Proceedings of the 20" Conference on Computer DOI: 10.15439/2025F1225
Science and Intelligence Systems (FedCSIS) pp. 155-163 ISSN 2300-5963 ACSIS, Vol. 43

&l

Towards a Framework for Systematic API
Migrations

Nikolas Jisa
0009-0005-1551-2740
Czech Technical University in Prague
Théakurova 9, 160 00 Prague 6, Czech Republic
Email: jisaniko@fit.cvut.cz

Abstract—This work presents a framework for systematic Ap-
plication Programming Interface (API) migrations that provides
guidance for both manual and automated migration processes.
The approach starts by matching methods from the old API
version with those of the new version, followed by comparative
syntactic and semantic analyses to produce migration steps.
As a proof of concept, we implement the most challenging
parts using structured, parameterized Artificial Intelligence (AI)
queries, which also serve as a basis for evaluation. Our results
demonstrate the feasibility and usefulness of this approach.
Future work will focus on completing the full migration process
while reducing reliance on AI due to its current limitations in
reasoning. We also plan to evaluate the framework on real-world
APIs to assess its effectiveness and general applicability.

I. INTRODUCTION

N RECENT years, technological progress has accelerated
Irapidly. One clear example of this is the widespread in-
tegration of the Internet into everyday life, supporting ac-
tivities such as online shopping, banking, social networking,
and information retrieval through Artificial Intelligence (AI)
queries [1]. Kurzweil [2] expands Moore’s Law by applying
the idea of exponential growth not only to hardware but also
to software and other technological areas, with the Internet
serving as one such example. The Internet consists of many
interconnected systems that rely on each other. Some of these
systems are client-server applications, which are often built
using Application Programming Interfaces (APIs).

The problem we focus on is API evolvability, with a par-
ticular emphasis on the challenge of API migration. Lamothe
et al. [3] identified several research challenges related to API
evolvability. Among these, we are especially interested in the
following: (a) Combining textual merging with syntactic
and semantic approaches, (b) Providing a commercially viable
API migration solution, (¢) Incorporating domain-specific in-
formation into tools, (d) Developing more tools to assist with
Web API, (e) Automatically identifying factors driving API
changes, (f) Addressing API semantics and dependencies, and
(g) Supporting the context sensitivity of API migration tools.

Although the article [3] was published in late 2021, our
extended review of the API evolvability literature, presented
in section III, shows that many of these challenges continue
to be highly relevant.

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

155

Robert Pergl
0000-0003-2980-4400
Czech Technical University in Prague
Théakurova 9, 160 00 Prague 6, Czech Republic
Email: robert.pergl @fit.cvut.cz

In this paper, our research objective is: “To create a
framework for systematic API migrations that provides
guidelines for performing API migrations, whether fully
manual or semi-automated.” Our approach targets scenarios
where an application uses a specific version of an API and
needs to migrate its API calls to a newer version. A key
requirement is to know the method signatures of both the
old API version and the new API version, at least at the
syntactic level. However, method signatures alone allow for
only basic migration guidelines. If the source code of the
new API version is available, static analysis can be used to
generate more detailed guidance. Furthermore, if semantic
documentation artifacts are available, changes at the semantic
level—even if the source code remains unchanged—can be
incorporated to further improve the quality of the migration
guidelines.

Apart from mapping the landscape in the area of API
migration research and reporting the progress of our own API
migration work, the contribution of this paper lies in presenting
a high-level approach to API migration. This approach consists
of several components, each of which can be implemented in
different ways. Nevertheless, we do not provide implementa-
tions here.

The remainder of this paper is structured as follows. Sec-
tion II presents the research methodology. Related work is
discussed in section III. The core of our contribution is
detailed in section IV, where we explain our approach to API
migration. Section V provides the evaluation of our approach,
and section VI provides further discussion. Finally, section VII
concludes the paper and outlines directions for future work.

II. RESEARCH METHODOLOGY

We follow the Design Science Research Methodology
(DSRM), first introduced by Hevner et al. [4] and later
improved in [5]. DSRM focuses on creating and evaluat-
ing new artifacts — such as models, methods, processes,
or systems — that aim to solve real-world problems. The
key components are: Environment, the real-world context
including people, organizations, technologies, and problems. It
sets the requirements and limits for the research. Knowledge
Base holds existing theories, methods, frameworks, and tools
that support the research. Design Science Research is an

Topical area: Software, System and Service Engineering

156

iterative process of Design Cycles that build and test
artifacts to solve problems. It connects to the Environment
via the Relevance Cycle and to the Knowledge Base
through the Rigor Cycle.

This paper builds on our previous work aimed at support-
ing API usage and migration. We initially explored various
API documentation formats, such as OpenAPI Specification
(OAS) [6] and API Blueprint (APIB) [7], with the goal of
designing a unified format and mapping mechanisms be-
tween common specifications. So far, we have implemented
a mapping from OAS to APIB [8], with plans to develop a
central model and mappings to other formats. In the approach
proposed in this paper, one possible input for step M2.b
is documentation represented in this central model. We also
developed an API ontological model presented in [9], which
illustrates how changes made by an API provider can impact
API consumers. The model includes several key observa-
tions, such as the distinction between syntactic and semantic
changes, which forms the foundation of the approach presented
in this paper.

In this paper, first, we do another Relevance Cycle by
looking at updates in API documentation and investigating
recent breaking changes in open-source APIs. We provide
some remarks about this part in section III and section V.
Next, we do the Rigor Cycle by reviewing new research
on API evolvability using snowballing [10], as described
in section III. Finally, we do the Design Cycle by creating
a framework for systematic API migration in section IV and
provide evaluation in section V.

