

OCR, b) Preprocessing for Fine-Tuning, and c) Fine-Tuning

is described.

A. Preprocessing and Fine-Tuning

A process flow diagram for fine-tuning the model can be

seen in Fig. 3. The experimentation setup does not serve as

a mean to find out the best possible models and parameters

to use but rather it aims to show that the method works in

practical scenarios.

a) OCR: As a first step, OCR is performed on all files

from our dataset. We have decided to use Tesseract [23] as our

OCR engine of choice as it is open source and widely adopted,

with libraries available for many programming languages like

Python2.

b) Preprocessing for Fine-Tuning: The files are ran-

domly split into a dataset for training and validation, and

another dataset for testing after training. The second testing

dataset is not used during the training phase, but to compute

the metrics later on to verify how well the model generalises.

For this experiment, we have split the dataset to have around

50% of the text files in the training and validation dataset and

the other 50% in the testing dataset. Thus, each dataset has

around 145 text files in total.

As a next step, the texts in each file are split into separate

sentences using the NLTK (Natural Language Toolkit) [16]

punkt tokeniser. This is done for the texts from OCR and the

GT texts to have texts that can be used for fine-tuning the

MarianMT model.

For the final preprocessing step, the corresponding sentences

from the GT (see Fig. 2) and after the OCR process need

to be aligned in order to have the corresponding sentence

pairs. To do so, we have used a LaBSE (Language-agnostic

BERT Sentence Embedding) model [11] which is based on the

BERT architecture. This language-agnostic model allows us

to encode texts from different languages into the same vector

space. Using a distance measure, like the cosine similarity,

we can pair sentences that are close in this vector space. The

cosine similarity, as used, is defined as

cosine similarity(A, B) =
A ·B

∥A∥∥B∥
, where (1)

• A and B are two n-dimensional vectors, n ∈ N,

• A ·B is the dot product between two vectors A and B

and

• ∥A∥ and ∥B∥ being the Euclidean norms of A and B.

The vectors A and B are the embeddings of the GT texts

and after the OCR process. The resulting value is in the

range of [−1, 1], with −1 denoting exactly opposite vectors,

0 denoting orthogonal vectors and 1 denoting exactly the

same vectors.

2https://pypi.org/project/pytesseract/

Since our goal is to have sentence pairs that are highly

likely to correspond, yet they may differ in a few aspects, we

have set a minimum cosine similarity between the pairs to 0.7.

In the end, we obtained approximately 10000 sentence pairs

for training and verification during training and 8000 sentence

pairs for testing afterwards.

c) Fine-Tuning: After generating the sentence pairs, fine-

tuning is possible. We have chosen to use a MarianMT model

[13] because this class of models is relatively small and

lightweight. This not only ensures that fine-tuning is possible

on moderate hardware but also makes inference possible on

modern consumer computers.

Based on the specific language(s) needed, the user must

choose the appropriate base model. Since we are dealing

with texts written in German, we have used the “Helsinki-

NLP/opus-mt-de-de”3 model as our basis for fine-tuning. This

model was pre-trained to translate from German into German,

with our goal after fine-tuning being to translate from “OCR

German” into correct German. For the experiments here, the

following hyperparameters have been used:

• number of epochs: 30,

• learning rate: 5× 10−5 and

• weight decay: 0.05.

The hyperparameters were chosen based on past experiences

and are thus not necessarily the ones that provide the best

results. Instead, the goal is to show that the method does work

in general. Based on the specific use case, the hyperparameters

need to be found, e.g., using Optuna4. For the fine-tuning,

90% of the training dataset has been used for training while

the remaining 10% has been used for validation.

Fine-tuning was performed on a single Nvidia DGX A100

with 80GB of video RAM5. After around 1.5 hours, fine-

tuning was finished, and the resulting model was stored to

be used in the translation pipeline.

