
Towards a Framework for Systematic API

Migrations

Nikolas Jíša

0009-0005-1551-2740

Czech Technical University in Prague

Thákurova 9, 160 00 Prague 6, Czech Republic

Email: jisaniko@fit.cvut.cz

Robert Pergl

0000-0003-2980-4400

Czech Technical University in Prague

Thákurova 9, 160 00 Prague 6, Czech Republic

Email: robert.pergl@fit.cvut.cz

Abstract—This work presents a framework for systematic Ap-
plication Programming Interface (API) migrations that provides
guidance for both manual and automated migration processes.
The approach starts by matching methods from the old API
version with those of the new version, followed by comparative
syntactic and semantic analyses to produce migration steps.
As a proof of concept, we implement the most challenging
parts using structured, parameterized Artificial Intelligence (AI)
queries, which also serve as a basis for evaluation. Our results
demonstrate the feasibility and usefulness of this approach.
Future work will focus on completing the full migration process
while reducing reliance on AI due to its current limitations in
reasoning. We also plan to evaluate the framework on real-world
APIs to assess its effectiveness and general applicability.

I. INTRODUCTION

I
N RECENT years, technological progress has accelerated

rapidly. One clear example of this is the widespread in-

tegration of the Internet into everyday life, supporting ac-

tivities such as online shopping, banking, social networking,

and information retrieval through Artificial Intelligence (AI)

queries [1]. Kurzweil [2] expands Moore’s Law by applying

the idea of exponential growth not only to hardware but also

to software and other technological areas, with the Internet

serving as one such example. The Internet consists of many

interconnected systems that rely on each other. Some of these

systems are client-server applications, which are often built

using Application Programming Interfaces (APIs).

The problem we focus on is API evolvability, with a par-

ticular emphasis on the challenge of API migration. Lamothe

et al. [3] identified several research challenges related to API

evolvability. Among these, we are especially interested in the

following: (a) Combining textual merging with syntactic

and semantic approaches, (b) Providing a commercially viable

API migration solution, (c) Incorporating domain-specific in-

formation into tools, (d) Developing more tools to assist with

Web API, (e) Automatically identifying factors driving API

changes, (f) Addressing API semantics and dependencies, and

(g) Supporting the context sensitivity of API migration tools.

Although the article [3] was published in late 2021, our

extended review of the API evolvability literature, presented

in section III, shows that many of these challenges continue

to be highly relevant.

In this paper, our research objective is: “To create a

framework for systematic API migrations that provides

guidelines for performing API migrations, whether fully

manual or semi-automated.” Our approach targets scenarios

where an application uses a specific version of an API and

needs to migrate its API calls to a newer version. A key

requirement is to know the method signatures of both the

old API version and the new API version, at least at the

syntactic level. However, method signatures alone allow for

only basic migration guidelines. If the source code of the

new API version is available, static analysis can be used to

generate more detailed guidance. Furthermore, if semantic

documentation artifacts are available, changes at the semantic

level—even if the source code remains unchanged—can be

incorporated to further improve the quality of the migration

guidelines.

Apart from mapping the landscape in the area of API

migration research and reporting the progress of our own API

migration work, the contribution of this paper lies in presenting

a high-level approach to API migration. This approach consists

of several components, each of which can be implemented in

different ways. Nevertheless, we do not provide implementa-

tions here.

The remainder of this paper is structured as follows. Sec-

tion II presents the research methodology. Related work is

discussed in section III. The core of our contribution is

detailed in section IV, where we explain our approach to API

migration. Section V provides the evaluation of our approach,

and section VI provides further discussion. Finally, section VII

concludes the paper and outlines directions for future work.

II. RESEARCH METHODOLOGY

We follow the Design Science Research Methodology

(DSRM), first introduced by Hevner et al. [4] and later

improved in [5]. DSRM focuses on creating and evaluat-

ing new artifacts — such as models, methods, processes,

or systems — that aim to solve real-world problems. The

key components are: Environment, the real-world context

including people, organizations, technologies, and problems. It

sets the requirements and limits for the research. Knowledge

Base holds existing theories, methods, frameworks, and tools

that support the research. Design Science Research is an

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 155–163

DOI: 10.15439/2025F1225
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 155 Topical area: Software, System and Service Engineering

iterative process of Design Cycles that build and test

artifacts to solve problems. It connects to the Environment

via the Relevance Cycle and to the Knowledge Base

through the Rigor Cycle.

This paper builds on our previous work aimed at support-

ing API usage and migration. We initially explored various

API documentation formats, such as OpenAPI Specification

(OAS) [6] and API Blueprint (APIB) [7], with the goal of

designing a unified format and mapping mechanisms be-

tween common specifications. So far, we have implemented

a mapping from OAS to APIB [8], with plans to develop a

central model and mappings to other formats. In the approach

proposed in this paper, one possible input for step M2.b

is documentation represented in this central model. We also

developed an API ontological model presented in [9], which

illustrates how changes made by an API provider can impact

API consumers. The model includes several key observa-

tions, such as the distinction between syntactic and semantic

changes, which forms the foundation of the approach presented

in this paper.

In this paper, first, we do another Relevance Cycle by

looking at updates in API documentation and investigating

recent breaking changes in open-source APIs. We provide

some remarks about this part in section III and section V.

Next, we do the Rigor Cycle by reviewing new research

on API evolvability using snowballing [10], as described

in section III. Finally, we do the Design Cycle by creating

a framework for systematic API migration in section IV and

provide evaluation in section V.