III. RELATED WORK

According to Lamothe et al. in [3], the key areas of focus in
API evolvability at the time of their work, published at the end
of 2021, were addressing breaking API changes, enhancing
API usability, and reducing API misuses. In the same paper,
Lamothe et al. also identify several open challenges in the
field of API evolvability. In this section, we review challenges
relevant for this paper and describe some additional research
works discovered by snowballing [10]. The challenges are
categorized with identifiers from the original article, where
“EC” stands for “Existing Challenges” (which have existing
publications attempting to find solutions) and “UC” for “Un-
resolved Challenges” (which lack existing solutions).

EC-1) Combining textual merging with syntactic and se-
mantic approaches: This challenge is based on article [11]
where the context is to merge two or more versions of the same
software together. The article is from year 2002, nevertheless,
even today, Version Control System (VCS) tools such as
Git [12], are based on textual merging without employing
syntactic nor semantic approaches. In a way, we can consider
API migration as merge of new version of consumed API
with the consumed application itself. Therefore, this can be
considered as a relevant challenge for this paper as we also
employ syntactic and semantic approaches.

EC-2) Providing a commercially viable API migration so-
lution: At the time of writing of [3], there had already been

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

existing API migration solutions such as tool SemDiff [13]
or ApiDiff [14]. SemDiff can recommend replacements of
API calls for methods which were removed in given API
based on static analysis of Abstract Syntax Trees (ASTs)
corresponding to code files in VCS. ApiDiff tool is based on
static analysis and similarity heuristics of Java libraries hosted
on Git [12] repositories in order to detect breaking changes
and non-breaking changes between two versions. ApiDiff and
SemDiff have not been proven commercially viable at the time
of writing of [3]. One of the problems was that, as for most
API Evolvability works, there was a lack in area of eval-
uation, because there had not been established standardized
approaches and datasets to evaluate API evolvability research
works which would be in wide use [3]. Both the SemDiff
and ApiDiff approaches employ static analysis taking into
account syntactic information but without utilizing semantic
information.

In [15] Deshpande et al. tackle the problem of API mi-
gration using multi-objective evolutionary algorithms. Their
approach is not restricted to cases where a single source
method is always transformed into a single target method (one-
to-one mappings). Instead, it is also applicable to scenarios
where one or multiple source methods are mapped to multiple
target methods (one-to-many and many-to-many mappings).

In [16] Ramos et al. present the MELT system, which
extracts API Consumer-side transformations by analyzing pull
requests on the API side. This process combines static analysis
with Natural Language Processing (NLP) of pull request
descriptions and comments.

Some approaches leverage program synthesis to generate
transformation procedures by using examples of API call map-
pings between different versions. Notable examples include
the APIFIX tool introduced in [17] and the ReFazer tool
introduced in [18].

In [19] Beuer-Kellner et al. propose an API migration
approach that utilizes a service to manage the conversion of
data structures between different API versions.

In [20], Huang et al. propose an API mapping approach
called MATL, which employs transfer learning to automate
API mapping without requiring knowledge of the underlying
source code of the API involved.

Another approach involves having developers on the API
side create transformation scripts to assist API Consumers
in updating API calls between versions [3]. Similarly to our
goal, the mentioned techniques deal with API migration. There
already exist multiple works with employ both static and
semantic information in order to automatize API Migration.
The idea of our approach is to employ combination of static
analysis with analysis of additional semantic information.

EC-3) Incorporating domain-specific information into tools:
This challenge is based on [11] in which Mens points out
that more research is needed for the detection and resolution
of structural merge conflicts that arise in the presence of
restructuring transformation, and that we need more domain-
specific information because it cannot be inferred from code.
Our approach also relies on additional information beyond

NIKOLAS JISA, ROBERT PERGL: TOWARDS A FRAMEWORK FOR SYSTEMATIC API MIGRATIONS

source code.

EC-10) More tools to help with Web APIs: According to
Wittern in [21], Web API providers also control runtime of
APIs and can do changes anytime with severe consequences to
their API consumers as opposed to Library APIs. Additionally,
Web APIs often lack machine-undrestandable specifications,
and data are often passed over strings. Our research idea
should be applicable to both Web APIs and Library APIs,
therefore it should contribute to Web APIs tooling making
EC-10 a relevant challenge for our research.

EC-16) Dealing with API semantics and dependencies:
In [22] Amman et al. describes following calls to action:

1) We need precise definition of API usages, considering
usage properties such as usage location and call multi-
plicities

2) We need a representation of such usages that captures all
code details necessary to distinguish correct usages from
misuses and more precise analyzes to identify usages in
code

3) We need detectors that retrieve sufficiently many usage
examples using project-external sources, such as large
project sets or code-search engines

4) We need detectors that go beyond native assumption that
a deviation from the most-frequent usage corresponds to
a misuse, but consider program semantics, such as type
hierarchies and implicit dependencies between objects.
We hypothesize that probabilistic models might be a way
to tackle this problem

5) We need strategies to properly match patterns and usages
in the presence of violations

6) We need strategies to properly handle alternative patterns
for the same API

7) Finally, we need good ranking strategies, to reduce the
cost of reviewing findings.

In the same work Amman et al. present MuBench and
MuBenchPipe as foundational tools to support repeatable
and replicable studies that enable systematic evaluation and
analysis of alternative approaches and strategies in order to
move forward with the mentioned calls to action.

Dealing with API semantics is definitely in scope of our
research.

UC-2) Supporting the context sensitivity of API migration
tools: It is not yet clear how to best approach the context sen-
sitivity in API migration tools. One of the proposed directions
is the incorporation of domain-specific information into tools.
Our research idea is related to this challenge, because we also
consider incorporation of domain-specific information in form
of semantic documentation in structured API documentation
formats (such as OAS).