B. Translation

The translation pipeline follows the same process flow

described in Fig. 2. In the first step, standard OCR needs

to be performed on the text corpus. This output then needs

to be split up into chunks of appropriate length. The reason

behind splitting up is that most Seq2Seq models are only

able to process a certain number of tokens. This value needs

to be researched by the user and is set to 512 tokens for

MarianMT. One possible way to generate these chunks is to

split the input into sentences. Since the experiments performed

for this article already did both steps for the pipeline presented

prior, OCR and splitting up were not done in the translation

pipeline, where it would have been typically done in a real-

world scenario. The next step is then the translation, which is

done with the fine-tuned MarianMT model. Additionally, for

comparison in this work, translation was also done using the

base MarianMT that is pre-trained for translating German into

3https://huggingface.co/Helsinki-NLP/opus-mt-de-de
4https://optuna.org/
5The datasheet can be found here: https://images.nvidia.com/aem-dam/

Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
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Fig. 3. Process flow for OCR to MarianMT fine-tuning pipeline. Input files are first passed through the Do OCR process. Then the following processes are
executed: Split into Sentences, Align GT and OCR, and Fine-tune MarianMT. Together, these steps produce the Fine-tuned Model.

German, but not with the special cases we have in our corpus,

like the ſ . After translating the text sentence by sentence, the

results need to be recombined to get the full text back again.

This translation step was performed on a standard MacBook

Pro 14 inch with M3 processor and 16GB of RAM6. For all

the examples from the testing dataset, translation took around

1.5 hours.

C. Performance Metrics

Before discussing the results of our experiments, a brief

introduction to the performance metrics used is given.

a) Hunspell Errors: One of the goals of TOOL is to

have valid German afterwards. Thus, we have used Hunspell

to verify that. Hunspell is an open-source spell checker and

morphological analyser that is used in a few popular open-

source tools like LibreOffice or the Firefox web browser,

among others [18]. In order for Hunspell to do its work,

a dictionary needs to be used. For our task, we have used

a German dictionary called “German (de-De frami)”7. The

number of errors given by Hunspell based on this dictionary

are counted. To have a value that then also accounts for the

length of the text, as longer texts are more likely to have a

higher number of errors produced, the resulting value is then

divided by the total number of words in the GT text.

Hunspell value (text) =
E

N
, where (2)

• E is the number of Hunspell-detected spelling errors and

• N is the number of words in the GT text.

b) (Normalised) Levenshtein Distance: The Levenshtein

distance is a measure used to calculate the distance between

two sequences. In our case, we calculate the distance between

two sequences of characters. To calculate the Levenshtein

distance, the minimum number of single-character edits to

transform a provided sequence A, e.g., the texts after the

TOOL pipeline, into the other sequence B, here the GT texts,

is counted. These single-character edits can be insertions,

deletions or substitutions. Similar to the case with the Hunspell

errors, a longer text will more likely need more edits to be

transformed into the other text, and thus, we have normalised

the Levenshtein distance by dividing the results by the number

of characters in the GT text.

c) Word Error Rate (WER): The WER (Word Error

and Rate) is calculated in a similar way to the Levenshtein

distance. In contrast to the Levenshtein distance, though, the

WER counts the minimum number of words needed to change

6For technical specifications, visit https://web.archive.org/web/
20250518115318/https://support.apple.com/en-gb/117735

7https://extensions.openoffice.org/en/project/
german-de-de-frami-dictionaries

a text A into another text B. As an example, “I like a sand-

wich” and “I like this sandwich” have three character errors

but only one word error, which is viewed at for the WER.

For computing the WER, the number of word substitutions,

deletions and insertions is counted. The resulting value is then

divided by the total number of words in the GT text.

WER =
S +D + I

N
,where (3)

• S being the number of substitutions,

• D being the number of deletions,

• I being the number of insertions and

• N being the total number of words in the GT text.

d) Jaccard Similarity: The Jaccard similarity is a set-

based similarity measure between two sets A and B. Because

sets do not have an order, the similarity measure does not take

the order of the words in the text into account. However, this

measure can still provide interesting insights into how well a

user searching for a specific term may find this term in the

results. Formally, it is defined as:

Jaccard(A,B) =

∣

∣

∣

∣

A ∩B

A ∪B

∣

∣

∣

∣

. (4)

The resulting value will be between 0 and 1, with 1 denoting

identical sets and 0 meaning no overlaps at all. In order to still

preserve some form of ordering, we have measured the Jaccard

similarity with regards to word bigrams, i.e., the sets consist

of combinations of two words as entries. This takes immediate

context into account and makes the measure stricter.

e) BLEU(-4): The BLEU (Bilingual Evaluation

Understudy) score is a value between 0 and 1, and it

evaluates the quality of one text compared to another. If the

resulting value is getting closer to one, both texts are getting

more similar. Initially, it was designed for machine translation

tasks, but it can also be applied to other similar tasks. In

essence, BLEU calculates how many words or n-grams in

the candidate text, i.e., the text after TOOL, match those of

the reference text. Detailed information can be found in its

original paper by Papineni et al. [20].