III. RELATED WORK

According to Lamothe et al. in [3], the key areas of focus in

API evolvability at the time of their work, published at the end

of 2021, were addressing breaking API changes, enhancing

API usability, and reducing API misuses. In the same paper,

Lamothe et al. also identify several open challenges in the

field of API evolvability. In this section, we review challenges

relevant for this paper and describe some additional research

works discovered by snowballing [10]. The challenges are

categorized with identifiers from the original article, where

“EC” stands for “Existing Challenges” (which have existing

publications attempting to find solutions) and “UC” for “Un-

resolved Challenges” (which lack existing solutions).

EC-1) Combining textual merging with syntactic and se-

mantic approaches: This challenge is based on article [11]

where the context is to merge two or more versions of the same

software together. The article is from year 2002, nevertheless,

even today, Version Control System (VCS) tools such as

Git [12], are based on textual merging without employing

syntactic nor semantic approaches. In a way, we can consider

API migration as merge of new version of consumed API

with the consumed application itself. Therefore, this can be

considered as a relevant challenge for this paper as we also

employ syntactic and semantic approaches.

EC-2) Providing a commercially viable API migration so-

lution: At the time of writing of [3], there had already been

existing API migration solutions such as tool SemDiff [13]

or ApiDiff [14]. SemDiff can recommend replacements of

API calls for methods which were removed in given API

based on static analysis of Abstract Syntax Trees (ASTs)

corresponding to code files in VCS. ApiDiff tool is based on

static analysis and similarity heuristics of Java libraries hosted

on Git [12] repositories in order to detect breaking changes

and non-breaking changes between two versions. ApiDiff and

SemDiff have not been proven commercially viable at the time

of writing of [3]. One of the problems was that, as for most

API Evolvability works, there was a lack in area of eval-

uation, because there had not been established standardized

approaches and datasets to evaluate API evolvability research

works which would be in wide use [3]. Both the SemDiff

and ApiDiff approaches employ static analysis taking into

account syntactic information but without utilizing semantic

information.

In [15] Deshpande et al. tackle the problem of API mi-

gration using multi-objective evolutionary algorithms. Their

approach is not restricted to cases where a single source

method is always transformed into a single target method (one-

to-one mappings). Instead, it is also applicable to scenarios

where one or multiple source methods are mapped to multiple

target methods (one-to-many and many-to-many mappings).

In [16] Ramos et al. present the MELT system, which

extracts API Consumer-side transformations by analyzing pull

requests on the API side. This process combines static analysis

with Natural Language Processing (NLP) of pull request

descriptions and comments.

Some approaches leverage program synthesis to generate

transformation procedures by using examples of API call map-

pings between different versions. Notable examples include

the APIFIX tool introduced in [17] and the ReFazer tool

introduced in [18].

In [19] Beuer-Kellner et al. propose an API migration

approach that utilizes a service to manage the conversion of

data structures between different API versions.

In [20], Huang et al. propose an API mapping approach

called MATL, which employs transfer learning to automate

API mapping without requiring knowledge of the underlying

source code of the API involved.

Another approach involves having developers on the API

side create transformation scripts to assist API Consumers

in updating API calls between versions [3]. Similarly to our

goal, the mentioned techniques deal with API migration. There

already exist multiple works with employ both static and

semantic information in order to automatize API Migration.

The idea of our approach is to employ combination of static

analysis with analysis of additional semantic information.

EC-3) Incorporating domain-specific information into tools:

This challenge is based on [11] in which Mens points out

that more research is needed for the detection and resolution

of structural merge conflicts that arise in the presence of

restructuring transformation, and that we need more domain-

specific information because it cannot be inferred from code.

Our approach also relies on additional information beyond

156 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

source code.

EC-10) More tools to help with Web APIs: According to

Wittern in [21], Web API providers also control runtime of

APIs and can do changes anytime with severe consequences to

their API consumers as opposed to Library APIs. Additionally,

Web APIs often lack machine-undrestandable specifications,

and data are often passed over strings. Our research idea

should be applicable to both Web APIs and Library APIs,

therefore it should contribute to Web APIs tooling making

EC-10 a relevant challenge for our research.

EC-16) Dealing with API semantics and dependencies:

In [22] Amman et al. describes following calls to action:

1) We need precise definition of API usages, considering

usage properties such as usage location and call multi-

plicities

2) We need a representation of such usages that captures all

code details necessary to distinguish correct usages from

misuses and more precise analyzes to identify usages in

code

3) We need detectors that retrieve sufficiently many usage

examples using project-external sources, such as large

project sets or code-search engines

4) We need detectors that go beyond native assumption that

a deviation from the most-frequent usage corresponds to

a misuse, but consider program semantics, such as type

hierarchies and implicit dependencies between objects.

We hypothesize that probabilistic models might be a way

to tackle this problem

5) We need strategies to properly match patterns and usages

in the presence of violations

6) We need strategies to properly handle alternative patterns

for the same API

7) Finally, we need good ranking strategies, to reduce the

cost of reviewing findings.

In the same work Amman et al. present MuBench and

MuBenchPipe as foundational tools to support repeatable

and replicable studies that enable systematic evaluation and

analysis of alternative approaches and strategies in order to

move forward with the mentioned calls to action.

Dealing with API semantics is definitely in scope of our

research.

UC-2) Supporting the context sensitivity of API migration

tools: It is not yet clear how to best approach the context sen-

sitivity in API migration tools. One of the proposed directions

is the incorporation of domain-specific information into tools.

Our research idea is related to this challenge, because we also

consider incorporation of domain-specific information in form

of semantic documentation in structured API documentation

formats (such as OAS).