IV. OUR APPROACH

Our proposed approach for API migration should serve
as a guideline for performing API migration for developers
managing consumption of an evolving API in applications -
regardless whether it is performed manually or with some
automated steps. The most relevant inputs are as follows:

————— Input-' | '-Input-----,
Old Source Code Old Api Doc
New Source Code New Api Doc

M1: Match old version

E methods with new ,
version methods

i (OldMethodinfo[], NewMethodInfo[])[]

ey
v v v v

M2.a: Source Code M2.b: Semantic
Based Migration Based Migration

I I
MigrationStep MigrationStep
f 2?

U
MigrationStepl]

Fig. 1: Overview of our API migration approach

1) Structured API documentation for both the old and the new
versions of the consumed API such as OAS documentation.
2) Links to source code repositories (e.g., in Git), correspond-
ing to both the old and new API versions, when available.

Upon execution, the API migration tool follows a two-
step process depicted in fig. 1: 1) Matching API methods
between the old and new API versions (M1). 2) Performing
comparative syntax analysis (when source code is available)
alongside semantic analysis for each match identified in the
previous step, in order to generate a set of MigrationSteps
(M2.a and M2.b).

MigrationStep represents a transformation applicable to old-
version API method calls, specifying how to adapt them for the
new version. The resulting MigrationSteps provide developers
with a structured foundation to carry out the migration in
manual or semi-automated manner.

For clarity, we present a demonstrative example compris-
ing two versions of the same API, shown in example 4.2
and example 4.3. Both versions utilize the Product class
defined in example 4.1, where the [Key] attribute — pro-

157

158

Example 4.1 (ASPNET Core (C#)): Definition of Product:
Item

class Product
{

public string Name { get; set; }

public decimal Price { get; set; }
}
class Item
{

[Key]public int Id { get; set; }

}

vided by Entity Framework Core [23] — designates the Id
property as the primary key for the database. Additionally, the
dbContext referenced in the examples corresponds to an
instance of DbContext [24], which is used to access and
interact with the database.

An example of the output from our proposed approach is
shown in example 4.4, which migrates old version API calls
from example 4.2 to new version API calls from example 4.3.
This output is represented as JSON, where each object in
the top-level array corresponds to a possible MigrationStep.
The strings labeled “RegexMatch” denote regular expres-
sions, each paired with an associated “Replacement” string.
Within these replacement strings, “$1” refers to the first
captured group in the match.

The primary purpose of these examples is to illustrate the
concept of inputs and outputs rather than to present fully-
fledged input/output artifacts.

MI1: Match old version methods with new version methods

The purpose of this step is to identify correspondences
between API methods in the old version and the new version
of given API. Specifically, it determines which methods in
the old version align with which methods in the new version,
based on structural and semantic similarity. The output of
this step is a collection of tuples (OldMethodInfol[],
NewMethodInfo[]) [], where each MethodInfo in-
stance encapsulates identifying and basic metadata about a
given method, such as its name, return type and parameter
types.

There are multiple possible strategies for implementing this
matching step. We propose implementation in two parts as
follows: M1.1) Exact Signature Match: Methods that share
identical signatures — that is, matching method names, return
types, and parameters — in both the old and new versions are
matched directly. For example, during the migration from ex-
ample 4.2 to example 4.3, only the method DeleteProduct
is matched this way. M1.2) Remaining Methods Match: For
methods which were not matched by the previous step, several
heuristic strategies may be applied: a) Manual matching by
the developers b) Matching based solely on method names
¢) Matching based on parameters and return types d) Match-
ing via AST comparison, when source code is available...
During the migration from example 4.2 to example 4.3,
the methods CreateProduct and UpdateProduct in
the old version are expected to be matched with the

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

method CreateOrUpdateProduct in the new version.
Similarly, the method GetAllProducts () from the old
version should correspond to GetProducts (decimal
minPrice) in the new version. Conversely, the method
GetProduct from the old version does not have a matching
counterpart in the new version.

Methods in the old API version that have no corresponding
counterparts in the new version are classified as deleted
methods, while those introduced only in the new version are
considered added methods.

It is important to note that, depending on the imple-
mentation, the matching algorithm may produce false neg-
atives—failing to correctly associate semantically equivalent
methods across versions. In such cases, logically related
method pairs might be misclassified as a deletion and an
addition, rather than as an evolution of a single method, which
could ultimately render our approach non-functional for in-
volved methods. This underscores the necessity of maximizing
the effectiveness of step M1.2.

Furthermore, the mapping between methods in the old and
new versions is not limited to one-to-one or zero-to-one re-
lationships. Many-to-one (M:1), one-to-many (1:N), and even
many-to-many (M:N) mappings are possible, as illustrated in
migration of CreateProduct and UpdateProduct in ex-
ample 4.2 to CreateOrUpdateProduct in example 4.3.
A baseline implementation that accounts for this could analyze
method names by identifying segments such as "And" or
"Or", and then checking whether corresponding methods exist
for the parts before and after these segments. It should also
verify that the parameter and return types match appropriately.
A more advanced implementation could incorporate static
analysis when the source code is available.

M2.a: Source Code Based Migration

The primary objective of this step is to derive the necessary
migration transformations to ensure that the updated version of
the API-consuming application remains syntactically correct.
Specifically, it aims to determine how each method call to the
old API version should be transformed into a corresponding
call to the new API version, preserving equivalent application
behavior. A key prerequisite for this process is access to the
source code of the consumed API.

To illustrate the inputs and outputs, consider migrat-
ing method calls from GetAllProducts() in ex-
ample 4.2 to method calls GetProducts (decimal
minPrice) in example 4.3. This step should establish
that calls to GetAllProducts () correspond to calls to
GetProducts (decimal .MinValue) in the new version
and generate the appropriate MigrationStep, as demonstrated
in example 4.4.

