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Abstract—Various scientific fields are seeking to exploit tensors,
which are multi-dimensional arrays that expand on the concept of
matrices. Here, we consider an application arising from complex
biological systems where the data can be processed and analyzed
using tensors. Our modeling framework is the reaction-diffusion
master equation (RDME) used to describe the dynamics of
biological systems involving both reaction and diffusion processes.
It is already notoriously hard to solve the more familiar chemical
master equation (CME) that only involves reaction processes.
Solving the RDME is even harder because its state space is
considerably larger compared to that of the CME, and this
further motivates the utilization of tensors. Our study is an
illustrative example of how tensor techniques can be used to
make predictions on the dynamics of a metapopulation model
based on its RDME formulation.

I. INTRODUCTION

T
ENSORS, fundamentally, are extensions of vectors, and

matrices, with the ability to represent and manipulate data

in multiple dimensions. Classical linear algebra approaches

can circumvent tensors by flattening the data through mecha-

nisms known as matricization or vectorization, although doing

so can increase the computational overhead, especially as

dimensionality grows. By contrast, specialized tensor methods

avoid unfolding the tensor into a matrix format, with the trade-

off that the preserved multi-dimensional format drastically

complicates the design and implementation of algorithms, not

to mention their subsequent understanding and maintenance

by others than the original software architects.

Tensor methods encompass the efficient utilization of ten-

sors for the purpose of problem-solving, data analysis, and

the extraction of significant patterns from high-dimensional

datasets. Tensors find utility not only in the biological appli-

cation considered here, but also in many other areas, including

popular image processing applications (e.g., facial recognition,

analysis of musical scores, and identification of cliques within

social networks [1], [2]). Together with earlier works on

tensors and their decompositions that go back to 1927 [3], we

note that more recent literature overviews of tensor techniques

for large-scale numerical computations are given in [4], [5],

[6], geared towards a scientific computing audience. Of course,

there are way more applications of tensors than we can

reasonably cite in a communication such as this one.

In the field of biochemistry, complex networks are shown

to emerge as a result of the interactions among many cellular

components, including DNA and RNA molecules. Determin-

ing the time-varying probability distribution of their states

involves solving the chemical master equation (CME) [7].

The stochastic simulation algorithm (SSA) [8] is useful for

analyzing the CME. An alternative method for addressing the

CME is the finite state projection algorithm (FSP) [9], which

amounts to solving differential equations that characterize the

evolution of the probability distribution of the underlying

Markov chain of the CME over time.

Spatial heterogeneity is a frequent property of many cellular

habitats, which are not homogeneous in space. A number of

distinct but similar mathematical techniques have been used

to model stochastic reaction-diffusion systems in biological

cells [10], [11]. For example, Smoluchowski proposed a

modeling approach named the spatially continuous diffusion-

limited reaction (SCDLR) [12]. Unlike these approaches, the

reaction-diffusion master equation (RDME) [13] is obtained

when we treat the diffusion at the molecular level as a unique

set of reactions in the CME.

The space is partitioned into compartments in the RDME.

Every compartment is thought to be thoroughly mixed, and

the reactions found within a specific compartment are thought

to be consistent with the homogeneous scenario. Additionally,

molecules can diffuse (jump) in between neighboring compart-

ments, and here we will model the jump processes as reactions.

Similar to the CME but with a much larger dimensionality, the

RDME explains the time-dependent probability distribution

function (PDF) of the system state. The works in [14], [15],

[16] provide instances of the SSA being used in reaction-

diffusion systems with the space being one dimensional. The

next reaction method (NRM) [17] is an efficient version of

the SSA. A software called MesoRD [18] offers a special-

ized implementation of the NRM, which is designed for

diffusive systems and known as the next subvolume method

(NSM) [19].