IV. OUR APPROACH

Our proposed approach for API migration should serve

as a guideline for performing API migration for developers

managing consumption of an evolving API in applications -

regardless whether it is performed manually or with some

automated steps. The most relevant inputs are as follows:

M1: Match old version
methods with new
version methods

(OldMethodInfo[], NewMethodInfo[])[]

MigrationStep

M2.a: Source Code
Based Migration

MigrationStep

M2.b: Semantic
Based Migration

MigrationStep[]

Old Source Code
New Source Code

Old Api Doc
New Api Doc

∀

⋃2

⋃

Input Input

Fig. 1: Overview of our API migration approach

1) Structured API documentation for both the old and the new

versions of the consumed API such as OAS documentation.

2) Links to source code repositories (e.g., in Git), correspond-

ing to both the old and new API versions, when available.

Upon execution, the API migration tool follows a two-

step process depicted in fig. 1: 1) Matching API methods

between the old and new API versions (M1). 2) Performing

comparative syntax analysis (when source code is available)

alongside semantic analysis for each match identified in the

previous step, in order to generate a set of MigrationSteps

(M2.a and M2.b).

MigrationStep represents a transformation applicable to old-

version API method calls, specifying how to adapt them for the

new version. The resulting MigrationSteps provide developers

with a structured foundation to carry out the migration in

manual or semi-automated manner.

For clarity, we present a demonstrative example compris-

ing two versions of the same API, shown in example 4.2

and example 4.3. Both versions utilize the Product class

defined in example 4.1, where the [Key] attribute — pro-

NIKOLAS JÍŠA, ROBERT PERGL: TOWARDS A FRAMEWORK FOR SYSTEMATIC API MIGRATIONS 157

Example 4.1 (ASP.NET Core (C#)): Definition of Product:

class Product : Item
{

public string Name { get; set; }

public decimal Price { get; set; }

}

class Item

{

[Key]public int Id { get; set; }

}

vided by Entity Framework Core [23] — designates the Id

property as the primary key for the database. Additionally, the

dbContext referenced in the examples corresponds to an

instance of DbContext [24], which is used to access and

interact with the database.

An example of the output from our proposed approach is

shown in example 4.4, which migrates old version API calls

from example 4.2 to new version API calls from example 4.3.

This output is represented as JSON, where each object in

the top-level array corresponds to a possible MigrationStep.

The strings labeled “RegexMatch” denote regular expres-

sions, each paired with an associated “Replacement” string.

Within these replacement strings, “$1” refers to the first

captured group in the match.

The primary purpose of these examples is to illustrate the

concept of inputs and outputs rather than to present fully-

fledged input/output artifacts.

M1: Match old version methods with new version methods

The purpose of this step is to identify correspondences

between API methods in the old version and the new version

of given API. Specifically, it determines which methods in

the old version align with which methods in the new version,

based on structural and semantic similarity. The output of

this step is a collection of tuples (OldMethodInfo[],

NewMethodInfo[])[], where each MethodInfo in-

stance encapsulates identifying and basic metadata about a

given method, such as its name, return type and parameter

types.

There are multiple possible strategies for implementing this

matching step. We propose implementation in two parts as

follows: M1.1) Exact Signature Match: Methods that share

identical signatures — that is, matching method names, return

types, and parameters — in both the old and new versions are

matched directly. For example, during the migration from ex-

ample 4.2 to example 4.3, only the method DeleteProduct

is matched this way. M1.2) Remaining Methods Match: For

methods which were not matched by the previous step, several

heuristic strategies may be applied: a) Manual matching by

the developers b) Matching based solely on method names

c) Matching based on parameters and return types d) Match-

ing via AST comparison, when source code is available...

During the migration from example 4.2 to example 4.3,

the methods CreateProduct and UpdateProduct in

the old version are expected to be matched with the

method CreateOrUpdateProduct in the new version.

Similarly, the method GetAllProducts() from the old

version should correspond to GetProducts(decimal

minPrice) in the new version. Conversely, the method

GetProduct from the old version does not have a matching

counterpart in the new version.

Methods in the old API version that have no corresponding

counterparts in the new version are classified as deleted

methods, while those introduced only in the new version are

considered added methods.

It is important to note that, depending on the imple-

mentation, the matching algorithm may produce false neg-

atives—failing to correctly associate semantically equivalent

methods across versions. In such cases, logically related

method pairs might be misclassified as a deletion and an

addition, rather than as an evolution of a single method, which

could ultimately render our approach non-functional for in-

volved methods. This underscores the necessity of maximizing

the effectiveness of step M1.2.

Furthermore, the mapping between methods in the old and

new versions is not limited to one-to-one or zero-to-one re-

lationships. Many-to-one (M:1), one-to-many (1:N), and even

many-to-many (M:N) mappings are possible, as illustrated in

migration of CreateProduct and UpdateProduct in ex-

ample 4.2 to CreateOrUpdateProduct in example 4.3.

A baseline implementation that accounts for this could analyze

method names by identifying segments such as "And" or

"Or", and then checking whether corresponding methods exist

for the parts before and after these segments. It should also

verify that the parameter and return types match appropriately.

A more advanced implementation could incorporate static

analysis when the source code is available.

M2.a: Source Code Based Migration

The primary objective of this step is to derive the necessary

migration transformations to ensure that the updated version of

the API-consuming application remains syntactically correct.

Specifically, it aims to determine how each method call to the

old API version should be transformed into a corresponding

call to the new API version, preserving equivalent application

behavior. A key prerequisite for this process is access to the

source code of the consumed API.

To illustrate the inputs and outputs, consider migrat-

ing method calls from GetAllProducts() in ex-

ample 4.2 to method calls GetProducts(decimal

minPrice) in example 4.3. This step should establish

that calls to GetAllProducts() correspond to calls to

GetProducts(decimal.MinValue) in the new version

and generate the appropriate MigrationStep, as demonstrated

in example 4.4.

There are several possible approaches to implementing this

step. Below, we outline three representative strategies:

1) Manual Transformation: In this baseline approach, the

developer manually inspects the old and new versions of

each API method and defines the required transformations

manually.

