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Abstract—Optical Character Recognition (OCR) systems are
frequently used to digitise text, but often produce noisy results,
especially with historical, poor-quality or multilingual data.
Despite advances in OCR technology, post-processing remains
a significant bottleneck. We propose TOOL (Treating OCR
Output as a Language), a new approach that understands OCR
correction as a machine translation task. By treating noisy OCR
text as a language in its own right, TOOL employs sequence-
to-sequence models like Marian to translate it into clean, stan-
dardised text. This method is scalable, model-independent and
language-flexible. We demonstrate this approach by translating
“OCR German” to Standard German from around 1871 to the
present day, improving accuracy at the token level by using
matched training pairs of OCR output and base text.

I. INTRODUCTION

CR (Optical Character Recognition) systems are widely
used to digitise printed and handwritten documents.
However, their output is often noisy, particularly when dealing
with low-quality scans, historical materials or multilingual
content. While recent advancements in computer vision and
language modelling have enhanced OCR (Optical Character
Recognition) accuracy, post-processing remains a critical bot-
tleneck, especially in error-prone scenarios. OCR text recogni-
tion errors tend to follow systematic, learnable patterns, similar
to those found in low-resource language translation or noisy
text correction.
TOOL (Treating OCR Qutput as a Language) introduces
a novel paradigm: treating OCR output as a textual language
that can be translated into clean text (free from errors) us-
ing Seq2Seq (Sequence-to-Sequence) models. By leveraging
translation models such as BART (Bidirectional and Auto-
Regressive Transformers) [14], Marian [13] or other LLMs
(Large Language Models), TOOL frames OCR correction as
a machine translation task. This enables robust, model-agnostic
and domain-adaptable post-processing. The approach offers a
scalable and language-independent framework for improving
OCR results without requiring any modifications to the OCR
engine itself.
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There is a need for such a flexible, general-purpose so-
Iution that can learn to correct OCR errors in a data-driven
manner. This approach addresses the problem by training
Seq2Seq models on aligned pairs of noisy OCR output and
the corresponding GT (Ground Truth) text. In this paper,
we specifically address the task of translating from “OCR
German” to standard German from 1871 to the present day
to improve token accuracy.

II. RELATED WORK

Seq2Seq modelling plays a foundational role in tasks
such as machine translation, text summarisation, and now,
OCR post-correction. The original Seq2Seq framework was
introduced by Sutskever et al. (2014) [24], who proposed
using RNs (Recurrent Networks) with LSTM (Long Short-
Term Memory) units to encode an input sequence into a
fixed-length vector and decode it into an output sequence.
This approach demonstrated promising results for translations
but had difficulties with long sequences due to information
bottlenecks in the fixed-size context vector. To address this
limitation, Bahdanau et al. (2015) [3] introduced the attention
mechanism, allowing the decoder to access different parts of
the input sequence dynamically. This innovation significantly
improved translation quality and became a core component of
subsequent Seq2Seq models.

The Transformer architecture by Vaswani et al. (2017) [26]
replaced recurrence entirely with self-attention mechanisms,
enabling more efficient training and better performance on
long sequences. Transformers rapidly became the standard
architecture for Seq2Seq tasks. Building on the Transformer,
Lewis et al. (2020) [14] introduced BART, a denoising au-
toencoder for Seq2Seq generation. BART combines a bidi-
rectional encoder (similar to BERT (Bidirectional Encoder
Representations from Transformers) [9]) with an autore-
gressive decoder (similar to GPT (Generative Pre-trained
Transformer) [21]), making it well-suited for text generation,
correction and translation tasks; particularly when input text
is noisy, such as in OCR outputs.

Around the same time, Marian [13] was developed as
a highly efficient, production-grade translation system opti-
mised for multilingual environments. As shown by Junczys-
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Dowmunt et al. (2018) [12], Marian is particularly effective in
low-resource settings, making it a strong candidate for OCR
correction across diverse languages.

III. USE CASE

This section begins by outlining the background of edu-
cation, followed by an examination of the data availability
concerning VET (Vocational Education and Training), which
serves as the primary data source and use case for the proposed
TOOL approach.

A. Education Stages

Education comprises a sequence of structured stages, each
contributing uniquely to an individual’s personal and in-
tellectual development [19]. The stages usually begin with
ECEC (Early Childhood Education and Care), which includes
programmes and services for children from birth to five years
of age. This period is vital for the development of foundational
cognitive, social and emotional skills. Evidence suggests that
high-quality ECEC programs can have long-term positive
effects on academic performance and social integration [17],
[25].