We have decided to use the BLEU-4 score version that

considers n-grams up to 4-grams, i.e., sequences of one up

to four words in length. The precision for each n-gram is

calculated, and then the geometric mean over all scores is

taken.

BLEU-4 = BP · exp

(

4
∑

n=1

wn log pn

)

,where (5)

• BP is the brevity penalty,

• pn the precision for n-gram of size n ∈ N and

THOMAS ASSELBORN ET AL.: TREATING OCR OUTPUT AS A LANGUAGE (TOOL) 475



• wn the weight for each n-gram precision (in our case, we

have set it uniformly to 1

4
).

The brevity penalty is used to penalise translations that are

too short when compared to the reference.

BP =

{

1 if t > g

exp
(

1− g
t

)

if t ≤ g
,where (6)

• t is the total word length of the translation and

• g is the total word length of the GT text.

Thus, if the translation is longer than the GT text, nothing

happens, but if the translation is shorter, the BLEU score gets

penalised exponentially.

f) METEOR: Unlike BLEU, the METEOR (Metric for

Evaluation of Translation with Explicit Ordering) score is

not only looking at exact matches, but it is extended to

also include stem matching (e.g., “read” and “reading”) and

synonym matching (e.g., “bike” and “bicycle”). More details

can be found in its original paper by Banerjee and Lavie [4].

It is calculated as follows:

METEOR = Fmean · (1− Penalty). (7)

The individual components of this equation are given as:

Precision =
m

wt

, Recall =
m

wgt

,where (8)

• m is the number of matched unigrams,

• wt the number of words in the translation and

• wgt the number of words in the GT texts.

Using precision and recall, the Fmean score can be calcu-

lated.

Fmean =
(1 + α) · Precision ·Recall

α · Precision+Recall
,where (9)

• α ∈ (0, 1) being a parameter giving weight to recall over

precision.

By default, α is set to 0.9, meaning that recall is weighted

slightly above precision.

Finally, the penalty term is computed as:

Penalty = γ ·

(

ch

m

)β

,where (10)

• ch is the number of chunks,

• m the number of matches and

• β and γ being tuning parameters.

Also for the penalty term, the parameters β and γ have been

kept their default values (β = 3, γ = 0.5).

g) ROUGE(-2): The ROUGE (Recall-Oriented

Understudy for Gisting Evaluation) score was first described

by Lin [15] in 2004. In contrast to BLEU, ROUGE is

generally a measure of recall. However, it can also be

F1-score based, which is the version we have used in our

evaluation. Additionally, we have calculated the score using

text bigrams to capture more of the context of the words.

This F1-score version using bigrams is calculated as follows:

ROUGE-F1 =
2 · Precision · Recall

Precision + Recall
. (11)

Precision and recall are as defined in Equation 8 but with

word bigrams instead of unigrams.

D. Results

The evaluation for TOOL was performed on the previ-

ously held-back testing dataset. This dataset contains around

8000 sentence pairs consisting of the texts after OCR, base

MarianMT or TOOL respectively, and the corresponding GT

sentences. All the text used for this dataset was chosen at

random from our text corpus. Using that dataset, eight per-

formance metrics were calculated. First, they were calculated

for each sentence individually and then combined using both

the mean and the median. Table I shows all the metrics

for all the test datasets, all eight performance metrics and

both the mean and median. Row “Tesseract only” shows the

performances for only using the Tesseract OCR engine. In row

“Base MarianMT” are the results shown for using the base

MarianMT German into German translation model after the

Tesseract OCR. This is done to compare the performance of

the pre-trained MarianMT with both Tesseract alone and also

TOOL. Finally, the row “TOOL” contains the performances

for the approach presented in this article. The best values

for both mean and median for each performance metric are

highlighted in boldface.

Figure 4 shows the same data also in bar chart form. Orange

bars are for the experiments with Tesseract alone, blue bars

are the experiments after using the pre-trained MarianMT, and

magenta bars are for TOOL. Solid bars are used for the mean,

while hatched bars are for the median.

The performance metrics are calculated as described in

Subsection V-C. For the columns “Hunspell Errors”, “Nor-

malised Levenshtein Distance” (abbreviated to “Norm. Lev.