158 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Example 4.2 (ASP.NET Core (C#)): Old version of API:

Product? GetProduct(int productId) =>

dbContext.Products.FirstOrDefault(p

=> p.Id == productId);

↪→

↪→

IEnumerable<Product> GetAllProducts() =>

dbContext.Products;↪→

Product? CreateProduct(Product product)

{↪→

dbContext.Products.Add(product);

dbContext.SaveChanges();

return product;

}

Product? UpdateProduct(Product product)

{↪→

dbContext.Products.Update(product);

dbContext.SaveChanges();

return product;

}

void DeleteProduct(int productId) {

var product =

dbContext.Products.FirstOrDefault(p

=> p.Id == productId);

↪→

↪→

if (product is null)

return;

var result =

dbContext.Products.Remove(product);↪→

dbContext.SaveChanges();

}

Example 4.3 (ASP.NET Core (C#)): New version of API:

IEnumerable<Product> GetProducts(decimal

minPrice) =>

dbContext.Products.Where(p =>

p.Price >= minPrice);

↪→

↪→

↪→

Product? CreateOrUpdateProduct(Product

product) {↪→

if (product.Id == default)

dbContext.Products.Add(product);

else

dbContext.Products.Update(product);

;↪→

dbContext.SaveChanges();

return product;

}

void DeleteProduct(int productId) {

var product =

dbContext.Products.FirstOrDefault(p

=> p.Id == productId);

↪→

↪→

if (product is null)

return;

var result =

dbContext.Products.Remove(product);↪→

dbContext.SaveChanges();

}

Example 4.4 (ASP.NET Core (C#)): Output of our approach:

[{

"OldMethodSignatures": ["Product? CreateProduct(Product product)", "Product?

UpdateProduct(Product product)"],↪→

"NewMethodSignatures": ["Product? CreateOrUpdateProduct(Product product)"],

"ReplacementRules": [{"RegexMatch": "CreateProduct\((\w+)\)", "Replacement":

"CreateOrUpdateProduct($1)"},↪→

{"RegexMatch": "UpdateProduct\((\w+)\)", "Replacement":

"CreateOrUpdateProduct($1)"}]↪→

},

{

"OldMethodSignatures": ["IEnumerable<Product> GetAllProducts()"],

"NewMethodSignatures": ["IEnumerable<Product> GetProducts(decimal minPrice)"],

"ReplacementRules": [{"RegexMatch": "GetAllProducts\(\)", "Replacement":

"GetProducts(decimal.MinValue)"}]↪→

}

{

"OldMethodSignatures": ["Product? GetProduct(int productId)"],

"ReplacementRules": [{"RegexMatch": "GetProduct\((\w+)\)", "Replacement":

"GetProducts(decimal.MinValue).FirstOrDefault(p => p.Id == $1)"}]↪→

}]

2) Static analysis: This strategy compares the ASTs of the

old and new method implementations. While potentially

precise, it poses significant technical challenges due to

the complexity of code analysis and the wide variety of

programming language constructs.

3) AI-Based Methods: Advances in AI, particularly large

language models, offer promising opportunities for semi-

automated transformation. Although current AI systems

have limitations— especially in tasks requiring deep

reasoning [25] — our experience with modern tools

such as ChatGPT [26] indicates they can effectively

address transformation problems, provided the task is

well-specified.

M2.b: Semantic Based Migration

The purpose of this step is to derive the migration steps

necessary to ensure that the migrated version of the API-

consuming application remains semantically correct. This in-

cludes preserving the intended meaning of method inputs and

outputs.

To illustrate the inputs and outputs of this step, consider

a scenario where the Price property of a Product is

represented in US dollars in the older version, but in euros

in the newer version. If this change is not properly accounted

for, it can cause misinterpretation of price values, leading to

errors. Importantly, such semantic differences are usually not

detectable from the source code alone, even though they may

sometimes be suggested by comments or naming conventions.

To address this limitation, we propose extracting semantic

metadata from structured documentation artifacts, such as

OAS. In OAS, Product would be defined as a component

schema, and its Price property could be annotated using an

OAS extension (e.g., x-semantic-meaning), with values

set to USD in the old version and EUR in the new version.

Example of the USD-annotated OAS schema component for

Product is shown inexample 4.5. The output of our ap-

proach would be a set of MigrationSteps for each method

utilizing the price of Product. For instance, migrating the

GetAllProducts method from using USD to EUR pricing

would yield a MigrationStep as illustrated in example 4.6.

NIKOLAS JÍŠA, ROBERT PERGL: TOWARDS A FRAMEWORK FOR SYSTEMATIC API MIGRATIONS 159

Example 4.5 (OAS JSON): Product in component schema:

{
"type": "object",

"properties": {

"id": {"type": "string"},

"name": {"type": "string"},

"price": {"type": "number",

"x-semantic-meaning": "USD"}↪→

}

}

Example 4.6 (JSON): MigrationStep for Price change from

USD to EUR:

{
"OldMethodSignatures":

["IEnumerable<Product>

GetAllProducts()"],

↪→

↪→

"NewMethodSignatures":

["IEnumerable<Product>

GetAllProducts()"],

↪→

↪→

"OldSemanticMeaning": {"Path":

"Product.Price", "Value": "USD"},↪→

"NewSemanticMeaning": {"Path":

"Product.Price", "Value": "EUR"}↪→

}

A baseline implementation of this step could involve simply

checking whether the semantic annotations have changed

and, if so, requesting manual intervention. More advanced

approaches might attempt to perform semantic migration au-

tomatically. However, such techniques are beyond the scope

of this paper and represent a promising direction for future

research.