Following ECEC, school education is generally categorised
into primary and secondary levels. Primary education lays
the groundwork for essential academic skills such as read-
ing, writing, mathematics and science while fostering critical
thinking and communication. Secondary education expands on
this base, introducing more complex subjects and sometimes
offering specialised or vocational tracks to prepare students
for higher education or employment [10].

Higher education encompasses academic institutions like
universities and colleges that confer undergraduate and post-
graduate qualifications. These institutions provide in-depth dis-
ciplinary expertise and facilitate the development of research,
innovation and professional competencies. Higher education
is thus a significant driver of socio-economic growth and
individual career advancement [1].

VET is a parallel pathway focusing on practical and
occupational skills, tailored to specific sectors such as
healthcare, manufacturing, hospitality and technology.
VET programs often involve work-based learning, such as
apprenticeships, to ensure graduates meet industry needs.
These programs also support lifelong learning by offering
reskilling and upskilling opportunities, thereby enhancing
workforce adaptability [7], [8].

CVET (Continuing Vocational Education and Training)
plays a crucial role in supporting ongoing employability and
national competitiveness. Many European countries, including
Germany, have implemented policies to support lifelong learn-
ing and professional development through national strategies
[22]. The German system differentiates between initial vo-
cational training (German: Ausbildung), retraining (German:
Umschulung), advanced continuing training (German: Weiter-
bildung) and upgrading training (German: Fortbildung). Up-
grading training is often governed by federal regulations such
as the Vocational Training Act (German: Berufsbildungsgesetz,
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BBiG) [6] and the Crafts Code (German: Handwerksordnung,
HwO) [5]. In contrast, other forms of CVET are typically more
decentralised and less regulated, though equally important for
continuous skill development.

B. OCR Processing of Documents for VET

Fig. 1 shows a document which is part of a collection
of historical VET. It is just one example of many similar
materials that outline training regulations, exam requirements
and pedagogical standards for skilled trades in early 20th-
century Germany. These documents were typically issued or
supervised by state institutions such as the Imperial Insti-
tute for Vocational Training in Trade and Industry (German:
Reichsinstitut fiir Berufsausbildung in Handel und Gewerbe),
which played a central role in standardising vocational train-
ing across the German Reich. The aim is to process such

Berufsausbildung in der Induftrie
Sehrmeifter-Ausbildung

Priifungsanforderungen
® fiie
Sdriftlithographen-Cehrmeifter

bearbeitet vom

Reichsinftitut fiie Berufsansbildung in Hanbdel und Gewerbe

Fig. 1. Exam requirements for a type lithographer teacher (orig. in German:
Priifungsanforderungen fiir Schriftlithographen-Lehrmeister).

documents using OCR to make them digitally searchable and
analysable. By converting these historical printed documents
into machine-readable text, we aim to simplify research into
the development of vocational training systems, qualifica-
tion frameworks and occupation-specific pedagogical methods.
However, processing these materials presents significant tech-
nical challenges.

An important problem is the typographical style of the orig-
inal prints: Many documents from the early 20th century use
Fraktur or broken Antiqua fonts, which are very different from
modern Latin script. These fonts have unusual letter forms
(e.g., long s “1” versus short s “s”) and dense ligatures that
are poorly recognised by standard OCR engines. The result is
a high rate of recognition errors, such as character confusion,
word fragmentation or misreadings that distort key terms (e.g.,
the German words: Lehrmeister, Priifungsanforderung, etc.).
In addition, the print quality of many originals contributes
to noisy OCR output with smudges, uneven contrast and
marginal notes that are interpreted as content. Therefore, in
the following, we show a new approach to dealing with these
problems without having to change the OCR process itself.
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Fig. 2. Process flow for the TOOL-based OCR translation pipeline. Input files are first passed through the Do OCR process. Then the following processes
are executed: Split into Chunks, Translate with Fine-tuned Seq2Seq Model, and Recombine Chunks. Together, these steps produce the Final Output.