In this contribution rooted in [20], our aim is to illustrate
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how a tensor-based approach, specifically a quantized tensor-

train decomposition, can be effectively used to manage the

potentially high-dimensional state space arising in the RDME

of a metapopulation model. Although the RDME shares sim-

ilarities with the CME, it necessitates greater computational

resources due to its considerably larger state space. We employ

the tensor technique to derive the marginal distribution of the

relevant species. By comparing the tensor technique with the

classical FSP, this work aims to highlight the capability of

tensors to reduce computational overhead while maintaining

accuracy and generalizability across diverse applications.

II. PRELIMINARIES

A. Tensors

We will soon recap how the CME and RDME lead to

formulations involving tensors. We begin with some back-

ground to define the notation and situate our context. More

formally, tensors are multi-dimensional arrays in K
I1×···×IN ,

where N is the order, i.e., the number of dimensions, which

are called modes or ways, and I1, . . . , IN , are index ranges

in each dimension. Tensors extend the notion of vectors and

matrices, referred to as 1-way and 2-way tensors, respectively,

whereas a 3-way tensor X ∈ R
I1×I2×I3 , depicted in Fig. 1,

is a cuboid (or cube-like) with elements xijk ≡ X (i, j, k),
1 ≤ i ≤ I1, 1 ≤ j ≤ I2, 1 ≤ k ≤ I3. The field K will be R in

our application but it can be C in general.

Index fixing can be used to build subarrays. A typical

scenario is when all indices are fixed except one, in which

case the resulting subarrays are referred to as fibers, c.f. Fig. 2.

They can alternatively be thought of as mode-n fibers that

are produced when all indices are fixed except the nth one.

Another common scenario is when all indices are fixed except

two, yielding the examples of slices depicted on Fig. 3 for a

3-way tensor. These examples make clear that there are many

different possible orderings, meaning that software developers

must agree on common conventions for consistency in their

codes. If we stack the resulting fibers or slices, we are

performing what is termed vectorization or matricization. In

general, tensor unfolding denotes the mechanism by which

to flatten a tensor to systematically arrange its entries into a

matrix, thereby providing a bridge to circumvent tensors and

revert to classical linear algebra operations.

On tensors of equal sizes, simple operations like addi-

tion and subtraction are performed component-by-component.

However, beyond ordinary matrix-like definitions, there are

other tensor-specific operations and decompositions that are

much more sophisticated by far.

Fig. 1. Tensors of order 0, 1, 2, and 3.

Fig. 2. Different fibers of a 3-mode tensor.

Fig. 3. Different slices of a 3-mode tensor.
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B. Higher Order Singular Value Decomposition (HOSVD)

Consider the Singular Value Decomposition (SVD), which

is a fundamental matrix factorization that represents any matrix

as the product of two orthogonal matrices together with a

diagonal matrix of singular values, encapsulating the inherent

geometric characteristics of the data. Higher Order Singular

Value Decomposition (HOSVD) generalizes this concept to

multi-dimensional tensors, by decomposing them into a core

tensor and a collection of orthogonal matrices corresponding

to each mode. Below we reproduce a characterization of

the HOSVD [21], mainly to illustrate how concepts that are

familiar with matrices can quickly become drastically harder

to grasp when reformulated through tensors.

Theorem II-B.1: Every tensor X ∈ R
I1×I2×···×IN can be

written as

X = G ×1 A
(1) ×2 A

(2) · · · ×N A
(N),

where

1) A
(n) =

(

A
(n)
1 A

(n)
2 · · · A

(n)
In

)

is an orthogonal

matrix of order In × In,

2) G ∈ R
I1×I2×···×IN of which the subtensors Gin=α,

attained by fixing the nth index to α, have the properties

of

(i) ordering:

∥Gin=1∥F ≥ ∥Gin=2∥F ≥ · · · ≥ ∥Gin=In∥F ≥ 0,

for all possible values of n,

(ii) all-orthogonality: for all possible values of n, α
and β, two subtensors Gin=α and Gin=β are orthogonal

subject to α ̸= β:

⟨Gin=α,Gin=β⟩ = 0 for α ̸= β.

