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Abstract—Various scientific fields are seeking to exploit tensors,
which are multi-dimensional arrays that expand on the concept of
matrices. Here, we consider an application arising from complex
biological systems where the data can be processed and analyzed
using tensors. Our modeling framework is the reaction-diffusion
master equation (RDME) used to describe the dynamics of
biological systems involving both reaction and diffusion processes.
It is already notoriously hard to solve the more familiar chemical
master equation (CME) that only involves reaction processes.
Solving the RDME is even harder because its state space is
considerably larger compared to that of the CME, and this
further motivates the utilization of tensors. Our study is an
illustrative example of how tensor techniques can be used to
make predictions on the dynamics of a metapopulation model
based on its RDME formulation.

I. INTRODUCTION

ENSORS, fundamentally, are extensions of vectors, and

matrices, with the ability to represent and manipulate data
in multiple dimensions. Classical linear algebra approaches
can circumvent tensors by flattening the data through mecha-
nisms known as matricization or vectorization, although doing
so can increase the computational overhead, especially as
dimensionality grows. By contrast, specialized tensor methods
avoid unfolding the tensor into a matrix format, with the trade-
off that the preserved multi-dimensional format drastically
complicates the design and implementation of algorithms, not
to mention their subsequent understanding and maintenance
by others than the original software architects.

Tensor methods encompass the efficient utilization of ten-
sors for the purpose of problem-solving, data analysis, and
the extraction of significant patterns from high-dimensional
datasets. Tensors find utility not only in the biological appli-
cation considered here, but also in many other areas, including
popular image processing applications (e.g., facial recognition,
analysis of musical scores, and identification of cliques within
social networks [1], [2]). Together with earlier works on
tensors and their decompositions that go back to 1927 [3], we
note that more recent literature overviews of tensor techniques
for large-scale numerical computations are given in [4], [5],
[6], geared towards a scientific computing audience. Of course,
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there are way more applications of tensors than we can
reasonably cite in a communication such as this one.

In the field of biochemistry, complex networks are shown
to emerge as a result of the interactions among many cellular
components, including DNA and RNA molecules. Determin-
ing the time-varying probability distribution of their states
involves solving the chemical master equation (CME) [7].
The stochastic simulation algorithm (SSA) [8] is useful for
analyzing the CME. An alternative method for addressing the
CME is the finite state projection algorithm (FSP) [9], which
amounts to solving differential equations that characterize the
evolution of the probability distribution of the underlying
Markov chain of the CME over time.

Spatial heterogeneity is a frequent property of many cellular
habitats, which are not homogeneous in space. A number of
distinct but similar mathematical techniques have been used
to model stochastic reaction-diffusion systems in biological
cells [10], [11]. For example, Smoluchowski proposed a
modeling approach named the spatially continuous diffusion-
limited reaction (SCDLR) [12]. Unlike these approaches, the
reaction-diffusion master equation (RDME) [13] is obtained
when we treat the diffusion at the molecular level as a unique
set of reactions in the CME.

The space is partitioned into compartments in the RDME.
Every compartment is thought to be thoroughly mixed, and
the reactions found within a specific compartment are thought
to be consistent with the homogeneous scenario. Additionally,
molecules can diffuse (jump) in between neighboring compart-
ments, and here we will model the jump processes as reactions.
Similar to the CME but with a much larger dimensionality, the
RDME explains the time-dependent probability distribution
function (PDF) of the system state. The works in [14], [15],
[16] provide instances of the SSA being used in reaction-
diffusion systems with the space being one dimensional. The
next reaction method (NRM) [17] is an efficient version of
the SSA. A software called MesoRD [18] offers a special-
ized implementation of the NRM, which is designed for
diffusive systems and known as the next subvolume method
(NSM) [19].