There are several possible approaches to implementing this
step. Below, we outline three representative strategies:

1) Manual Transformation: In this baseline approach, the
developer manually inspects the old and new versions of
each API method and defines the required transformations
manually.

NIKOLAS JISA, ROBERT PERGL: TOWARDS A FRAMEWORK FOR SYSTEMATIC API MIGRATIONS

Example 4.2 (ASPNET Core (C#)): Old version of API:

Example 4.3 (ASP.NET Core (C#)): New version of API:

Product? GetProduct (int productId) =>
— dbContext.Products.FirstOrDefault (p
- => p.Id == productId);
IEnumerable<Product> GetAllProducts () =>
— dbContext .Products;
Product? CreateProduct (Product product)
- A
dbContext .Products.Add (product) ;
dbContext.SaveChanges () ;
return product;
}
Product? UpdateProduct (Product product)
-
dbContext .Products.Update (product) ;
dbContext.SaveChanges () ;
return product;
}
void DeleteProduct (int productId) {
var product =
— dbContext.Products.FirstOrDefault (p

— => p.Id == productId);
if (product is null)
return;

var result =
— dbContext.Products.Remove (product) ;
dbContext.SaveChanges () ;

IEnumerable<Product> GetProducts (decimal
< minPrice) =>

— dbContext.Products.Where (p =>

— p.Price >= minPrice);

Product? CreateOrUpdateProduct (Product
— product) {
if (product.Id == default)
dbContext .Products.Add (product) ;

else
dbContext .Products.Update (product) ;
= 7

dbContext.SaveChanges () ;
return product;

void DeleteProduct (int productId) {
var product =
— dbContext.Products.FirstOrDefault (p

— => p.Id == productId);
if (product is null)
return;

var result =
— dbContext .Products.Remove (product) ;
dbContext.SaveChanges () ;

Example 4.4 (ASP.NET Core (C#)): Output of our approach:

{
"OldMethodSignatures":
<+ UpdateProduct (Pr
"NewMethodSignatures
"Repl Rules":

"Product?

eateProduct (Product product)",

>roduct product) "],
\)", "Replacement':

—» "CreateOr
{"RegexMatch"
— "CreateOrUpdatePr
b
{
"OldMethodSignatures' ,
"NewMethodSignatures cimal minPrice)"]
"ReplacementRules"
<> "GetProducts (de
b
{
"OldMethodSignatures": ["Prc t1d)"],
"Repl tRules": [{" , "Replacement":
<+ "GetProducts p.Id == $1)"}]

H

2) Static analysis: This strategy compares the ASTs of the
old and new method implementations. While potentially
precise, it poses significant technical challenges due to
the complexity of code analysis and the wide variety of
programming language constructs.

3) Al-Based Methods: Advances in Al, particularly large
language models, offer promising opportunities for semi-
automated transformation. Although current Al systems
have limitations— especially in tasks requiring deep
reasoning [25] — our experience with modern tools
such as ChatGPT [26] indicates they can effectively
address transformation problems, provided the task is
well-specified.

M2.b: Semantic Based Migration

The purpose of this step is to derive the migration steps
necessary to ensure that the migrated version of the API-
consuming application remains semantically correct. This in-
cludes preserving the intended meaning of method inputs and
outputs.

To illustrate the inputs and outputs of this step, consider
a scenario where the Price property of a Product is
represented in US dollars in the older version, but in euros
in the newer version. If this change is not properly accounted
for, it can cause misinterpretation of price values, leading to
errors. Importantly, such semantic differences are usually not
detectable from the source code alone, even though they may
sometimes be suggested by comments or naming conventions.
To address this limitation, we propose extracting semantic
metadata from structured documentation artifacts, such as
OAS. In OAS, Product would be defined as a component
schema, and its Price property could be annotated using an
OAS extension (e.g., x—semantic-meaning), with values
set to USD in the old version and EUR in the new version.
Example of the UsSD-annotated OAS schema component for
Product is shown inexample 4.5. The output of our ap-
proach would be a set of MigrationSteps for each method
utilizing the price of Product. For instance, migrating the
GetAllProducts method from using USD to EUR pricing
would yield a MigrationStep as illustrated in example 4.6.

159

160

Example 4.5 (OAS JSON): Product in component schema:
{

"type": "object",

"properties": {
"id": {"type": "string"},
"name": {"type": "string"},
"price": {"type": "number",
— "x—-semantic-meaning": "USD"}

Example 4.6 (JSON): MigrationStep for Price change from
USD to EUR:

{
"OldMethodSignatures":
s ["IEnumerable<Product>
— GetAllProducts()"],
"NewMethodSignatures":
— ["IEnumerable<Product>
— GetAllProducts()"],
"OldSemanticMeaning": {"Path":
— "Product.Price", "Value": "USD"},
"NewSemanticMeaning": {"Path":
— "Product.Price", "Value": "EUR"}
}

A baseline implementation of this step could involve simply
checking whether the semantic annotations have changed
and, if so, requesting manual intervention. More advanced
approaches might attempt to perform semantic migration au-
tomatically. However, such techniques are beyond the scope
of this paper and represent a promising direction for future
research.

V. EVALUATION

A. API changes for evaluation

Initially, we aimed to identify an open-source API with
a well-documented history of breaking changes to evaluate
our approach. However, this task proved more difficult than
anticipated. Although we identified some promising candi-
dates, clearly documented and representative breaking changes
among real-world open-source APIs were generally scarce.
One example of a promising API for evaluation purposes is
Elasticsearch [27], which documents several breaking changes
- such as the one described and implemented in [28] where our
approach would likely be effective. Nevertheless, the complex-
ity of many APIs hindered analysis, especially when changes
were undocumented or lacked sufficient context. Therefore, we
decided to create our own API changes based on examples 4.2
and 4.3, which are listed in table 1.