V. EVALUATION

A. API changes for evaluation

Initially, we aimed to identify an open-source API with

a well-documented history of breaking changes to evaluate

our approach. However, this task proved more difficult than

anticipated. Although we identified some promising candi-

dates, clearly documented and representative breaking changes

among real-world open-source APIs were generally scarce.

One example of a promising API for evaluation purposes is

Elasticsearch [27], which documents several breaking changes

- such as the one described and implemented in [28] where our

approach would likely be effective. Nevertheless, the complex-

ity of many APIs hindered analysis, especially when changes

were undocumented or lacked sufficient context. Therefore, we

decided to create our own API changes based on examples 4.2

and 4.3, which are listed in table I.

As our approach is not yet fully implemented, we conducted

an evaluation focusing on the implementability and applicabil-

ity of each individual step. In some cases, this evaluation was

supported by leveraging AI tools, specifically ChatGPT [26].

The results of this assessment are summarized in table II.

I am consuming old version of API in my

application and I have to migrate it to

use the new version. The API is written

in `{{API_FRAMEWORK_OR_LANGUAGE}}`. I

need to know which steps to take in my

API-consuming application created in

`{{API_CONSUMER_FRAMEWORK_OR_LANGUAGE}}`,

specifically, what should I replace the

calls to `{{OLD_METHOD_SIGNATURES}}` from

old version to migrate it to calls to new

`{{NEW_METHOD_SIGNATURES}}` with behavior

in terms of input-output mapping being

intact? Mark the source code I should use

in place of calls to

`{{OLD_METHOD_SIGNATURES}}` - i.e. exact

string I should use as replacement for

`{{OLD_METHOD_CALLS}}` - in the answer

between XML tags `<REPLACEMENT>` and

`</REPLACEMENT>`.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Definition of relevant structures:

`{{SHARED_DATA_TYPE_DEFINITIONS}}`

Old version source code:

`{{OLD_CODE}}`

New version source code:

`{{NEW_CODE}}`

Fig. 2: AI query implementation of M2.a step

B. Test implementation of M2.a over AI

Our implementation of M2.a for AI-based processing is

defined by a structured AI query that accepts the following

self-explanatory parameters:

1) API_FRAMEWORK_OR_LANGUAGE

2) API_CONSUMER_FRAMEWORK_OR_LANGUAGE

3) OLD_METHOD_SIGNATURES

4) NEW_METHOD_SIGNATURES

5) OLD_METHOD_CALLS

6) SHARED_DATA_TYPE_DEFINITIONS

7) OLD_CODE

8) NEW_CODE

The structure of this query is illustrated in fig. 2, where

parameters are enclosed using double curly braces.

We used the examples of API method changes from table I

to create AI queries, which we submitted to ChatGPT using

the ChatGPT-4 Turbo engine [26]. The REPLACEMENT parts

of the generated responses are listed in table III. The responses

were generally satisfactory. However, certain changes may

require additional manual adjustments. In general, developers

may not be aware of which modifications necessitate further

intervention, and thus must manually review all changes. This

limitation aligns with the intended scope of our approach,

which is designed to assist—rather than fully automate—

manual API migration at this stage. Nevertheless, minimizing

manual effort remains a key objective, representing an impor-

tant direction for future research. Also, for cases involving the

weakening of preconditions or postconditions, the suggested

160 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

TABLE I: API changes for evaluation

Identifier Change Kind Version A Version B

C1
Create / Remove

Method C1
IEnumerable<Product> GetProductsWithPriceLowerThan(decimal price)

=> dbContext.Products.Where(p => p.Price < price);↪→

C2
Add / Remove Pa-

rameter
IEnumerable<Product> GetProducts() => dbContext.Products IEnumerable<Product> GetProducts(decimal minPrice) =>

dbContext.Products.Where(p => p.Price >= minPrice)↪→

C3

Change Parameter

Type to More / Less

Abstract

Product? UpdateProduct(Product product) {

dbContext.Products.Update(product);

dbContext.SaveChanges();

return product;

}

Product? UpdateProduct(Item item) {

dbContext.Items.Update(item);

dbContext.SaveChanges();

return item;

}

C4

Data Coupling

to / from Stamp

Coupling

Product? UpdateProduct(Product product) {

dbContext.Products.Update(product);

dbContext.SaveChanges();

return product;

}

Product? UpdateProduct(int id, string name, decimal price) {

var dbProduct = dbContext.Products.First(p => p.Id == id);

dbProduct.Name = name;

dbProduct.Price = price;

dbContext.SaveChanges();

return dbProduct;

}

C5

Stronger / Weaker

Pre-Condition with

Exception

Product? UpdateProduct(Product product) {

dbContext.Products.Update(product);

dbContext.SaveChanges();

return product;

}

Product? UpdateProduct(Product product) {

if (product.Price < 0)

throw new ArgumentException();

dbContext.Products.Update(product);

dbContext.SaveChanges();

return product;

}

C6

Stronger / Weaker

Pre-Condition with

Null

Product? UpdateProduct(Product product) {

dbContext.Products.Update(product);

dbContext.SaveChanges();

return product;

}

Product? UpdateProduct(Product product) {

if (product.Price < 0)

return null;

dbContext.Products.Update(product);

dbContext.SaveChanges();

return product;

}

C7

Stronger / Weaker

Post-Condition with

Exception

Product? GetProduct(int productId) => dbContext.Products.First(p

=> p.Id == productId);↪→

Product? GetProduct(int productId) {

var result = dbContext.Products.First(p => p.Id == productId);

if (result.Price < 0)

throw new InvalidOperationException();

return result;

}

C8

Stronger / Weaker

Post-Condition with

Null

Product? GetProduct(int productId) => dbContext.Products.First(p

=> p.Id == productId);↪→

Product? GetProduct(int productId) {

var result = dbContext.Products.First(p => p.Id == productId);

if (result.Price < 0)

return null;

return result;