In this contribution rooted in [20], our aim is to illustrate
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how a tensor-based approach, specifically a quantized tensor-
train decomposition, can be effectively used to manage the
potentially high-dimensional state space arising in the RDME
of a metapopulation model. Although the RDME shares sim-
ilarities with the CME, it necessitates greater computational
resources due to its considerably larger state space. We employ
the tensor technique to derive the marginal distribution of the
relevant species. By comparing the tensor technique with the
classical FSP, this work aims to highlight the capability of
tensors to reduce computational overhead while maintaining
accuracy and generalizability across diverse applications.

II. PRELIMINARIES

A. Tensors

We will soon recap how the CME and RDME lead to
formulations involving tensors. We begin with some back-
ground to define the notation and situate our context. More
formally, tensors are multi-dimensional arrays in K/1%*In
where N is the order, i.e., the number of dimensions, which
are called modes or ways, and Iy, ..., Iy, are index ranges
in each dimension. Tensors extend the notion of vectors and
matrices, referred to as 1-way and 2-way tensors, respectively,
whereas a 3-way tensor X € R1*72xIs depicted in Fig. 1,
is a cuboid (or cube-like) with elements x;;;, = X(i, ], k),
1<i<,1<j<1I5,1<k<I3 The field K will be R in
our application but it can be C in general.

Index fixing can be used to build subarrays. A typical
scenario is when all indices are fixed except one, in which
case the resulting subarrays are referred to as fibers, c.f. Fig. 2.
They can alternatively be thought of as mode-n fibers that
are produced when all indices are fixed except the nth one.
Another common scenario is when all indices are fixed except
two, yielding the examples of slices depicted on Fig. 3 for a
3-way tensor. These examples make clear that there are many
different possible orderings, meaning that software developers
must agree on common conventions for consistency in their
codes. If we stack the resulting fibers or slices, we are
performing what is termed vectorization or matricization. In
general, tensor unfolding denotes the mechanism by which
to flatten a tensor to systematically arrange its entries into a
matrix, thereby providing a bridge to circumvent tensors and
revert to classical linear algebra operations.

On tensors of equal sizes, simple operations like addi-
tion and subtraction are performed component-by-component.
However, beyond ordinary matrix-like definitions, there are
other tensor-specific operations and decompositions that are
much more sophisticated by far.
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Fig. 1. Tensors of order 0, 1, 2, and 3.
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Fig. 2. Different fibers of a 3-mode tensor.
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X4)

Fig. 3. Different slices of a 3-mode tensor.
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B. Higher Order Singular Value Decomposition (HOSVD)

Consider the Singular Value Decomposition (SVD), which
is a fundamental matrix factorization that represents any matrix
as the product of two orthogonal matrices together with a
diagonal matrix of singular values, encapsulating the inherent
geometric characteristics of the data. Higher Order Singular
Value Decomposition (HOSVD) generalizes this concept to
multi-dimensional tensors, by decomposing them into a core
tensor and a collection of orthogonal matrices corresponding
to each mode. Below we reproduce a characterization of
the HOSVD [21], mainly to illustrate how concepts that are
familiar with matrices can quickly become drastically harder
to grasp when reformulated through tensors.

Theorem II-B.1: Every tensor X € RI*[2X=XIN can be
written as

X=Gx1 AW xo A@ ...y AN

where
DA™ = (A Al
matrix of order I,, x I,
2) G € RIvxI2xxIn of which the subtensors G; —q,
attained by fixing the nth index to «, have the properties
of
(i) ordering:

1Gi,=1llp = 1Gin=2llp = - 2 |Gi,=1.]lp =0,

for all possible values of n,

(ii) all-orthogonality: for all possible values of n,«
and 3, two subtensors G; —, and G; —g are orthogonal
subject to o # (:

<gin:a, gin23> =0 for « 7é ﬁ

3) G=X x; AOT g A@T ..y AT,
The vector Az(.") is an m-mode singular vector and the
Frobenius-norms ||G;, ;||  are n-mode singular values of X
N denotes the total number of modes of the tensor, and
n € {1,..., N} refers to an arbitrary mode index. The symbol
X, denotes the mode-n product, which is an operation where

each mode-n fiber of a tensor is multiplied by a matrix,
affecting only the nth dimension while keeping others fixed.