As our approach is not yet fully implemented, we conducted
an evaluation focusing on the implementability and applicabil-
ity of each individual step. In some cases, this evaluation was
supported by leveraging Al tools, specifically ChatGPT [26].
The results of this assessment are summarized in table II.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

I am consuming old version of API in my
application and I have to migrate it to
use the new version. The API is written
in ~{{API_FRAMEWORK_OR_LANGUAGE}} . I
need to know which steps to take in my
API-consuming application created in

" {{API_CONSUMER_FRAMEWORK_OR_LANGUAGE}}",
specifically, what should I replace the
calls to “{{OLD_METHOD_SIGNATURES}}~ from
old version to migrate it to calls to new
* {{NEW_METHOD_SIGNATURES}} with behavior
in terms of input-output mapping being
intact? Mark the source code I should use
in place of calls to

" {{OLD_METHOD_SIGNATURES}}~ - i.e. exact
string I should use as replacement for
"{{OLD_METHOD_CALLS}}" - in the answer
between XML tags “<REPLACEMENT>" and
“</REPLACEMENT>" .

A A

Definition of relevant structures:
" {{SHARED_DATA_TYPE_DEFINITIONS}}"

0ld version source code:
" {{OLD_CODE}}"

New version source code:
"{{NEW_CODE}}"

Fig. 2: Al query implementation of M2.a step

B. Test implementation of M2.a over Al

Our implementation of M2.a for Al-based processing is
defined by a structured Al query that accepts the following
self-explanatory parameters:

1) API_FRAMEWORK_OR_LANGUAGE

2) APT_CONSUMER_FRAMEWORK_OR_LANGUAGE
3) OLD_METHOD_SIGNATURES

4) NEW_METHOD_SIGNATURES

5) OLD_METHOD_CALLS

6) SHARED_DATA_TYPE_DEFINITIONS

7) OLD_CODE

8) NEW_CODE

The structure of this query is illustrated in fig. 2, where
parameters are enclosed using double curly braces.

We used the examples of API method changes from table I
to create Al queries, which we submitted to ChatGPT using
the ChatGPT-4 Turbo engine [26]. The REPLACEMENT parts
of the generated responses are listed in table III. The responses
were generally satisfactory. However, certain changes may
require additional manual adjustments. In general, developers
may not be aware of which modifications necessitate further
intervention, and thus must manually review all changes. This
limitation aligns with the intended scope of our approach,
which is designed to assist—rather than fully automate—
manual API migration at this stage. Nevertheless, minimizing
manual effort remains a key objective, representing an impor-
tant direction for future research. Also, for cases involving the
weakening of preconditions or postconditions, the suggested

NIKOLAS JISA, ROBERT PERGL: TOWARDS A FRAMEWORK FOR SYSTEMATIC API MIGRATIONS

TABLE I: API changes for evaluation

changes could be undesirable. One possible improvement
would be to explicitly request RegexStrings with cor-
responding Replacement values, so that they could be
directly used in the resulting MigrationSteps, as demonstrated

in example 4.4.