3) G = X ×1 A
(1)T ×2 A

(2)T · · · ×N A
(N)T .

The vector A
(n)
i is an n-mode singular vector and the

Frobenius-norms ∥Gin=i∥F are n-mode singular values of X .

N denotes the total number of modes of the tensor, and

n ∈ {1, . . . , N} refers to an arbitrary mode index. The symbol

×n denotes the mode-n product, which is an operation where

each mode-n fiber of a tensor is multiplied by a matrix,

affecting only the nth dimension while keeping others fixed.

C. CANDECOMP/PARAFAC (CP) Decomposition

A popular decomposition in practice is the CP decomposi-

tion, which for X ∈ R
I1×···×IN , is given by [22],

X = I ×1 A
(1) · · · ×N A

(N) ≡
r
A

(1), · · · ,A(N)
z

(1)

where I is the identity tensor having ones along the super-

diagonal and zeros elsewhere, and each A
(n) ∈ R

In×R for

n = 1, . . . , N is a factor matrix. The notation J·K denotes the

CP decomposition as a sum of R rank-one tensors formed by

outer products of the columns of the factor matrices. The CP

rank R ∈ N is left as a parameter that tunes the accuracy of

the decomposition. The fact that CP boils down to resorting

to matrices explains its appeal and popularity.

According to [23], (1) can be written element-wise as a sum

of products of the entries of those matrices

X (i1, . . . , iN ) =
R∑

r=1

A
(1)(i1, r) · · ·A

(N)(iN , r). (2)

Equation (3) below is another compact notation for writ-

ing (1) or (2) via the outer product

X =
R∑

r=1

a
(1)
r ◦ · · · ◦ a(N)

r . (3)

by referencing columns of A
(n) =

(

a
(n)
1 . . . a

(n)
R

)

∈

R
In×R, n = 1, . . . , N .

D. Tensor Train (TT) Decomposition

Our present numerical implementation is based on another

decomposition, namely the tensor train (TT) decomposition.

For any X ∈ R
I1×···×IN , it can be shown that its entries can

be written in the form [24],

X (i1, . . . , iN ) = G1(i1) · . . . · GN (iN ). (4)

Here, Gn(in) ∈ R
rn−1×rn are matrices (slices) of the cuboid

(3-way) tensors Gn ∈ R
rn−1×rn×rn , which are called TT

cores. Moreover, “boundary conditions” r0 = rN = 1 are

imposed so that the chain product (4) always yields a scalar.

TT ranks are defined as (r1, · · · , rN−1).
An explicit storage of X would cost

∏N

n=1 In = O(IN ),
where I = max1≤n≤N In, so that if N = 10 in a CME

application and I ≈ 10, its corresponding matrix (7) would

be of immense size 1010 × 1010 and even much more for the

RDME. By contrast, the TT format only stores the TT cores

at a total cost of O(r2TT ·N · I), where rTT = max1≤n≤N rn.

Thus, provided that the maximum rank rTT is not large, the

storage of the TT format scales linearly with N , leading to

dramatic savings from the explicit format where the storage

scales exponentially with N . Our actual code builds on an-

other variant, specifically the quantized tensor train (QTT)

format that brings the storage requirements further down to

O(r2QTT ·N · log2 I). Although rQTT is not necessarily rTT ,

this reduction remarkably means a linear cost in the number

of modes and logarithmic in the mode sizes.

Our implementation did not have to invent everything from

scratch. Rather, we leveraged past research, including [25],

[26], and the TT toolbox software [24]. Our contribution here

is sharing the findings of our hands-on experience on these

topics and their application to the RDME context that we

describe next.