IV. METHOD

To introduce TOOL, we begin by analysing the broader
context. Specifically, we consider a comprehensive dataset
comprising scans of VET documents, which is a collection
of image files representing a set of text-based records. The
primary objective is to generate high-quality transcriptions of
these documents in a manner that is as automated as possible.
Additionally, a limited set of manually transcribed documents
is available, which can be used for training purposes. Gener-
ally, this situation is a common use case for OCR, but as stated
before, the OCR results do not fulfil our needs. Furthermore,
the available set of transcribed documents is too small to
be used for training of a full custom OCR model. However,
we recognise that the not-satisfying OCR output follows its
own characteristics. Typical and recurring errors are, e.g., (i)
the Umlaut “0” in a scanned document often results in the
sequence “ii” in the recognized text or (ii) the long s “{” is
recognized as “f”.

We observe that the OCR output is not correct German,
but some type of inherent language. Hence, the output can
be treated as a language, which leads us to the approach of
TOOL: Translating from the OCR output language to a correct
natural language, German in our case. Thus, TOOL consists
of two steps: the OCR step and the translate step.

The OCR step does not require any further training of
models and generalises well for different OCR models and
languages. Even though the transiate step still requires an
individually trained model, this training requires only a small
amount of training data and resources.

State-of-the-art translation models are based on LLMs, just
like the translation step of TOOL. There are many different
methods for solving the OCR problem described above, several
of which we briefly outline here. These include a) Encoder,
b) Instruction LLM, and c) Seq2Seq.

a) Encoder: One potential approach involves the use of
an encoder-only model such as BERT. BERT processes an
input sequence of words and outputs a corresponding sequence
of contextualised embedding vectors. The idea is to utilise
the vector space of the embedding vectors of a default BERT
and train a custom BERT in a way that it generates for the
OCR output embeddings in the same vector space as a default
BERT. The big advantage over the instruction LLMs, such as
Llama and GPT, is that in contrast only a small BERT needs
to be fine-tuned for TOOL and a shared embedding vector
space is used, i.e., techniques like RAG (Retrieval Augmented
Generation) for retrieving documents from a collection can be
applied directly. However, there is also a need for the correct
German transcriptions of the scans and text generation from
BERT embeddings is not straightforward. Additionally, there is

no GT for the vector embeddings as our training data contains
transcribed documents and not embeddings.

b) Instruction LLM: Another possibility is to apply an
instruction LLM, like Llama or GPT, similar to [2]. Instead of
training a model for TOOL’s translation step, the instruction
LLM gets the OCR output and is prompted to correct it.
This approach works well, but there are disadvantages. While
requiring no training is an advantage, the downside is that
the process does not speed up once training is complete. An
instruction LLM is a pretty large model, and running it requires
special hardware and a lot of resources.

c) Seq2Seq: After all, TOOL’s translation step should
use a small transformer based LLM, i.e., a model taking a
sequence of words as input and returning a transformed, e.g.,
translated, version of the words. A popular choice for such
Seq2Seq models is Marian [13]. Using Marian for TOOL’s
translation step solves both issues stated before: First, there
is no need for sharing an embedding vector space as required
when using BERT. Second, Marian is a comparatively small
model and can be fine-tuned in a reasonable amount of
time. Additionally, after fine-tuning, the model can be used
with standard hardware. Following a thorough evaluation, we
selected the Seq2Seq model Marian, or more specifically,
its Python implementation called MarianMT!, to perform the
translation step within TOOL.

The full TOOL pipeline is shown in Fig. 2. On the left-hand
side, the red box depicts the input files, i.e., the scanned VET
documents. The first two purple boxes depict TOOL’s first
step, i.e., the OCR. The remaining three purple boxes represent
TOOL’s second step, the translation using a custom fine-tuned
MarianMT. As the input length of MarianMT is limited, the
OCR output is split into chunks before it is translated by
MarianMT. Finally, the translated chunks are concatenated,
and the results are ready to be stored (the red box on the
right-hand side).

Overall, the big advantages of the TOOL approach are:

o Any OCR tool can be used in the first step.

o For the second step, a pre-trained Seq2Seq LLM for
translation, like variants of MarianMT, can be used.

« It does not require much training in terms of fine-tuning.

o The resulting pipeline, OCR and translation, is quite fast
and resource efficient, especially compared to applying
an instruction LLM [2].

Next, we describe the technical details of TOOL, our
evaluation and present the results.