Identifier] Change Kind Version A Version B
c1 Create /‘ Remove IEnumerable<Product> GetProductsWithPriceLowerThan (decimal price)
Method C1 < => dbContext.Products.Where(p => p.Price < price);
Add / Remove Pa- E ble<Product> GetProducts (decimal minP) =
c2 IEnumerable<Product> GetProducts() => dbContext.Products numerable<Produc etProducts (decimal minPrice
rameter < dbContext.Products.Where(p => p.Price >= minPrice)
Change Parameter Product? UpdateProduct (Product product) { Product? UpdateProduct (Item item) {
c3 Type to More / Less dbContext .Products.Update (product) ; dbContext.Items.Update (item);
Abstract dbContext.SaveChanges () ; dbContext.SaveChanges () ;
return product; return item;
} }
R N Product? UpdateProduct (int id, string name, decimal price) {
Data Coupling Product? UpdateProduct (Product product) { N N P
c4 to / from Stamp dbContext .Products.Update (product) ; ‘d’J:; dg“:dl‘ft dbconfeXt'PmduCts'FlrSt(p - p.ld id)i
Coupling dbContext . SaveChanges () ; roqueh.rane - name;
return product; dbProduct .Price = price;
} ! dbContext.SaveChanges () ;
return dbProduct;
}
Stronger / Weaker | Product? UpdateProduct (Product product) { P‘iﬁ”itr Upd:tgii"d”?tﬁfrod”“ product)
cs Pre-Condition ~ with dbContext .Products.Update (product) ; thp oduer.rice B - 0
Exception dbContext .SaveChanges () ; Tow new Argumentixeeption ()i .
eturn product; dbContext .Products.Update (product) ;
) ‘ dbContext .SaveChanges () ;
return product;
}
Stronger / Weaker | Product? UpdateProduct (Product product) { Priﬁuc(‘t/ qu:t??w”ft‘(?wd“: product) {
6 Pre-Condition with dbContext .Products.Update (product) ; rei’iig“guilflce
Null dbionte’(t . Zavi?ha“ges 0 dbContext .Products.Update (product) ;
, return product; dbContext . SaveChanges () ;
return product;
}
Stronger / Weaker Product? GetProduct (int productId) {
c7 Post-Condition with Product? GetProduct (int productId) => dbContext.Products.First (p var result = dbContext.Products.First (p => p.Id == productId);
Exception < => p.Id == productld); if (result.Price < 0)
throw new InvalidOperationException();
return result;
}
Stronger / Weaker Product? GetProduct (int productId) {
Ccs Post-Condition with Product? GetProduct (int productId) => dbContext.Products.First (p var result = dbContext.Products.First(p => p.Id == productId);
Null — => p.Id == productId); if (result.Price < 0)
return null;
return result;
}
Fro e Createrroduct (Froduct product | Product? CreateOrUpdateProduct (Product product) (
9 Method composition dbContext .SaveChanges () ; £ (product.ld default) .
/ decomposition return product; ldbContextProduct&Add(product),
else
}
N dbContext .Products.Update (product) ; ;
Product? UpdateProduct (Product product) { N o
dbContext.Products.Update (product) ; ibioziexﬁ'idvi?hanges RE
dbContext .SaveChanges () ; eturn product;
return product; '
}
Change Primitive
C10 Type from / to Product? GetProduct (int productId) = Product? GetProduct (long productId) =>
Smaller <+ dbContext.Products.FirstOrDefault (p => p.Id == productId) < dbContext.Products.FirstOrDefault (p => p.Id == productId)
class Filter { decimal MinPrice | get; set; } decimal MaxPrice | class Filter { string SearchPhrase { get; set; } decimal MinPrice
P . . <> { get; set; } decimal MaxPrice { get; set; } }
Add / Remove Field | 7 9€ti seti J 1 -
c1 1 from Parameter IEnumerable<Product> GetProducts() => dbContext.Products; tEnumerable<Product> GetProducts() —> doContext.Products;
to [from Parameter IEnumerable<Product> GetProducts (Filter filter) { IEnumerable<Product> GetProducts (Filter filter) ({
var allProducts - GetProducts(); var allProducts = GetProducts();))
var result = allProducts.Where(p => p.Price >= filter.MinPrice var result = allProducts.Where(p => p.Price >= filter.MinPrice
s s p.Price < filter.MaxPrice); < && p.Price <= filter.MaxPrice &&
return result; <= p.Name.Contains(filter.SearchPhrase));
} return result;
}
TABLE II: Evaluation summ:
ary VI. DISCUSSION
Step | Comment We fulfill the research objective outlined in section I by
M1 | Matching methods of identical signatures is straight- developing a framework for systematic API migration (manual
forward and thus excluded from the evaluation.
or semi-automated), which is described in section IV and
We have confirmed that ChatGPT can successfully : I di ion V. H) ¢
M1.2 | perform this step using the example presented in sec- ater evaluated 1n section V. However, several aspects of our
tion IV. proposed approach require further discussion.
This step is regarded as the most challenging, and Firstly, it would be valuable to compare our API migration
M2.a | consequently, we implemented it using a structured methodology with existing approaches. However, as noted
ChatGPT query described in section V-B, which pro- . . . :
duced gaﬁgfac?(; v results ’ P by Lamothe et al. [3], comparing API migration techniques
u S y results. X .
remains an open and unresolved challenge. Additionally, we
M2.b We have confirmed that ChatGPT can successfully exe- P g ¥
cute this step using the example outlined in section IV. currently lack a complete implementation of our methodology.

Instead, we have implemented and evaluated only individual
components using Al queries. It would be interesting to see
what a full implementation would look like and how it would
perform on real-world APIs.

Secondly, during the evaluation, we repeatedly observed that
changes preserving backward compatibility might not always
be desirable. This is particularly true for modifications that
weaken preconditions or postconditions. These observations
prompt an important question: how should we determine

161

162

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

TABLE III: Summary of Al responses

Change Manual
Iden- Direction Response part between “<REPLACEMENT>" and “</REPLACEMENT>" steps Comment
tifier needed?
CI AlB N/A No No changes necessary
C1 Bto A N/A Yes Injecting code of the removed method might work
C2 AtoB GetProducts (0) No decimal.MinValue would be better than 0
C2 BtoA GetProducts () .Where (p => p.Price >= minPrice) Yes There needs to be minPrice variable
C3 AtoB (Product ?) UpdateProduct (product) No
C3 Bto A UpdateProduct ((Product) item) No
C4 AtwB UpdateProduct (product . 1d, product.Name, product.Price) No
C4 Bto A new Product { Id id, Name name, Price price } No
C5 AtoB Same as before Yes Exception handling might be desired
cs BtoA if (product.Price < 0) Yes Keeping the same behavior as before might be undesired here
throw new ArgumentException () ;
UpdateProduct (product)
C6 AtoB Same as before Yes Null handling might be desired
C6 Bto A product.Price < [null : UpdateProduct (product) Yes Keeping the same behavior as before might be undesired here
try {
c7 AtoB GetProduct (productId); Yes Should have proper exception handling
} catch (InvalidOperationException) {
return null;
}
c7 BtoA var product = GetProduct (productId); Yes Keeping the same behavior as before might be undesired here
if (product.Price -
throw new InvalidOperationException();
cs AtoB i @’;2332 ;G:iii?dwt (productid); Yes Throwing an exception might be undesired
throw new InvalidOperationException ("Product price is invalid");
cs BtoA var product = GetProduct (productld); Yes Keeping the same behavior as before might be undesired here
if (product.Price < 0)
return null;
C9 AtoB CreateOrUpdateProduct (product) ; No
C9 Bto A (product . Id default ? CreateProduct (product) : UpdateProduct (product)); No
C10 AtoB GetProduct ((long) productId) No
C10 Bto A GetProduct ((int)productId); Yes There might be some data loss like this
c1 AtoB GetProducts (new Filter { MinPrice = filter.MinPrice, MaxPrice No
< filter.MaxPrice }).Where(p => p.Name.Contains(filter.SearchPhrase))
1 BoA GetProducts (new Filter { MinPrice - ter.MinPrice, MaxPrice No
— filter.MaxPrice, SearchPhrase = 1)

which changes are desirable and which are not? Moreover,
is it possible to evaluate the desirability of such changes in an
automated or semi-automated manner? These questions remain
open for future research.