Dist.”), and the “Word Error Rate” (“WER” in the table), a

smaller value denotes a better performance. In contrast, for the

“Jaccard Bigrams”, “BLEU-4”, “METEOR” and “ROUGE-2”,

a higher value denotes a better performance. For brevity, in this

section we will refer to the BLEU-4 score as just BLEU and

the ROUGE-2 score as just ROUGE.

At first, we look at the mean of each performance metric.

Overall, it can be seen that the TOOL pipeline improves

performance for all performance metrics. The number of errors

identified using Hunspell was, on average, almost halved.

Also, the Jaccard similarity for word bigrams as well as the

BLEU and ROUGE scores doubled compared to the baseline

Tesseract only. The normalised Levenshtein distance also got

reduced. All of this indicates that the resulting text after TOOL

gets closer to the GT, showing that the pipeline works.

Comparing the results after Tesseract alone and TOOL to

the base pre-trained MarianMT was done in order to judge

how much of the ability to correct the OCR errors is already

inherent to the base model and how much was added via fine-

tuning. Additionally, this serves as a baseline to judge whether

the still relatively small dataset for fine-tuning has an impact

on performance or not.

The MarianMT base model is consistently outperformed

by our TOOL pipeline, demonstrating that fine-tuning sig-
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TABLE I
EVALUATION METRICS FOR DIFFERENT MODELS (MEAN, MEDIAN).

Metric Hunspell Errors Norm. Lev. Dist. WER Jaccard Bigrams BLEU-4 METEOR ROUGE-2

Model Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Tesseract only 0.3670 0.4568 0.2275 0.1834 0.5357 0.5347 0.2079 0.1435 0.3047 0.2559 0.5977 0.5710 0.2913 0.2270

Base MarianMT 0.3455 0.4311 0.3387 0.3090 0.6252 0.5975 0.1975 0.1383 0.2338 0.1749 0.5083 0.4737 0.2755 0.2150

TOOL 0.1963 0.1925 0.2175 0.1587 0.3626 0.2716 0.4723 0.4954 0.5695 0.6211 0.7761 0.8052 0.5781 0.6053

Hunspell Errors

Norm. Le
v. D

ist. WER

Jacca
rd Bigrams

BLEU-4
METEOR

ROUGE-2

Metrics
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Performance Metrics: Mean and Median Comparison Across Models
Tesseract only - Mean
Tesseract only - Median
Base MarianMT - Mean
Base MarianMT - Median
Tool - Mean
Tool - Median

Fig. 4. Evaluation metrics shown as bar charts. Solid bars indicate the mean, while hatched bars are the median.

nificantly improves the results, even with a relatively small

dataset. Moreover, the base MarianMT is also almost always

worse than just Tesseract alone. It only outperforms Tesseract

alone in the number of Hunspell errors, which is an indicator

that the language produced after the translation is closer

to German than the result after OCR alone. However, in

correcting these mistakes, the results diverge from the GT

leading to overall worse performance. Thus, using the base

MarianMT without first fine-tuning to this specific OCR task

is not helpful and even degrades results.

In addition to the mean, we also calculated the median value

of each performance metric over all results. This was done

in order to judge whether a few examples are skewing the

results in one or the other direction. Looking at all perfor-

mance metrics, the median is mostly worse than the mean for

Tesseract only, but also for the base MarianMT model. The

two exceptions are the normalised Levenshtein distance and

the word error rate, where the results are getting slightly better.

This is an indicator that there are a few outliers skewing the

results slightly in a mostly worse direction. For our TOOL

pipeline, the value is, however, almost always very close in

both mean and median. The trend here is the same, with base

MarianMT producing the worst results, while Tesseract alone

performs slightly better, apart from the Hunspell errors, as

already described in the mean value, and TOOL is the best.

VI. CONCLUSION AND OUTLOOK

In this article, we introduced TOOL, a novel method that

reconceptualises OCR correction as a translation task from

noisy to clean text. We demonstrated TOOL, which uses the

Seq2Seq model MarianMT to translate the “OCR German”

output into Standard German from around 1871 to the present

day. We implemented TOOL with this lightweight model

that runs efficiently on consumer-grade hardware. While the

results are promising and show performance improvements,

the current study relies on a relatively small dataset and serves

as a proof of concept.

Future work will focus on scaling to larger datasets, which

is expected to enhance performance and robustness. Extending

this approach to other languages also represents a promising

direction for future research.
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