Uhttps://huggingface.co/docs/transformers/model_doc/marian
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V. EXPERIMENTS AND RESULTS

In order to verify the method described in this paper, ex-
periments were conducted using the texts described in Section
III. First, the process of fine-tuning with its subprocesses a)
OCR, b) Preprocessing for Fine-Tuning, and c) Fine-Tuning
is described.

A. Preprocessing and Fine-Tuning

A process flow diagram for fine-tuning the model can be
seen in Fig. 3. The experimentation setup does not serve as
a mean to find out the best possible models and parameters
to use but rather it aims to show that the method works in
practical scenarios.

a) OCR: As a first step, OCR is performed on all files
from our dataset. We have decided to use Tesseract [23] as our
OCR engine of choice as it is open source and widely adopted,
with libraries available for many programming languages like
Python?.

b) Preprocessing for Fine-Tuning: The files are ran-
domly split into a dataset for training and validation, and
another dataset for testing after training. The second testing
dataset is not used during the training phase, but to compute
the metrics later on to verify how well the model generalises.
For this experiment, we have split the dataset to have around
50% of the text files in the training and validation dataset and
the other 50% in the testing dataset. Thus, each dataset has
around 145 text files in total.

As a next step, the texts in each file are split into separate
sentences using the NLTK (Natural Language Toolkit) [16]
punkt tokeniser. This is done for the texts from OCR and the
GT texts to have texts that can be used for fine-tuning the
MarianMT model.

For the final preprocessing step, the corresponding sentences
from the GT (see Fig. 2) and after the OCR process need
to be aligned in order to have the corresponding sentence
pairs. To do so, we have used a LaBSE (Language-agnostic
BERT Sentence Embedding) model [11] which is based on the
BERT architecture. This language-agnostic model allows us
to encode texts from different languages into the same vector
space. Using a distance measure, like the cosine similarity,
we can pair sentences that are close in this vector space. The
cosine similarity, as used, is defined as

cosine similarity(A, B) A8

e A and B are two n-dimensional vectors, n € N,

e« A - B is the dot product between two vectors A and B

and

e ||A|l and ||B]| being the Euclidean norms of A and B.

The vectors A and B are the embeddings of the GT texts
and after the OCR process. The resulting value is in the
range of [—1,1], with —1 denoting exactly opposite vectors,
0 denoting orthogonal vectors and 1 denoting exactly the
same vectors.

where (D)

Zhttps://pypi.org/project/pytesseract/
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Since our goal is to have sentence pairs that are highly
likely to correspond, yet they may differ in a few aspects, we
have set a minimum cosine similarity between the pairs to 0.7.
In the end, we obtained approximately 10000 sentence pairs
for training and verification during training and 8000 sentence
pairs for testing afterwards.

c) Fine-Tuning: After generating the sentence pairs, fine-
tuning is possible. We have chosen to use a MarianMT model
[13] because this class of models is relatively small and
lightweight. This not only ensures that fine-tuning is possible
on moderate hardware but also makes inference possible on
modern consumer computers.

Based on the specific language(s) needed, the user must
choose the appropriate base model. Since we are dealing
with texts written in German, we have used the “Helsinki-
NLP/opus-mt-de-de”3 model as our basis for fine-tuning. This
model was pre-trained to translate from German into German,
with our goal after fine-tuning being to translate from “OCR
German” into correct German. For the experiments here, the
following hyperparameters have been used:

« number of epochs: 30,

o learning rate: 5 x 10~° and

o weight decay: 0.05.

The hyperparameters were chosen based on past experiences
and are thus not necessarily the ones that provide the best
results. Instead, the goal is to show that the method does work
in general. Based on the specific use case, the hyperparameters
need to be found, e.g., using Optuna*. For the fine-tuning,
90% of the training dataset has been used for training while
the remaining 10% has been used for validation.

Fine-tuning was performed on a single Nvidia DGX A100
with 80GB of video RAM?. After around 1.5 hours, fine-
tuning was finished, and the resulting model was stored to
be used in the translation pipeline.