Thirdly, several steps in our approach are defined at a high
level of abstraction, and it remains uncertain whether all of
them can be feasibly implemented. For instance, step M2.a is
intended to leverage static analysis, potentially supported by
Al tools. However, the precise mechanism and its practical
efficiency are still unclear. Furthermore, methods involving
Al introduce additional challenges related to effectiveness and
reproducibility, due to their inherently black-box nature.

Next, although our approach draws on many ideas from
the research reviewed in section III, we have done little work
on integrating it with existing solutions. This remains an
interesting direction for future research.

Finally, since we successfully demonstrated the applicability
of Al in step M2.a, a natural question arises—could an Al-
based approach be employed for the entire API migration
process, leveraging source code, structured API documen-
tation, and other related artifacts? While we have not yet
explored this possibility in detail, we hypothesize that such
an approach could be feasible to some extent. Nonetheless,
considering the limitations of current Al systems, particularly
their challenges with consistent and transparent reasoning, we
propose a more cautious direction. In future work, we aim to
reduce reliance on Al and instead focus on more deterministic
and interpretable alternatives.

VII. CONCLUSION

In this work, we presented a systematic framework for API
migrations. The goal of this framework is to guide developers
during migration, whether they choose to do it manually

or with the help of automated tools. The migration process
starts by matching methods from the old version of the API
with those in the new version. It then continues with both
comparative syntactic and semantic analyses to produce clear
and structured migration steps.

As part of our evaluation, we implemented the comparative
syntactic analysis as a structured Al query. We observed that
this step was the most technically challenging part of the
process. Nevertheless, our working prototype shows that it is
not only feasible but also valuable in practice. It lays a solid
foundation for future improvements of the framework.

In future work, we plan to complete the full implementation
of the migration process. One of our aims is to reduce reliance
on Al, since current models still struggle with consistent and
reliable reasoning across different migration scenarios.

Another important direction for future work is to apply our
framework to real-world APIs, rather than relying only on
synthetic examples. This will allow us to evaluate how well
the framework performs in practical environments and to what
extent it can be generalized to different kinds of APIs.

STATEMENT ON THE USE OF Al
Al technologies (ChatGPT [26]) were used to improve the
language of the paper.
ACKNOWLEDGEMENTS
This research was supported by the grant of Czech Technical
University in Prague No. SGS23/206/OHK3/3T/18.
REFERENCES

[11 L. Rainie and B. Wellman, “The Internet in Daily Life: The Turn
to Networked Individualism,” in Society and the Internet. Oxford
University Press, Jul. 2019, pp. 27-42. ISBN 978-0-19-884349-
8 978-0-19-187932-6. [Online]. Available: https://academic.oup.com/
book/35088/chapter/299127482

NIKOLAS JISA, ROBERT PERGL: TOWARDS A FRAMEWORK FOR SYSTEMATIC API MIGRATIONS

(2]

(3]

(4]

[3]

(6]
(7]

[8]

[91

[10]

[11]

[12]
[13]

(14]

[15]

[16]

R. Kurzweil, “The Law of Accelerating Returns,” in Alan Turing:
Life and Legacy of a Great Thinker, C. Teuscher, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 381-416. ISBN
978-3-642-05744-1 978-3-662-05642-4. [Online]. Available: http:
/Mink.springer.com/10.1007/978-3-662-05642-4_16

M. Lamothe, Y.-G. Guéhéneuc, and W. Shang, “A Systematic Review
of API Evolution Literature,” ACM Computing Surveys, vol. 54,
no. 8, pp. 1-36, Nov. 2022. doi: 10.1145/3470133. [Online]. Available:
https://dl.acm.org/doi/10.1145/3470133

Hevner, March, Park, and Ram, “Design Science in Information
Systems Research,” MIS Quarterly, vol. 28, no. 1, p. 75, 2004. doi:
10.2307/25148625. [Online]. Available: https://www.jstor.org/stable/10.
2307/25148625

A. Hevner, “A Three Cycle View of Design Science Research,” Scandi-
navian Journal of Information Systems, vol. 19, Jan. 2007.
“OpenAPI Specification v3.1.1,” accessed: 2025-06-26.
Available: https://spec.openapis.org/oas/latest.html

“API Blueprint Specification | API Blueprint,” accessed: 2025-06-26.
[Online]. Available: https://apiblueprint.org/documentation/specification.
html

R. Pergl and N. Jisa, “Semantic Analysis of API Blueprint and Ope-
nAPI Specification,” in Czech Technical University Prague, A. Rocha,
H. Adeli, G. Dzemyda, F. Moreira, and A. Poniszewska-Maranda, Eds.,
vol. 989, 2024. doi: 10.1007/978-3-031-60227-6_15. ISBN 2367-3370
pp. 172-181.

N. JiSa and R. Pergl, “Towards Evolvable APIs through Ontological
Analysis,” in Annals of Computer Science and Information Systems,
vol. 41. PTIL, Nov. 2024. doi: 10.15439/2024f3164. ISSN 2300-5963
pp. 61-68.