A(I”)) is an orthogonal

C. CANDECOMP/PARAFAC (CP) Decomposition

A popular decomposition in practice is the CP decomposi-
tion, which for X € R11X*IN ig given by [22],

X=Tx; AW ...y AN = [[AU),... ,A<N>]] (1)

where 7 is the identity tensor having ones along the super-
diagonal and zeros elsewhere, and each A(") ¢ R/»*F for
n=1,...,N is a factor matrix. The notation [-] denotes the
CP decomposition as a sum of R rank-one tensors formed by
outer products of the columns of the factor matrices. The CP
rank R € N is left as a parameter that tunes the accuracy of
the decomposition. The fact that CP boils down to resorting
to matrices explains its appeal and popularity.

According to [23], (1) can be written element-wise as a sum
of products of the entries of those matrices

R
X(iv, ... in) =Y AW (,r) - AN iy, ). (@)
r=1
Equation (3) below is another compact notation for writ-
ing (1) or (2) via the outer product

R
X:Zagl)o...oagf\/)_ 3)
r=1

by referencing columns of A (™) (agn)

) <
RInXE pn=1,...,N.

D. Tensor Train (TT) Decomposition

Our present numerical implementation is based on another
decomposition, namely the tensor train (TT) decomposition.
For any X € RT*"XIN it can be shown that its entries can
be written in the form [24],

X1y yin) =G1(i1) ... - Gn(in). “4)

Here, G, (i) € R™-1%"» are matrices (slices) of the cuboid
(3-way) tensors G, € R"™-1X"™X"n_ which are called TT
cores. Moreover, “boundary conditions” ro = ry = 1 are
imposed so that the chain product (4) always yields a scalar.
TT ranks are defined as (r1, -+ ,7n—_1).

An explicit storage of X would cost Hgil I, = O(IN),
where I = maxi<n<n I, so that if N = 10 in a CME
application and I ~ 10, its corresponding matrix (7) would
be of immense size 10'° x 10'° and even much more for the
RDME. By contrast, the TT format only stores the TT cores
at a total cost of O(r2..- N - I), where ror = maxj<p<n T'n.
Thus, provided that the maximum rank rpp is not large, the
storage of the TT format scales linearly with N, leading to
dramatic savings from the explicit format where the storage
scales exponentially with N. Our actual code builds on an-
other variant, specifically the quantized tensor train (QTT)
format that brings the storage requirements further down to
O(réTT - N -log, I). Although rgpr is not necessarily rpr,
this reduction remarkably means a linear cost in the number
of modes and logarithmic in the mode sizes.

Our implementation did not have to invent everything from
scratch. Rather, we leveraged past research, including [25],
[26], and the TT toolbox software [24]. Our contribution here
is sharing the findings of our hands-on experience on these
topics and their application to the RDME context that we
describe next.

E. CME and FSP in tensor format

Consider a chemical reacting system in a spatial domain 2
involving N species {Si,...,Sn}, represented by the state
vector X (t) = [X1(t),...,Xn(t)]", where each X;(t) is a
non-negative integer denoting the population of species S;
at time ¢. Suppose there are M reaction channels, denoted
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by {R1,..., R}, and assume that the system is well mixed

and in thermal equilibrium. The dynamics of the jth reaction

channel R; is characterized by

(i) the propensity function a;(x), which indicates how likely

it is that R; will occur given the system’s current state
x, and

(ii) the stoichiometric (or state change) vector v; =
[V1js ... ,VN]-}T, which specifies the change in the popu-
lation count of each species that results from one occur-
rence of R;.