}

C9
Method composition

/ decomposition

Product? CreateProduct(Product product) {

dbContext.Products.Add(product);

dbContext.SaveChanges();

return product;

}

Product? UpdateProduct(Product product) {

dbContext.Products.Update(product);

dbContext.SaveChanges();

return product;

}

Product? CreateOrUpdateProduct(Product product) {

if (product.Id == default)

dbContext.Products.Add(product);

else

dbContext.Products.Update(product);;

dbContext.SaveChanges();

return product;

}

C10

Change Primitive

Type from / to

Smaller

Product? GetProduct(int productId) =>

dbContext.Products.FirstOrDefault(p => p.Id == productId)↪→

Product? GetProduct(long productId) =>

dbContext.Products.FirstOrDefault(p => p.Id == productId)↪→

C11
Add / Remove Field

to / from Parameter

class Filter { decimal MinPrice { get; set; } decimal MaxPrice {

get; set; } }↪→

IEnumerable<Product> GetProducts() => dbContext.Products;

IEnumerable<Product> GetProducts(Filter filter) {

var allProducts = GetProducts();

var result = allProducts.Where(p => p.Price >= filter.MinPrice

&& p.Price <= filter.MaxPrice);↪→

return result;

}

class Filter { string SearchPhrase { get; set; } decimal MinPrice

{ get; set; } decimal MaxPrice { get; set; } }↪→

IEnumerable<Product> GetProducts() => dbContext.Products;

IEnumerable<Product> GetProducts(Filter filter) {

var allProducts = GetProducts();

var result = allProducts.Where(p => p.Price >= filter.MinPrice

&& p.Price <= filter.MaxPrice &&

p.Name.Contains(filter.SearchPhrase));

↪→

↪→

return result;

}

TABLE II: Evaluation summary

Step Comment

M1.1
Matching methods of identical signatures is straight-
forward and thus excluded from the evaluation.

M1.2
We have confirmed that ChatGPT can successfully
perform this step using the example presented in sec-
tion IV.

M2.a

This step is regarded as the most challenging, and
consequently, we implemented it using a structured
ChatGPT query described in section V-B, which pro-
duced satisfactory results.

M2.b
We have confirmed that ChatGPT can successfully exe-
cute this step using the example outlined in section IV.

changes could be undesirable. One possible improvement

would be to explicitly request RegexStrings with cor-

responding Replacement values, so that they could be

directly used in the resulting MigrationSteps, as demonstrated

in example 4.4.

VI. DISCUSSION

We fulfill the research objective outlined in section I by

developing a framework for systematic API migration (manual

or semi-automated), which is described in section IV and

later evaluated in section V. However, several aspects of our

proposed approach require further discussion.

Firstly, it would be valuable to compare our API migration

methodology with existing approaches. However, as noted

by Lamothe et al. [3], comparing API migration techniques

remains an open and unresolved challenge. Additionally, we

currently lack a complete implementation of our methodology.

Instead, we have implemented and evaluated only individual

components using AI queries. It would be interesting to see

what a full implementation would look like and how it would

perform on real-world APIs.

Secondly, during the evaluation, we repeatedly observed that

changes preserving backward compatibility might not always

be desirable. This is particularly true for modifications that

weaken preconditions or postconditions. These observations

prompt an important question: how should we determine

NIKOLAS JÍŠA, ROBERT PERGL: TOWARDS A FRAMEWORK FOR SYSTEMATIC API MIGRATIONS 161

TABLE III: Summary of AI responses

Change

Iden-

tifier

Direction Response part between “<REPLACEMENT>” and “</REPLACEMENT>”

Manual

steps

needed?

Comment

C1 A to B N/A No No changes necessary

C1 B to A N/A Yes Injecting code of the removed method might work

C2 A to B GetProducts(0) No decimal.MinValue would be better than 0

C2 B to A GetProducts().Where(p => p.Price >= minPrice) Yes There needs to be minPrice variable

C3 A to B (Product?)UpdateProduct(product) No

C3 B to A UpdateProduct((Product)item) No

C4 A to B UpdateProduct(product.Id, product.Name, product.Price) No

C4 B to A new Product { Id = id, Name = name, Price = price } No

C5 A to B Same as before Yes Exception handling might be desired

C5 B to A
if (product.Price < 0)

throw new ArgumentException();

UpdateProduct(product)

Yes Keeping the same behavior as before might be undesired here

C6 A to B Same as before Yes Null handling might be desired

C6 B to A product.Price < 0 ? null : UpdateProduct(product) Yes Keeping the same behavior as before might be undesired here

C7 A to B

try {

GetProduct(productId);

} catch (InvalidOperationException) {

return null;

}

Yes Should have proper exception handling

C7 B to A
var product = GetProduct(productId);

if (product.Price < 0)

throw new InvalidOperationException();

Yes Keeping the same behavior as before might be undesired here

C8 A to B
var product = GetProduct(productId);

if (product == null)

throw new InvalidOperationException("Product price is invalid");

Yes Throwing an exception might be undesired

C8 B to A
var product = GetProduct(productId);

if (product.Price < 0)

return null;

Yes Keeping the same behavior as before might be undesired here

C9 A to B CreateOrUpdateProduct(product); No

C9 B to A (product.Id == default ? CreateProduct(product) : UpdateProduct(product)); No

C10 A to B GetProduct((long)productId) No

C10 B to A GetProduct((int)productId); Yes There might be some data loss like this

C11 A to B GetProducts(new Filter { MinPrice = filter.MinPrice, MaxPrice =

filter.MaxPrice }).Where(p => p.Name.Contains(filter.SearchPhrase))↪→

No

C11 B to A GetProducts(new Filter { MinPrice = filter.MinPrice, MaxPrice =

filter.MaxPrice, SearchPhrase = "" })↪→

No

which changes are desirable and which are not? Moreover,

is it possible to evaluate the desirability of such changes in an

automated or semi-automated manner? These questions remain

open for future research.