E. CME and FSP in tensor format

Consider a chemical reacting system in a spatial domain Ω
involving N species {S1, . . . , SN}, represented by the state

vector X(t) = [X1(t), . . . , XN (t)]
T

, where each Xi(t) is a

non-negative integer denoting the population of species Si

at time t. Suppose there are M reaction channels, denoted
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by {R1, . . . , RM}, and assume that the system is well mixed

and in thermal equilibrium. The dynamics of the jth reaction

channel Rj is characterized by

(i) the propensity function aj(x), which indicates how likely

it is that Rj will occur given the system’s current state

x, and

(ii) the stoichiometric (or state change) vector νj =

[ν1j , . . . , νNj ]
T

, which specifies the change in the popu-

lation count of each species that results from one occur-

rence of Rj .

Thus, aj(x)dt gives the probability that, given X(t) = x, one

Rj reaction will occur in the next infinitesimal time interval

[t, t+ dt], and νij gives the change in Xi induced by one

Rj reaction. This system can be modeled as a Markov chain,

with its behavior determined by the Chemical Master Equation

(CME) [7]

dP (x, t)

dt
=

M∑

j=1

[

aj(x− νj)P (x− νj , t)−

aj(x)P (x, t)
]

,

(5)

where the function P (x, t) denotes the probability that X(t)
will be x. Equation (5) may be written in an equivalent

matrix–vector form by enumerating all the states. If there are

n possible states, x1, . . . ,xn, the CME takes the form of a

system of linear ordinary differential equations (ODEs),

Ṗ(t) = M ·P(t), (6)

where the probability vector P = [p1, . . . , pn]
T is such that

each component pi ≡ P (xi, t) ≡ Prob {X(t) = xi}, the

probability of being at state xi at time t, for i = 1, . . . , n.

The matrix M is a sparse n × n matrix that is populated

by the propensities and it represents the transition rate matrix

of the Markov chain underlying the CME. Its entries are

constructed using

M(i, j) =







ak(xj) if xi = xj + νk

−
∑M

k=1 ak(xj) if i = j

0 otherwise

. (7)

The FSP method [9] and improvements such as [27] directly

compute an approximation to the solution of the CME. The

FSP method solves the CME and estimates the probability

vector (PV) of the populations in a chemical reaction system

using a truncated state space. For a truncated transition matrix

MT and initial truncated PV denoted by PT (0), the FSP finds

the PV at any time PT (t) by the following,

ṖT (t) = MT ·PT (t). (8)

Equation (8) is a system of linear ODEs and the solution is

given by

PT (t) = exp (MT t)PT (0). (9)

The CME matrix M remains sparse under any order relation

imposed on the enumeration of the states, and it is natural

to use the lexicographic order on the state space as a subset

of N, the set of nonnegative natural numbers. If we impose

the lexicographic order on a state space X in the form

of a window of lower bounds (lb(1), . . . , lb(N)) and upper

bounds (ub(1), . . . , ub(N)), i.e., X consists of states x =
(x1, · · · , xN )

T
such that lb(s) ≤ xs ≤ ub

(s), ∀s = 1, . . . , N ,

then the transition rate matrix can be decomposed into a sum

of Kronecker products [28], [29]

M =
M∑

k=1

(

⊗N
s=1S

(s)
k − I

)

Mk. (10)

Each term in the sum (10) corresponds to a reaction: S
(s)
k is a

“shift-diagonal” matrix corresponding to the change in species

s when reaction k happens; I is the identity matrix; and Mk

is the diagonal matrix that stores the values of the propensity

function ak. Precisely, let Is = ub
(s)−lb

(s)+1 be the window

size for each species, n = I1 · . . . · IN is the total number of

states in X, and denote νk =
(

ν
(1)
k , · · · , ν

(N)
k

)T

. The identity

matrix I is then of order n, S
(s)
k ∈ R

Is×Is is given by

S
(s)
k ≡


















0 · · · 1
. . .

. . .

. . . 1
. . .

...

0












if ν
(s)
k < 0, shifted

up
∣
∣
∣ν

(s)
k

∣
∣
∣ rows












0
...

. . .

1
. . .

. . .
. . .