Thus, a;(x)dt gives the probability that, given X (¢) = x, one

R; reaction will occur in the next infinitesimal time interval

[t,t + dt], and v;; gives the change in X; induced by one

R; reaction. This system can be modeled as a Markov chain,

with its behavior determined by the Chemical Master Equation

(CME) [7]

dP(x,1) _
D 5 [ = 1) Plx — wnt) -
2 5)

aj (X)P(Xa t)} )

where the function P(x,t) denotes the probability that X(¢)
will be x. Equation (5) may be written in an equivalent
matrix—vector form by enumerating all the states. If there are
n possible states, x1,...,X,, the CME takes the form of a
system of linear ordinary differential equations (ODEs),

P(t) =M P(t), (6)

where the probability vector P = [py,... ,pn]T is such that
each component p;, = P(x;,t) = Prob{X(t) =x;}, the
probability of being at state x; at time ¢, for ¢ =1,...,n.

The matrix M is a sparse n X n matrix that is populated
by the propensities and it represents the transition rate matrix
of the Markov chain underlying the CME. Its entries are
constructed using

ar(x;) if x; = x; + vy
0 otherwise

The FSP method [9] and improvements such as [27] directly
compute an approximation to the solution of the CME. The
FSP method solves the CME and estimates the probability
vector (PV) of the populations in a chemical reaction system
using a truncated state space. For a truncated transition matrix
M and initial truncated PV denoted by P (0), the FSP finds
the PV at any time P (t) by the following,

Pr(t) = My - Pp(t). )

Equation (8) is a system of linear ODEs and the solution is
given by
PT(t) = exp (MTt) PT(O). (9)

The CME matrix M remains sparse under any order relation
imposed on the enumeration of the states, and it is natural
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to use the lexicographic order on the state space as a subset
of N, the set of nonnegative natural numbers. If we impose
the lexicographic order on a state space X in the form

of a window of lower bounds (lb(1)7...,lb(N)) and upper
bounds (ub(l),...,ub(N)), i.e., X consists of states x =
(z1, - ,on)" such that b <z, < ub® Vs =1,...,N,

then the transition rate matrix can be decomposed into a sum
of Kronecker products [28], [29]

M
M= (@80 - 1) My (10)
k=1

Each term in the sum (10) corresponds to a reaction: Sfcs) is a
“shift-diagonal” matrix corresponding to the change in species
s when reaction k£ happens; I is the identity matrix; and My
is the diagonal matrix that stores the values of the propensity
function ag. Precisely, let I, = ub™® — 16 +1 be the window

size for each species, n = I - ... - Iy is the total number of
T
states in X, and denote vy, = (u,(cl)7 ceey V,(CN)) . The identity

matrix I is then of order n, ng) € RIs*Is s given by

0o --- 1
if %) < 0, shifted
N
up |v, | rows
0
S,(CS) = 0
if 1) > 0, shifted
1 down V,(CS) rows
1 0
and
Mk? Edlag(ak (Xl))"' , Ak (Xn))a (]1)
where x1,---,x, are states of X in the increasing lexico-

graphic order. Furthermore, by assuming that the propensity
functions are separable, i.e.,

ay (x) = ag)

(ml)-...-aECN) (zn), k=1,---,M,
where al(c') > 0 are scalar functions, (11) can be rewritten as
M; = @Y | diag a,(:),

where, for s=1,--- | N,
diag a,(:) = diag (a](f)(lb(s)), . ,aff) (ub(s))) )

Under these assumptions, the transition matrix (10) can be
represented by simple matrices of small sizes,

M= Ii (@ivzls,(ﬁ - I) (@ﬁil diag a,<:>) . a2
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In [26], the lower and upper bounds are in the form B =0
and ub® = I, — 1, yielding

= diag (af)(O), . ,agcs)(fs — 1)) .