Thirdly, several steps in our approach are defined at a high

level of abstraction, and it remains uncertain whether all of

them can be feasibly implemented. For instance, step M2.a is

intended to leverage static analysis, potentially supported by

AI tools. However, the precise mechanism and its practical

efficiency are still unclear. Furthermore, methods involving

AI introduce additional challenges related to effectiveness and

reproducibility, due to their inherently black-box nature.

Next, although our approach draws on many ideas from

the research reviewed in section III, we have done little work

on integrating it with existing solutions. This remains an

interesting direction for future research.

Finally, since we successfully demonstrated the applicability

of AI in step M2.a, a natural question arises—could an AI-

based approach be employed for the entire API migration

process, leveraging source code, structured API documen-

tation, and other related artifacts? While we have not yet

explored this possibility in detail, we hypothesize that such

an approach could be feasible to some extent. Nonetheless,

considering the limitations of current AI systems, particularly

their challenges with consistent and transparent reasoning, we

propose a more cautious direction. In future work, we aim to

reduce reliance on AI and instead focus on more deterministic

and interpretable alternatives.

VII. CONCLUSION

In this work, we presented a systematic framework for API

migrations. The goal of this framework is to guide developers

during migration, whether they choose to do it manually

or with the help of automated tools. The migration process

starts by matching methods from the old version of the API

with those in the new version. It then continues with both

comparative syntactic and semantic analyses to produce clear

and structured migration steps.

As part of our evaluation, we implemented the comparative

syntactic analysis as a structured AI query. We observed that

this step was the most technically challenging part of the

process. Nevertheless, our working prototype shows that it is

not only feasible but also valuable in practice. It lays a solid

foundation for future improvements of the framework.

In future work, we plan to complete the full implementation

of the migration process. One of our aims is to reduce reliance

on AI, since current models still struggle with consistent and

reliable reasoning across different migration scenarios.

Another important direction for future work is to apply our

framework to real-world APIs, rather than relying only on

synthetic examples. This will allow us to evaluate how well

the framework performs in practical environments and to what

extent it can be generalized to different kinds of APIs.

STATEMENT ON THE USE OF AI

AI technologies (ChatGPT [26]) were used to improve the

language of the paper.

ACKNOWLEDGEMENTS

This research was supported by the grant of Czech Technical

University in Prague No. SGS23/206/OHK3/3T/18.

REFERENCES

[1] L. Rainie and B. Wellman, “The Internet in Daily Life: The Turn
to Networked Individualism,” in Society and the Internet. Oxford
University Press, Jul. 2019, pp. 27–42. ISBN 978-0-19-884349-
8 978-0-19-187932-6. [Online]. Available: https://academic.oup.com/
book/35088/chapter/299127482

162 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

[2] R. Kurzweil, “The Law of Accelerating Returns,” in Alan Turing:

Life and Legacy of a Great Thinker, C. Teuscher, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 381–416. ISBN
978-3-642-05744-1 978-3-662-05642-4. [Online]. Available: http:
//link.springer.com/10.1007/978-3-662-05642-4_16

[3] M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A Systematic Review
of API Evolution Literature,” ACM Computing Surveys, vol. 54,
no. 8, pp. 1–36, Nov. 2022. doi: 10.1145/3470133. [Online]. Available:
https://dl.acm.org/doi/10.1145/3470133

[4] Hevner, March, Park, and Ram, “Design Science in Information
Systems Research,” MIS Quarterly, vol. 28, no. 1, p. 75, 2004. doi:
10.2307/25148625. [Online]. Available: https://www.jstor.org/stable/10.
2307/25148625

[5] A. Hevner, “A Three Cycle View of Design Science Research,” Scandi-

navian Journal of Information Systems, vol. 19, Jan. 2007.

[6] “OpenAPI Specification v3.1.1,” accessed: 2025-06-26. [Online].
Available: https://spec.openapis.org/oas/latest.html

[7] “API Blueprint Specification | API Blueprint,” accessed: 2025-06-26.
[Online]. Available: https://apiblueprint.org/documentation/specification.
html

[8] R. Pergl and N. Jísa, “Semantic Analysis of API Blueprint and Ope-
nAPI Specification,” in Czech Technical University Prague, A. Rocha,
H. Adeli, G. Dzemyda, F. Moreira, and A. Poniszewska-Maranda, Eds.,
vol. 989, 2024. doi: 10.1007/978-3-031-60227-6_15. ISBN 2367-3370
pp. 172–181.

[9] N. Jíša and R. Pergl, “Towards Evolvable APIs through Ontological
Analysis,” in Annals of Computer Science and Information Systems,
vol. 41. PTI, Nov. 2024. doi: 10.15439/2024f3164. ISSN 2300-5963
pp. 61–68.