1 · · · 0












if ν
(s)
k ≥ 0, shifted

down ν
(s)
k rows

and

Mk ≡ diag (ak (x1) , · · · , ak (xn)) , (11)

where x1, · · · ,xn are states of X in the increasing lexico-

graphic order. Furthermore, by assuming that the propensity

functions are separable, i.e.,

ak (x) = a
(1)
k (x1) · . . . · a

(N)
k (xN ) , k = 1, · · · ,M,

where a
(·)
k ≥ 0 are scalar functions, (11) can be rewritten as

Mk = ⊗N
s=1 diag a

(s)
k ,

where, for s = 1, · · · , N ,

diag a
(s)
k ≡ diag

(

a
(s)
k (lb(s)), · · · , a

(s)
k (ub(s))

)

.

Under these assumptions, the transition matrix (10) can be

represented by simple matrices of small sizes,

M =
M∑

k=1

(

⊗N
s=1S

(s)
k − I

)(

⊗N
s=1 diag a

(s)
k

)

. (12)
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In [26], the lower and upper bounds are in the form lb
(s) = 0

and ub
(s) = Is − 1, yielding

diag a
(s)
k = diag

(

a
(s)
k (0), · · · , a

(s)
k (Is − 1)

)

.

The reason for holding the lower bounds anchored at 0 was to

help attenuate some of the complexity of dealing with tensor

train decompositions when their sizes changed adaptively.

Subsequent improvements in [25] allowed both the lower and

upper bounds to slide dynamically. A central aspect in our

body of research [25], [20], [26] has been that by keeping the

state space in the form of a hyper-rectangle,

x ∈
[

lb
(1) : ub(1)

]

× · · · ×
[

lb
(N) : ub(N)

]

,

both the transition operator M and the probability distribution

P can be represented as multi-dimensional arrays that allow

us to use tensor decompositions as pioneered in [28], [29] to

resolve storage issues.

F. RDME

Assume the spatial domain Ω is partitioned into compart-

ments (voxels), denoted Vk, k = 1, . . . ,K. Within each

compartment, species have the ability to react with one another

as well as diffuse (jump) over the boundaries to reach adjacent

compartments. Let Xi,k(t) be the population count of species

Si in compartment Vk at time t. Then each species in the do-

main is given by the subvector Xi(t) = [Xi,1(t), . . . , Xi,K(t)],
i = 1, . . . , N . Hence, X1 is the subvector which represents

the species 1 in all compartments. Likewise, X2 represents

species 2 in all compartments, and so on. Thus, the state vector

of the system is X = [X1, . . . ,XN ]. The diffusion propensity

function di,j,k and the state change vector µk,j characterize

the dynamics of the diffusion of species Si from compartment

Vk to Vj . The vector µk,j has a length of K with −1 in

the kth position, 1 in the jth position, and 0 elsewhere. Given

X (t) = x, the diffusion master equation (DME) can be written

as

dP (x, t)

dt
=

N∑

i=1

K∑

k=1

K∑

j=1

[

di,j,k (xi − µk,j)P (x1, . . . ,

xi − µk,j , . . . ,xN , t)− di,j,k (xi)P (x, t)
]

.

(13)

We take the diffusion propensity function di,j,k (xi) = D/l2,

for k = j ± 1, where D is the diffusion rate and l is

the characteristic length of the compartment, meaning that

our setting ultimately assumes that di,j,k ≡ d is constant.

Some other settings could make different choices. If D is

the transition matrix describing the diffusion (or jump) of

species between compartments, the equivalent matrix–vector

form of (13) can be written as

Ṗ (t) = D ·P (t) . (14)

Combining equations (6) and (14) we get the matrix-vector

form of the RDME,

Ṗ (t) = M ·P (t) +D ·P (t) . (15)

Equation (15) is a system of linear constant coefficient ODEs

and gives us more possible states than the CME, and so

its corresponding transition matrix is substantially extended

to represent species in compartments. However, it should be

remembered that it is ultimately a tensor representation of the

form (12) that is used in the calculations.