The reason for holding the lower bounds anchored at 0 was to
help attenuate some of the complexity of dealing with tensor
train decompositions when their sizes changed adaptively.
Subsequent improvements in [25] allowed both the lower and
upper bounds to slide dynamically. A central aspect in our
body of research [25], [20], [26] has been that by keeping the
state space in the form of a hyper-rectangle,

x € [Zb“) : ub“)} "% [H,(m ™

both the transition operator M and the probability distribution
P can be represented as multi-dimensional arrays that allow
us to use tensor decompositions as pioneered in [28], [29] to
resolve storage issues.

diag a,(f)

F. RDME

Assume the spatial domain €2 is partitioned into compart-
ments (voxels), denoted V., k = ., K. Within each
compartment, species have the ability to react with one another
as well as diffuse (jump) over the boundaries to reach adjacent
compartments. Let X; ;(¢) be the population count of species
S; in compartment Vj, at time ¢. Then each species in the do-
main is given by the subvector X;(t) = [X;1(¢), ..., X k(1)],
i =1,...,N. Hence, X; is the subvector which represents
the species 1 in all compartments. Likewise, Xy represents
species 2 in all compartments, and so on. Thus, the state vector
of the system is X = [Xy, ..., Xy]. The diffusion propensity
function d; ;1 and the state change vector py ; characterize
the dynamics of the diffusion of species .S; from compartment
Vi to V;. The vector py ; has a length of K with —1 in
the kth position, 1 in the jth position, and 0 elsewhere. Given
X (t) = x, the diffusion master equation (DME) can be written

as
K K
dP (x,1)
ZZ |:7,]]€ /J’kJ)P(Xla---a
=1 k=1 j=1 (13)
Xi = Mk,j, "'7xNat) - di,j,k (XL)P(X7t):|
We take the diffusion propensity function d; j j (x;) = D/I?,

for k = 7 £ 1, where D is the diffusion rate and [ is
the characteristic length of the compartment, meaning that
our setting ultimately assumes that d; ;j; = d is constant.
Some other settings could make different choices. If D is
the transition matrix describing the diffusion (or jump) of
species between compartments, the equivalent matrix—vector
form of (13) can be written as

Pt)=D-P(1). (14)
Combining equations (6) and (14) we get the matrix-vector
form of the RDME,

P (t)

=M-P(t)+D-P(t). (15)

Equation (15) is a system of linear constant coefficient ODEs
and gives us more possible states than the CME, and so
its corresponding transition matrix is substantially extended
to represent species in compartments. However, it should be
remembered that it is ultimately a tensor representation of the
form (12) that is used in the calculations.

III. STUDY FINDINGS
A. Metapopulation Model

Populations that are segmented into smaller groups linked
by migration are studied using metapopulation models.
Metapopulation models often employ reaction-diffusion prin-
ciples to describe spatial dynamics [30]. In a reaction-
diffusion metapopulation model, the reaction term depicts the
occurences of births and deaths within each subpopulation,
whereas the diffusion term captures the mobility of an indi-
vidual between nearby subpopulations. By taking into account
both diffusion and reaction terms, the model can better capture
complex interactions between local population dynamics and
spatial dispersal. Using the RDME in a metapopulation model,
each subpopulation’s population is modeled as a stochastic
process with birth, death, and migration events occurring
randomly. We examine a simple reaction scheme in this study
that conserves the population count in order to empirically
provide a proof-of-concept

8 L a (16)
a+p8 = 28 17

In the context of our metapopulation model, « species rep-
resent normal species (healthy individuals) and 3 species
represent active species (infected individuals) intermingling
from area to area. This scheme is also known as the SIS model
(Susceptible-Infectious-Susceptible) [31]. Recall that when we
analyze this model without considering compartments and
diffusion, the stoichiometric matrix is

a B a B

S — 0O 111 0

1 1]0 2
in which the first and second row of the matrix stand for
reactions (16) and (17) respectively. The two left columns
contain the coefficients of the reactants while the other two
right columns contain the coefficients of the products. Meaning

that from S = (s;;), the components of the state change vector
associated to a reaction Ry, kK =1,..., M, are effectively

(Sk,N+1:2N — Sk,1:N) (18)

where in this example N = 2 and M = 2. It is less error
prone to set S and programmatically proceed as shown above.