[10] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th

International Conference on Evaluation and Assessment in Software

Engineering, ser. Ease ’14. London, England, United Kingdom and
New York, NY, USA: Association for Computing Machinery, 2014. doi:
10.1145/2601248.2601268. ISBN 978-1-4503-2476-2

[11] T. Mens, “A state-of-the-art survey on software merging,” IEEE

Transactions on Software Engineering, vol. 28, no. 5, pp. 449–
462, May 2002. doi: 10.1109/TSE.2002.1000449. [Online]. Available:
http://ieeexplore.ieee.org/document/1000449/

[12] “Git,” accessed: 2025-06-28. [Online]. Available: https://git-scm.com/

[13] B. Dagenais and M. P. Robillard, “SemDiff: Analysis and
recommendation support for API evolution,” in 2009 IEEE 31st

International Conference on Software Engineering. Vancouver,
BC, Canada: IEEE, 2009. doi: 10.1109/ICSE.2009.5070565.
ISBN 978-1-4244-3453-4 pp. 599–602. [Online]. Available:
http://ieeexplore.ieee.org/document/5070565/

[14] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “APIDiff: Detecting
API breaking changes,” in 2018 IEEE 25th International Conference

on Software Analysis, Evolution and Reengineering (SANER).
Campobasso: IEEE, Mar. 2018. doi: 10.1109/SANER.2018.8330249.
ISBN 978-1-5386-4969-5 pp. 507–511. [Online]. Available:
http://ieeexplore.ieee.org/document/8330249/

[15] N. Deshpande, M. W. Mkaouer, A. Ouni, and N. Sharma, “Third-party
software library migration at the method-level using multi-objective
evolutionary search,” Swarm and Evolutionary Computation, vol. 84, p.
101444, Feb. 2024. doi: 10.1016/j.swevo.2023.101444. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S221065022300216X

[16] D. Ramos, H. Mitchell, I. Lynce, V. Manquinho, R. Martins, and C. L.
Goues, “MELT: Mining Effective Lightweight Transformations from
Pull Requests,” in 2023 38th IEEE/ACM International Conference on

Automated Software Engineering (ASE). Luxembourg, Luxembourg:
IEEE, Sep. 2023. doi: 10.1109/ASE56229.2023.00117. ISBN 979-8-
3503-2996-4 pp. 1516–1528. [Online]. Available: https://ieeexplore.
ieee.org/document/10298355/

[17] X. Gao, A. Radhakrishna, G. Soares, R. Shariffdeen, S. Gulwani,
and A. Roychoudhury, “APIfix: output-oriented program synthesis for
combating breaking changes in libraries,” Proceedings of the ACM

on Programming Languages, vol. 5, no. OOPSLA, pp. 1–27, 2021,
publisher: ACM New York, NY, USA.

[18] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani,
R. Gheyi, R. Suzuki, and B. Hartmann, “Learning Syntactic Program
Transformations from Examples,” in 2017 IEEE/ACM 39th International

Conference on Software Engineering (ICSE). Buenos Aires: IEEE, May
2017. doi: 10.1109/ICSE.2017.44. ISBN 978-1-5386-3868-2 pp. 404–
415. [Online]. Available: http://ieeexplore.ieee.org/document/7985680/

[19] L. Beurer-Kellner, J. Von Pilgrim, C. Tsigkanos, and T. Kehrer,
“A Transformational Approach to Managing Data Model Evolution
of Web Services,” IEEE Transactions on Services Computing, pp.
1–1, 2022. doi: 10.1109/TSC.2022.3144613. [Online]. Available:
https://ieeexplore.ieee.org/document/9689952/

[20] Z. Huang, J. Chen, J. Jiang, Y. Liang, H. You, and F. Li, “Mapping
APIs in Dynamic-typed Programs by Leveraging Transfer Learning,”
ACM Transactions on Software Engineering and Methodology, vol. 33,
no. 4, pp. 1–29, May 2024. doi: 10.1145/3641848. [Online]. Available:
https://dl.acm.org/doi/10.1145/3641848

[21] E. Wittern, “Web APIs - challenges, design points, and research
opportunities: invited talk at the 2nd international workshop on
API usage and evolution (WAPI ’18),” in Proceedings of the 2nd

International Workshop on API Usage and Evolution. Gothenburg
Sweden: ACM, Jun. 2018. doi: 10.1145/3194793.3194801. ISBN
978-1-4503-5754-8 pp. 18–18. [Online]. Available: https://dl.acm.org/
doi/10.1145/3194793.3194801

[22] S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, “A System-
atic Evaluation of Static API-Misuse Detectors,” IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, vol. 45, no. 12, pp. 1170–1188, Dec.
2019. doi: 10.1109/TSE.2018.2827384

[23] “Overview of Entity Framework Core - EF Core,” accessed: 2025-07-11.
[Online]. Available: https://learn.microsoft.com/en-us/ef/core/

[24] “DbContext Class (Microsoft.EntityFrameworkCore),” accessed: 2025-
07-11. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/api/
microsoft.entityframeworkcore.dbcontext?view=efcore-9.0

[25] G. Gendron, Q. Bao, M. Witbrock, and G. Dobbie, “Large
Language Models Are Not Strong Abstract Reasoners,” in IJCAI

Int. Joint Conf. Artif. Intell., Larson K., Ed. International Joint
Conferences on Artificial Intelligence, 2024. ISBN 10450823 (ISSN);
978-195679204-1 (ISBN) pp. 6270–6278, journal Abbreviation:
IJCAI Int. Joint Conf. Artif. Intell. [Online]. Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204293915&
partnerID=40&md5=b5ebdcbbf62f13f3c21b695461a5ab2d

[26] “ChatGPT,” accessed: 2025-07-11. [Online]. Available: https://chatgpt.
com

[27] “elastic/elasticsearch,” Jul. 2025, accessed: 2025-07-11. [Online].
Available: https://github.com/elastic/elasticsearch

[28] elastic, “Store outcome values in servicemetrics ‘transac-
tion.success_count‘ by carsonip · Pull Request #9791 ·
elastic/apm-server,” accessed: 2025-07-11. [Online]. Available:
https://github.com/elastic/apm-server/pull/9791

NIKOLAS JÍŠA, ROBERT PERGL: TOWARDS A FRAMEWORK FOR SYSTEMATIC API MIGRATIONS 163