B. Translation

The translation pipeline follows the same process flow
described in Fig. 2. In the first step, standard OCR needs
to be performed on the text corpus. This output then needs
to be split up into chunks of appropriate length. The reason
behind splitting up is that most Seq2Seq models are only
able to process a certain number of tokens. This value needs
to be researched by the user and is set to 512 tokens for
MarianMT. One possible way to generate these chunks is to
split the input into sentences. Since the experiments performed
for this article already did both steps for the pipeline presented
prior, OCR and splitting up were not done in the translation
pipeline, where it would have been typically done in a real-
world scenario. The next step is then the translation, which is
done with the fine-tuned MarianMT model. Additionally, for
comparison in this work, translation was also done using the
base MarianMT that is pre-trained for translating German into

3https://huggingface.co/Helsinki-NLP/opus-mt-de-de

“https://optuna.org/

5The datasheet can be found here: https:/images.nvidia.com/aem-dam/
Solutions/Data-Center/nvidia-dgx-al00-datasheet.pdf
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Input Do Split into Align GT Fine-tune Fine-tuned
D —— D —— —_— D — D ——
Files OCR Sentences and OCR MarianMT Model

Fig. 3. Process flow for OCR to MarianMT fine-tuning pipeline. Input files are first passed through the Do OCR process. Then the following processes are
executed: Split into Sentences, Align GT and OCR, and Fine-tune MarianMT. Together, these steps produce the Fine-tuned Model.

German, but not with the special cases we have in our corpus,
like the {. After translating the text sentence by sentence, the
results need to be recombined to get the full text back again.

This translation step was performed on a standard MacBook
Pro 14 inch with M3 processor and 16GB of RAM®. For all
the examples from the testing dataset, translation took around
1.5 hours.

C. Performance Metrics

Before discussing the results of our experiments, a brief
introduction to the performance metrics used is given.

a) Hunspell Errors: One of the goals of TOOL is to
have valid German afterwards. Thus, we have used Hunspell
to verify that. Hunspell is an open-source spell checker and
morphological analyser that is used in a few popular open-
source tools like LibreOffice or the Firefox web browser,
among others [18]. In order for Hunspell to do its work,
a dictionary needs to be used. For our task, we have used
a German dictionary called “German (de-De frami)”’. The
number of errors given by Hunspell based on this dictionary
are counted. To have a value that then also accounts for the
length of the text, as longer texts are more likely to have a
higher number of errors produced, the resulting value is then
divided by the total number of words in the GT text.

E
Hunspell value (text) = N where 2)

o E is the number of Hunspell-detected spelling errors and
o N is the number of words in the GT text.

b) (Normalised) Levenshtein Distance: The Levenshtein
distance is a measure used to calculate the distance between
two sequences. In our case, we calculate the distance between
two sequences of characters. To calculate the Levenshtein
distance, the minimum number of single-character edits to
transform a provided sequence A, e.g., the texts after the
TOOL pipeline, into the other sequence B, here the GT texts,
is counted. These single-character edits can be insertions,
deletions or substitutions. Similar to the case with the Hunspell
errors, a longer text will more likely need more edits to be
transformed into the other text, and thus, we have normalised
the Levenshtein distance by dividing the results by the number
of characters in the GT text.

c¢) Word Error Rate (WER): The WER (Word Error
and Rate) is calculated in a similar way to the Levenshtein
distance. In contrast to the Levenshtein distance, though, the
WER counts the minimum number of words needed to change

SFor  technical  specifications,  visit  https://web.archive.org/web/
202505181153 18/https://support.apple.com/en-gb/117735

Thttps://extensions.openoffice.org/en/project/
german-de-de-frami-dictionaries

a text A into another text B. As an example, “I like a sand-
wich” and “I like this sandwich” have three character errors
but only one word error, which is viewed at for the WER.
For computing the WER, the number of word substitutions,
deletions and insertions is counted. The resulting value is then
divided by the total number of words in the GT text.

S+D+1
N

o S being the number of substitutions,

o D being the number of deletions,

o I being the number of insertions and

« N being the total number of words in the GT text.

WER = , where (3)

d) Jaccard Similarity: The Jaccard similarity is a set-
based similarity measure between two sets A and B. Because
sets do not have an order, the similarity measure does not take
the order of the words in the text into account. However, this
measure can still provide interesting insights into how well a
user searching for a specific term may find this term in the
results. Formally, it is defined as:

“4)

Jaccard(A, B) = 'A n B' .