We now consider two neighboring areas (i.e., compartments)
where both the healthy and infected individuals can move
back and forth. We label the areas as Area 1 and Area 2.
Consequently, the scheme can be represented by a reaction-
diffusion process where reactions (16) and (17) can take place
inside both areas separately and the individuals can move back
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and forth between Area 1 and Area 2. An illustration is shown
in Fig. 4. (Imagine Area 1 as indoor and Area 2 as outdoor.)

21

Alpha / Healthy

LR
Alpha / Healthy

Reactions inside

e

Beta/ Infected

Reactions inside

Diffusion
%o

Beta / Infected

Area 2

Areal

Fig. 4. Illustration of the metapopulation example.

The process is a random process and can be modeled by the
RDME consisting of two reactions with two compartments.
By our construction, species change forms without creating or
destroying themselves, hence the overall population count in
the process stays constant.

To make the details clear, we take a small example where
we assume that initially, Area 1 has a = 2 healthy individuals
and f = 1 infected individual. Area 2 has o = 1 healthy
individual and 3 = 2 infected individuals. With the convention
of section II-F, the initial state vector is therefore

(19)

Area 1 Area 2 Area 1 Area?2

with diacritical annotations in (19) meant to ease the in-
terpretation of the indexing of the components. We set the
reaction parameters ¢; = .30 and ¢y = 1.0, and the diffusion
parameters D = 1.0 and [ = 10, yielding d = D/I?> = 1072,
The RDME gives us all the possible states we can get when
those individuals react and diffuse randomly, and recall that
along a similar spirit to [32, Eq. (4)], diffusion in our context
is modeled via stochastic jump processes through additional
reactions,

=

(Area 1) « a (Area 2), (20)

QU

—
=

(Area 1) g8 B (Area 2). (1)

Now that we are considering the system in two areas where
diffusion also occurs, the stoichiometric matrix grows much
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larger to take the form below.

Reactants Products

e B o B
— | — =
Area# 1 2 1 2 1 2 1 2
0 O 1 0 1 0O 0 O
1 0 1 0 0 0 2 0 Reactions
0O 0 O 1 0 1 0 O
g 0 1 0 1 0O 0 O 2
|1 0O 0 O 0 1 0 O
0 1 0 O 1 0O 0 O . .
00 1 0 0 0 o0 1 Diffusions
0O 0 O 1 0 O 1 0

The annotations here are also aimed at easing the connection
of how to map the location of entries with the convention
of section II-F. In the matrix, the first two rows indicate
reactions (16) and (17) inside Area 1. The third and fourth
rows represent the same reactions respectively in Area 2. Dif-
fusions (20) and (21) are characterized by the last four rows.
The four left columns contain the coefficients of the reactants
and the other four right columns contain the coefficients of
the products. Using (18) with N = 4 and M = 8 gives the
state change vectors.

Even starting with a simple initial state as [2,1,1,2] ex-
plained in (19), the system explodes to a total of 84 possible
states (and quickly much more if we set larger starting values
as we alerted before). We solve the associated RDME using
the classical FSP equation (9) with a state space truncated to
70 to continue our empirical illustration of the computational
building blocks. Taking ¢ = 10, we obtain an approximation
of the marginal probability distribution of the healthy and
infected individuals in the two areas. Results are shown in
Fig. 5.
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marginal probability
= = = =
= - [+ w B
marginal probability
= = = =
=T T

1 2 3 4 5 8§ 1 2 3 4 5 6
o inarea 1 dinarea 1

marginal probability
= = = =
o = ke w =
marginal probability
= = = =
o = ke w =

1 2 3 4 5 8§ 1 2 3 4 5 6
o inarea 2 din area 2

Fig. 5. Marginal probability distribution of the number of healthy and infected
individuals in the two areas using the classical FSP at time ¢ = 10.