C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, ser. Ease "14. London, England, United Kingdom and
New York, NY, USA: Association for Computing Machinery, 2014. doi:
10.1145/2601248.2601268. ISBN 978-1-4503-2476-2

T. Mens, “A state-of-the-art survey on software merging,” [EEE
Transactions on Software Engineering, vol. 28, no. 5, pp. 449-
462, May 2002. doi: 10.1109/TSE.2002.1000449. [Online]. Available:
http://ieeexplore.ieee.org/document/1000449/

“Git,” accessed: 2025-06-28. [Online]. Available: https://git-scm.com/
B. Dagenais and M. P. Robillard, “SemDiff: Analysis and
recommendation support for API evolution,” in 2009 IEEE 3lst
International Conference on Software Engineering. Vancouver,
BC, Canada: IEEE, 2009. doi: 10.1109/ICSE.2009.5070565.
ISBN 978-1-4244-3453-4 pp. 599-602. [Online]. Available:
http://ieeexplore.ieee.org/document/5070565/

A. Brito, L. Xavier, A. Hora, and M. T. Valente, “APIDiff: Detecting
API breaking changes,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER).
Campobasso: IEEE, Mar. 2018. doi: 10.1109/SANER.2018.8330249.
ISBN 978-1-5386-4969-5 pp. 507-511. [Online]. Available:
http://ieeexplore.ieee.org/document/8330249/

N. Deshpande, M. W. Mkaouer, A. Ouni, and N. Sharma, “Third-party
software library migration at the method-level using multi-objective
evolutionary search,” Swarm and Evolutionary Computation, vol. 84, p.
101444, Feb. 2024. doi: 10.1016/j.swevo.2023.101444. [Online]. Avail-
able: https://linkinghub.elsevier.com/retrieve/pii/S221065022300216X
D. Ramos, H. Mitchell, I. Lynce, V. Manquinho, R. Martins, and C. L.
Goues, “MELT: Mining Effective Lightweight Transformations from
Pull Requests,” in 2023 38th IEEE/ACM International Conference on

[Online].

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27

[28]

Automated Software Engineering (ASE). Luxembourg, Luxembourg:
IEEE, Sep. 2023. doi: 10.1109/ASE56229.2023.00117. ISBN 979-8-
3503-2996-4 pp. 1516-1528. [Online]. Available: https://ieeexplore.
ieee.org/document/10298355/

X. Gao, A. Radhakrishna, G. Soares, R. Shariffdeen, S. Gulwani,
and A. Roychoudhury, “APIfix: output-oriented program synthesis for
combating breaking changes in libraries,” Proceedings of the ACM
on Programming Languages, vol. 5, no. OOPSLA, pp. 1-27, 2021,
publisher: ACM New York, NY, USA.

R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani,
R. Gheyi, R. Suzuki, and B. Hartmann, “Learning Syntactic Program
Transformations from Examples,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). Buenos Aires: IEEE, May
2017. doi: 10.1109/ICSE.2017.44. ISBN 978-1-5386-3868-2 pp. 404—
415. [Online]. Available: http://ieeexplore.ieee.org/document/7985680/
L. Beurer-Kellner, J. Von Pilgrim, C. Tsigkanos, and T. Kehrer,
“A Transformational Approach to Managing Data Model Evolution
of Web Services,” IEEE Transactions on Services Computing, pp.
1-1, 2022. doi: 10.1109/TSC.2022.3144613. [Online]. Available:
https://ieeexplore.ieee.org/document/9689952/

Z. Huang, J. Chen, J. Jiang, Y. Liang, H. You, and F. Li, “Mapping
APIs in Dynamic-typed Programs by Leveraging Transfer Learning,”
ACM Transactions on Software Engineering and Methodology, vol. 33,
no. 4, pp. 1-29, May 2024. doi: 10.1145/3641848. [Online]. Available:
https://dl.acm.org/doi/10.1145/3641848

E. Wittern, “Web APIs - challenges, design points, and research
opportunities: invited talk at the 2nd international workshop on
API usage and evolution (WAPI ’18),” in Proceedings of the 2nd
International Workshop on API Usage and Evolution. Gothenburg
Sweden: ACM, Jun. 2018. doi: 10.1145/3194793.3194801. ISBN
978-1-4503-5754-8 pp. 18-18. [Online]. Available: https://dl.acm.org/
doi/10.1145/3194793.3194801

S. Amann, H. Nguyen, S. Nadi, T. Nguyen, and M. Mezini, “A System-
atic Evaluation of Static API-Misuse Detectors,” IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, vol. 45, no. 12, pp. 1170-1188, Dec.
2019. doi: 10.1109/TSE.2018.2827384

“Overview of Entity Framework Core - EF Core,” accessed: 2025-07-11.
[Online]. Available: https://learn.microsoft.com/en-us/ef/core/
“DbContext Class (Microsoft.EntityFrameworkCore),” accessed: 2025-
07-11. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/api/
microsoft.entityframeworkcore.dbcontext?view=efcore-9.0

G. Gendron, Q. Bao, M. Witbrock, and G. Dobbie, “Large
Language Models Are Not Strong Abstract Reasoners,” in IJCAI
Int. Joint Conf. Artif. Intell., Larson K., Ed. International Joint
Conferences on Artificial Intelligence, 2024. ISBN 10450823 (ISSN);
978-195679204-1 (ISBN) pp. 6270-6278, journal Abbreviation:
IJCAI Int. Joint Conf. Artif. Intell. [Online]. Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85204293915&
partnerID=40&md5=b5ebdcbbf62{13f3c21b695461a5ab2d

“ChatGPT,” accessed: 2025-07-11. [Online]. Available: https://chatgpt.
com

“elastic/elasticsearch,” Jul. 2025, accessed: 2025-07-11. [Online].
Available: https://github.com/elastic/elasticsearch

elastic, “Store outcome values in servicemetrics ‘transac-
tion.success_count® by carsonip Pull Request #9791 -
elastic/apm-server,” accessed: 2025-07-11. [Online]. Available:

https://github.com/elastic/apm-server/pull/9791

163