AUB

The resulting value will be between 0 and 1, with 1 denoting
identical sets and 0 meaning no overlaps at all. In order to still
preserve some form of ordering, we have measured the Jaccard
similarity with regards to word bigrams, i.e., the sets consist
of combinations of two words as entries. This takes immediate
context into account and makes the measure stricter.

e) BLEU(-4): The BLEU (Bilingual Evaluation
Understudy) score is a value between 0 and 1, and it
evaluates the quality of one text compared to another. If the
resulting value is getting closer to one, both texts are getting
more similar. Initially, it was designed for machine translation
tasks, but it can also be applied to other similar tasks. In
essence, BLEU calculates how many words or n-grams in
the candidate text, i.e., the text after TOOL, match those of
the reference text. Detailed information can be found in its
original paper by Papineni et al. [20].

We have decided to use the BLEU-4 score version that
considers n-grams up to 4-grams, i.e., sequences of one up
to four words in length. The precision for each n-gram is
calculated, and then the geometric mean over all scores is
taken.

4
BLEU-4 = BP - exp (Z wy, log pn> ,where  (5)

n=1

« BP is the brevity penalty,
¢ Dy, the precision for n-gram of size n € N and
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o w, the weight for each n-gram precision (in our case, we
have set it uniformly to i).
The brevity penalty is used to penalise translations that are
too short when compared to the reference.

1
BP =
o

« tis the total word length of the translation and
o g is the total word length of the GT text.

Thus, if the translation is longer than the GT text, nothing
happens, but if the translation is shorter, the BLEU score gets
penalised exponentially.

f) METEOR: Unlike BLEU, the METEOR (Metric for
Evaluation of Translation with Explicit Ordering) score is
not only looking at exact matches, but it is extended to
also include stem matching (e.g., “read” and “reading”) and
synonym matching (e.g., “bike” and “bicycle”). More details
can be found in its original paper by Banerjee and Lavie [4].
It is calculated as follows:

, where (6)

METEOR = Fean - (1 — Penalty). 7
The individual components of this equation are given as:
Precision = ﬁ, Recall = ﬂ,where ®)
Wy Wyt

e m is the number of matched unigrams,

e w; the number of words in the translation and

e wg; the number of words in the GT texts.

Using precision and recall, the F},.,, score can be calcu-
lated.

(14 «) - Precision - Recall
Fmean = T s h
« - Precision + Recall where ©)

e « € (0,1) being a parameter giving weight to recall over
precision.
By default, « is set to 0.9, meaning that recall is weighted
slightly above precision.
Finally, the penalty term is computed as:
B
Penalty =~ - (Ch) , where (10)
m
e ch is the number of chunks,
e m the number of matches and
e [ and + being tuning parameters.
Also for the penalty term, the parameters § and - have been
kept their default values (8 = 3, v = 0.5).

g) ROUGE(-2): The ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) score was first described
by Lin [15] in 2004. In contrast to BLEU, ROUGE is
generally a measure of recall. However, it can also be
Fl-score based, which is the version we have used in our
evaluation. Additionally, we have calculated the score using
text bigrams to capture more of the context of the words.
This F1-score version using bigrams is calculated as follows:

2 - Precision - Recall
Precision + Recall

ROUGE-F1 = (11)
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Precision and recall are as defined in Equation 8 but with
word bigrams instead of unigrams.

D. Results

The evaluation for TOOL was performed on the previ-
ously held-back testing dataset. This dataset contains around
8000 sentence pairs consisting of the texts after OCR, base
MarianMT or TOOL respectively, and the corresponding GT
sentences. All the text used for this dataset was chosen at
random from our text corpus. Using that dataset, eight per-
formance metrics were calculated. First, they were calculated
for each sentence individually and then combined using both
the mean and the median. Table I shows all the metrics
for all the test datasets, all eight performance metrics and
both the mean and median. Row “Tesseract only” shows the
performances for only using the Tesseract OCR engine. In row
“Base MarianMT” are the results shown for using the base
MarianMT German into German translation model after the
Tesseract OCR. This is done to compare the performance of
the pre-trained MarianMT with both Tesseract alone and also
TOOL. Finally, the row “TOOL” contains the performances
for the approach presented in this article. The best values
for both mean and median for each performance metric are
highlighted in boldface.

Figure 4 shows the same data also in bar chart form. Orange
bars are for the experiments with Tesseract alone, blue bars
are the experiments after using the pre-trained MarianMT, and
magenta bars are for TOOL. Solid bars are used for the mean,
while hatched bars are for the median.