III. STUDY FINDINGS

A. Metapopulation Model

Populations that are segmented into smaller groups linked

by migration are studied using metapopulation models.

Metapopulation models often employ reaction-diffusion prin-

ciples to describe spatial dynamics [30]. In a reaction-

diffusion metapopulation model, the reaction term depicts the

occurences of births and deaths within each subpopulation,

whereas the diffusion term captures the mobility of an indi-

vidual between nearby subpopulations. By taking into account

both diffusion and reaction terms, the model can better capture

complex interactions between local population dynamics and

spatial dispersal. Using the RDME in a metapopulation model,

each subpopulation’s population is modeled as a stochastic

process with birth, death, and migration events occurring

randomly. We examine a simple reaction scheme in this study

that conserves the population count in order to empirically

provide a proof-of-concept

β
c1−→ α, (16)

α+ β
c2−→ 2β. (17)

In the context of our metapopulation model, α species rep-

resent normal species (healthy individuals) and β species

represent active species (infected individuals) intermingling

from area to area. This scheme is also known as the SIS model

(Susceptible-Infectious-Susceptible) [31]. Recall that when we

analyze this model without considering compartments and

diffusion, the stoichiometric matrix is

S =

α β α β
( )
0 1 1 0
1 1 0 2

in which the first and second row of the matrix stand for

reactions (16) and (17) respectively. The two left columns

contain the coefficients of the reactants while the other two

right columns contain the coefficients of the products. Meaning

that from S = (sij), the components of the state change vector

associated to a reaction Rk, k = 1, . . . ,M , are effectively

(sk,N+1:2N − sk,1:N ) (18)

where in this example N = 2 and M = 2. It is less error

prone to set S and programmatically proceed as shown above.

We now consider two neighboring areas (i.e., compartments)

where both the healthy and infected individuals can move

back and forth. We label the areas as Area 1 and Area 2.

Consequently, the scheme can be represented by a reaction-

diffusion process where reactions (16) and (17) can take place

inside both areas separately and the individuals can move back
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and forth between Area 1 and Area 2. An illustration is shown

in Fig. 4. (Imagine Area 1 as indoor and Area 2 as outdoor.)

Fig. 4. Illustration of the metapopulation example.

The process is a random process and can be modeled by the

RDME consisting of two reactions with two compartments.

By our construction, species change forms without creating or

destroying themselves, hence the overall population count in

the process stays constant.

To make the details clear, we take a small example where

we assume that initially, Area 1 has α = 2 healthy individuals

and β = 1 infected individual. Area 2 has α = 1 healthy

individual and β = 2 infected individuals. With the convention

of section II-F, the initial state vector is therefore

[

α
︷ ︸︸ ︷

2
︸︷︷︸

Area 1

, 1
︸︷︷︸

Area 2

,

β
︷ ︸︸ ︷

1
︸︷︷︸

Area 1

, 2
︸︷︷︸

Area 2

] (19)

with diacritical annotations in (19) meant to ease the in-

terpretation of the indexing of the components. We set the

reaction parameters c1 = .30 and c2 = 1.0, and the diffusion

parameters D = 1.0 and l = 10, yielding d = D/l2 = 10−2.

The RDME gives us all the possible states we can get when

those individuals react and diffuse randomly, and recall that

along a similar spirit to [32, Eq. (4)], diffusion in our context

is modeled via stochastic jump processes through additional

reactions,

(Area 1) α
d
⇌

d
α (Area 2), (20)

(Area 1) β
d
⇌

d
β (Area 2). (21)

Now that we are considering the system in two areas where

diffusion also occurs, the stoichiometric matrix grows much

larger to take the form below.