marginal probability
= = = =
o = ke W B
marginal probability
s s o o
o = ke W B

[=1

1 2 3 4 5 6 01 2 3 4 5 8§
o in area 1 dinarea1

marginal probability
= = = =
o = bk W B
marginal probability
s = = o
o = bk W B

[=1

1 2 3 4 5 6 01 2 3 4 5 8§
o in area 2 dinarea 2

Fig. 6. Marginal probability distribution of the number of healthy and infected
individuals in the two areas using tensors at time ¢ = 10.

Having obtained a reference solution via the classical FSP,
we now attempt to reproduce results using tensors on the
same metapopulation model. As explained in the text, the main
concept is to express a high-dimensional tensor as an ordered
product of smaller tensors that can scale better as problems
become more complex than the simple example shown here
for illustration and ease of interpretation. For our purposes, the
marginal probability distribution of the individuals are found
by using the adaptive tensor code in [25], which has already
been demonstrated to be effective on much larger problems
albeit in the CME context. Fig. 6 shows the computed marginal
probability distribution of the healthy and infected individuals
in the two areas using the tensor technique in our RDME
prototype. Fig. 7 illustrates the accuracy of the implementation

of tensors by showing the near alignment of the marginal
distributions obtained using the two alternative approaches.

Eﬂﬁéﬁ E\Uﬁ
8041\ go4
a N =] y
503\ Eo.s*s\ .y__./‘é._\
B2 . LY o \
=] *,-."’* =] W, S ™,
T 0.1 b 0.1 = ¥
gl N, gl i
0 = 0
1 2 3 4 5 [ 1 2 3 4 5
o inarea dinarea
E\Uﬁ@( E\Uﬁ .~ FSP
ERVIAN S04 :
3 \ E %
Soafl So03 N
= \ at " s\
o2 N Tosf b & g
=3 o e /
= e =
= 0.1 ’K\ To1| Ny LN
~, ™.
0 = 0
1 2 3 4 5 [ 1 2 3 4 5 [
o inarea 2 dinarea 2

Fig. 7. Comparison of the marginal probability distributions computed using
the classical FSP vs tensors.

IV. CONCLUSIONS

We have applied the RDME formulation in a metapopu-
lation model that includes both reaction and diffusion pro-
cesses. Although our initialization was kept simple to detail
the algorithmic steps, it is perhaps worth mentioning that
the broader significance of the metapopulation model with
reaction-diffusion is to represent the interplay between local
population dynamics and migration. It is a way of understand-
ing how populations behave when they are distributed across
discrete, interconnected areas and subject to both local envi-
ronmental factors (birth/death rates) and movement between
these areas (diffusion). This model is of value in the literature
because it provides insights into how populations persist, grow,
or face extinction in fragmented landscapes. The model is
essential for addressing real-world issues such as conservation,
habitat fragmentation, disease spread, and the management of
invasive species, where the dynamics of movement and local
interactions play key roles in shaping long-term outcomes.

Therefore, the fact that we have an RDME formulation
opens avenues for further computerized simulations. Here, we
have utilized the FSP and tensors to approximate the marginal
probability distribution. Rather than taking into account all
possible states, the FSP operates with a reduced state space. On
top of that, the compact representation of the transition matrix
via tensors goes hand in hand with tensor train decomposi-
tions. Our body of research has shown that tensors scale very
well to tackle multi-dimensional CME problems, suggesting
promising prospects for their application in the RDME as we
illustrated in this case study. Although the tensor approach
introduces a significant complexity in the derivation of algo-
rithms, it offers distinct scalability advantages. It excels in
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managing high-dimensional problems by efficiently represent-
ing extensive state spaces with reduced memory requirements,
making it particularly effective in scenarios where the classi-
cal matrix-based FSP becomes computationally expensive or
infeasible.
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