The performance metrics are calculated as described in
Subsection V-C. For the columns “Hunspell Errors”, “Nor-
malised Levenshtein Distance” (abbreviated to “Norm. Lev.
Dist.”), and the “Word Error Rate” (“WER” in the table), a
smaller value denotes a better performance. In contrast, for the
“Jaccard Bigrams”, “BLEU-4", “METEOR” and “ROUGE-2",
a higher value denotes a better performance. For brevity, in this
section we will refer to the BLEU-4 score as just BLEU and
the ROUGE-2 score as just ROUGE.

At first, we look at the mean of each performance metric.
Overall, it can be seen that the TOOL pipeline improves
performance for all performance metrics. The number of errors
identified using Hunspell was, on average, almost halved.
Also, the Jaccard similarity for word bigrams as well as the
BLEU and ROUGE scores doubled compared to the baseline
Tesseract only. The normalised Levenshtein distance also got
reduced. All of this indicates that the resulting text after TOOL
gets closer to the GT, showing that the pipeline works.

Comparing the results after Tesseract alone and TOOL to
the base pre-trained MarianMT was done in order to judge
how much of the ability to correct the OCR errors is already
inherent to the base model and how much was added via fine-
tuning. Additionally, this serves as a baseline to judge whether
the still relatively small dataset for fine-tuning has an impact
on performance or not.

The MarianMT base model is consistently outperformed
by our TOOL pipeline, demonstrating that fine-tuning sig-
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TABLE I
EVALUATION METRICS FOR DIFFERENT MODELS (MEAN, MEDIAN).

Metric Hunspell Errors Norm. Lev. Dist. WER
Model Mean Median Mean  Median Mean Median

Jaccard Bigrams BLEU-4 METEOR ROUGE-2
Mean Median Mean  Median Mean Median Mean  Median

Tesseract only 0.3670  0.4568 | 0.2275  0.1834 | 0.5357  0.5347
Base MarianMT | 0.3455 04311 | 0.3387  0.3090 | 0.6252  0.5975
TOOL 0.1963  0.1925 | 0.2175  0.1587 | 0.3626  0.2716

0.2079  0.1435 | 0.3047  0.2559 | 0.5977  0.5710 | 0.2913  0.2270
0.1975  0.1383 | 0.2338  0.1749 | 0.5083  0.4737 | 0.2755  0.2150
04723  0.4954 | 0.5695 0.6211 | 0.7761  0.8052 | 0.5781  0.6053

Performance Metrics: Mean and Median Comparison Across Models
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Fig. 4. Evaluation metrics shown as bar charts. Solid bars indicate the mean, while hatched bars are the median.

nificantly improves the results, even with a relatively small
dataset. Moreover, the base MarianMT is also almost always
worse than just Tesseract alone. It only outperforms Tesseract
alone in the number of Hunspell errors, which is an indicator
that the language produced after the translation is closer
to German than the result after OCR alone. However, in
correcting these mistakes, the results diverge from the GT
leading to overall worse performance. Thus, using the base
MarianMT without first fine-tuning to this specific OCR task
is not helpful and even degrades results.

In addition to the mean, we also calculated the median value
of each performance metric over all results. This was done
in order to judge whether a few examples are skewing the
results in one or the other direction. Looking at all perfor-
mance metrics, the median is mostly worse than the mean for
Tesseract only, but also for the base MarianMT model. The
two exceptions are the normalised Levenshtein distance and
the word error rate, where the results are getting slightly better.
This is an indicator that there are a few outliers skewing the
results slightly in a mostly worse direction. For our TOOL
pipeline, the value is, however, almost always very close in
both mean and median. The trend here is the same, with base
MarianMT producing the worst results, while Tesseract alone
performs slightly better, apart from the Hunspell errors, as
already described in the mean value, and TOOL is the best.

VI. CONCLUSION AND OUTLOOK

In this article, we introduced TOOL, a novel method that
reconceptualises OCR correction as a translation task from
noisy to clean text. We demonstrated TOOL, which uses the
Seq2Seq model MarianMT to translate the “OCR German”
output into Standard German from around 1871 to the present
day. We implemented TOOL with this lightweight model
that runs efficiently on consumer-grade hardware. While the
results are promising and show performance improvements,
the current study relies on a relatively small dataset and serves
as a proof of concept.

Future work will focus on scaling to larger datasets, which
is expected to enhance performance and robustness. Extending
this approach to other languages also represents a promising
direction for future research.
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