S =

Reactants
︷ ︸︸ ︷

Products
︷ ︸︸ ︷

α
︷ ︸︸ ︷

β
︷ ︸︸ ︷

α
︷ ︸︸ ︷

β
︷ ︸︸ ︷

Area# 1 2 1 2 1 2 1 2



























0 0 1 0 1 0 0 0
1 0 1 0 0 0 2 0
0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 2
1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0

Reactions

Diffusions

The annotations here are also aimed at easing the connection

of how to map the location of entries with the convention

of section II-F. In the matrix, the first two rows indicate

reactions (16) and (17) inside Area 1. The third and fourth

rows represent the same reactions respectively in Area 2. Dif-

fusions (20) and (21) are characterized by the last four rows.

The four left columns contain the coefficients of the reactants

and the other four right columns contain the coefficients of

the products. Using (18) with N = 4 and M = 8 gives the

state change vectors.

Even starting with a simple initial state as [2, 1, 1, 2] ex-

plained in (19), the system explodes to a total of 84 possible

states (and quickly much more if we set larger starting values

as we alerted before). We solve the associated RDME using

the classical FSP equation (9) with a state space truncated to

70 to continue our empirical illustration of the computational

building blocks. Taking t = 10, we obtain an approximation

of the marginal probability distribution of the healthy and

infected individuals in the two areas. Results are shown in

Fig. 5.
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Fig. 5. Marginal probability distribution of the number of healthy and infected
individuals in the two areas using the classical FSP at time t = 10.

Fig. 6. Marginal probability distribution of the number of healthy and infected
individuals in the two areas using tensors at time t = 10.

Having obtained a reference solution via the classical FSP,

we now attempt to reproduce results using tensors on the

same metapopulation model. As explained in the text, the main

concept is to express a high-dimensional tensor as an ordered

product of smaller tensors that can scale better as problems

become more complex than the simple example shown here

for illustration and ease of interpretation. For our purposes, the

marginal probability distribution of the individuals are found

by using the adaptive tensor code in [25], which has already

been demonstrated to be effective on much larger problems

albeit in the CME context. Fig. 6 shows the computed marginal

probability distribution of the healthy and infected individuals

in the two areas using the tensor technique in our RDME

prototype. Fig. 7 illustrates the accuracy of the implementation

of tensors by showing the near alignment of the marginal

distributions obtained using the two alternative approaches.

Fig. 7. Comparison of the marginal probability distributions computed using
the classical FSP vs tensors.

IV. CONCLUSIONS

We have applied the RDME formulation in a metapopu-

lation model that includes both reaction and diffusion pro-

cesses. Although our initialization was kept simple to detail

the algorithmic steps, it is perhaps worth mentioning that

the broader significance of the metapopulation model with

reaction-diffusion is to represent the interplay between local

population dynamics and migration. It is a way of understand-

ing how populations behave when they are distributed across

discrete, interconnected areas and subject to both local envi-

ronmental factors (birth/death rates) and movement between

these areas (diffusion). This model is of value in the literature

because it provides insights into how populations persist, grow,

or face extinction in fragmented landscapes. The model is

essential for addressing real-world issues such as conservation,

habitat fragmentation, disease spread, and the management of

invasive species, where the dynamics of movement and local

interactions play key roles in shaping long-term outcomes.

Therefore, the fact that we have an RDME formulation

opens avenues for further computerized simulations. Here, we

have utilized the FSP and tensors to approximate the marginal

probability distribution. Rather than taking into account all

possible states, the FSP operates with a reduced state space. On

top of that, the compact representation of the transition matrix

via tensors goes hand in hand with tensor train decomposi-

tions. Our body of research has shown that tensors scale very

well to tackle multi-dimensional CME problems, suggesting

promising prospects for their application in the RDME as we

illustrated in this case study. Although the tensor approach

introduces a significant complexity in the derivation of algo-

rithms, it offers distinct scalability advantages. It excels in
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managing high-dimensional problems by efficiently represent-

ing extensive state spaces with reduced memory requirements,

making it particularly effective in scenarios where the classi-

cal matrix-based FSP becomes computationally expensive or

infeasible.
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