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Abstract—The integration of Large Language Models (LLMs)
into optimization has created a powerful synergy, opening excit-
ing research opportunities. This paper investigates how LLMs can
enhance existing optimization algorithms. Using their pre-trained
knowledge, we demonstrate their ability to propose innovative
heuristic variations based on a semantic understanding of the
algorithm’s components. To evaluate this, we applied a non-
trivial optimization algorithm, Construct, Merge, Solve & Adapt
(CMSA)—a hybrid metaheuristic for combinatorial optimization
problems that incorporates a heuristic in the solution con-
struction phase. Our results show that an alternative heuristic
proposed by GPT-40 outperforms the expert-designed heuristic
of CMSA, with the performance gap widening on larger and

denser graphs.

HERE is a wide variety of optimization algorithms of
Tall kinds and flavors. A simple search using the term
‘optimization algorithm’ in databases like Scopus or platforms
like GitHub yields thousands of results, with that number
growing every year. Additionally, optimization researchers
often maintain private collections of their algorithms. All these
algorithms—open-source or proprietary, and implemented in
diverse programming languages—can potentially be improved.
By refining their original code with modern techniques and
technologies, we can achieve more efficient designs and im-
plementations that go beyond what their creators originally
envisioned.

In recent years, the development and growth of Large Lan-
guage Models (LLMs)—popularized by models such as Ope-
nAI's GPT-4 [24], Anthropic’s Claude [31], Google’s Gem-
ini [32], Meta’s Llama 3 [33], and recently DeepSeek [11]—
has opened the door to a wealth of new possibilities. Among
the most transformative advancements is code generation.
Tools like GitHub Copilot!, which integrates seamlessly with
code editors like Visual Studio Code?, Windsurf>, and Cursor?,
an editor with built-in LLM capabilities, have become essential
tools for many software developers, revolutionizing their daily
workflows. For example, a Python developer could request

I. INTRODUCTION

Uhttps://github.com/features/copilot
Zhttps://code.visualstudio.com/
3https://windsurf.com/editor
“https://www.cursor.com/
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an LLM to generate a template for invoking external APIs,
and the LLM would automatically produce the required code.
LLMs have become invaluable for streamlining coding tasks,
especially those that are routine and highly repetitive [14].
Therefore, it is natural to wonder: if LLMs excel at simple
programming tasks, could they also aid in improving sophis-
ticated optimization algorithms?

One of the recent examples of leveraging LLMs in opti-
mization algorithms is the development of frameworks for
generating new black-box metaheuristics [30]. Finding an
effective metaheuristic, for example, for a combinatorial op-
timization problem can be a significant challenge. However,
using LLMs to build upon an existing metaheuristic as context
and employing them as tools to discover new heuristics or
more efficient implementations (e.g., reducing RAM usage or
computation time) in a given programming language remains a
largely unexplored area. Implementing metaheuristics, unlike
other algorithms, requires a focus on computational efficiency,
mathematical expressions in scientific computing, and efficient
data structure selection. Thus, designing new algorithms in this
field demands expert implementation skills.

In this paper, we demonstrate how LLMs like GPT-40
can be leveraged to enhance a sophisticated optimization
algorithm, specifically the Construct, Merge, Solve & Adapt
(CMSA) hybrid metaheuristic [1, 3, 2]. Starting with an expert-
developed C++ implementation of CMSA for the Maximum
Independent Set (MIS) problem (of approximately 400 code
lines), we employed an in-context prompting strategy com-
bined with interactive dialogue (see Figure 1). Our results
show that the LLM successfully comprehended the complex
logic and parameter interactions within the CMSA implemen-
tation for MIS, demonstrating algorithmic insight to discover
novel heuristics while suggesting improvements to the C++
codebase. This successful example opens up new possibilities
for enhancing existing complex optimization algorithms by
using LLMs as assistants.

The paper unfolds as follows. In Section II, we introduce
code generation using LLMs, making it accessible for readers
without prior experience in this field. We also explain the MIS
problem and provide a brief overview of the CMSA algorithm.
Next, in Section III,We present our methodology for enhancing
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Fig. 1: : A dialogue showing how a chatbot applies our approach to improving optimization algorithms.

CMSA for the MIS problem using LLMs, detailing the process
and providing steps for result reproducibility. Section IV
presents our experimental results and their interpretation. The
limitations of our approach and future research directions are
discussed in Section V. The paper concludes by summarizing
our key findings and emphasizing the potential impact of
LLMs on existing metaheuristics.

II. BACKGROUND

A. Code Generation with LLMs

Code generation is one of the primary research areas in
LLMs [14, 16, 6]. The concept is straightforward: given
a prompt, such as “I need an algorithm to sort a list
of numbers in Python”, the LLM is expected to return a
corresponding algorithm (e.g., Quicksort) implemented in
Python. This capability arises because LLMs are trained on
massive amounts of data, which include code from diverse
programming languages available on the internet. These codes
are sourced not only from GitHub repositories but also from
StackOverflow, technical documentation, scientific articles,
and publicly available books.

A more explicit prompt can lead to more sophisticated
responses. For example, the prompt “I need an efficient
sorting algorithm for a list of numbers in Python, which
can be processed in parallel, utilizing modern optimization
techniques” in GPT-40 generates a ParallelMergeSort.
While efficient, it can be further refined by interacting with
the model. For instance, asking “Find new ways to improve it”
results in an enhanced version using techniques like optimized
Quicksort for small arrays, better memory management
with NumPy, and heap merge for combining sorted arrays.
This approach leverages MergeSort’s ease of paralleliza-
tion. However, the model might have suggested a different
algorithm if the focus was on memory optimization without
parallelism. This emphasizes the importance of prompt design
and iterative refinement of responses [39].

LLM response quality depends on the data used for training,
and with the refinement of datasets and the increase in size,
their performance in code generation has improved [38].
Moreover, no LLM is flawless when it comes to generating
error-free code. Continuing with the ParallelMergeSort
example, a model might return code with bugs, so interaction
with the model (e.g., copying and pasting error messages from
the Python interpreter) is necessary to refine the responses.
One could even ask the model to generate its own test suite
to verify its algorithm. Different LLMs for these tasks are
generally evaluated through benchmarks. One of the most
widely used is HUMANEVAL [7], which features programming
challenges that assess language comprehension, algorithmic
competencies, and basic mathematics—some of which are
comparable to straightforward software developer interview
questions.

Furthermore, code generation using LLMs is a broad area, as
code may originate or be destined for very different domains,
including the following: data science code for analyzing data
and building predictive models [35]; systems code for manag-
ing hardware and low-level operations [17, 10]; frontend code
development for web applications and UI [37]; and optimiza-
tion code for solving complex computational problems. Each
domain presents its own unique challenges and requirements,
with our focus being on the latter, specifically in the field of
metaheuristics.

Concerning the automatic generation of metaheuristics with
LLMs, given the famous “No Free Lunch Theorem” [36],
researchers understand that no single metaheuristic algorithm
can outperform all others across all optimization problems.
This fundamental principle naturally leads to an interesting
possibility: LLMs could serve as powerful automatic gener-
ators of black-box metaheuristics, significantly reducing the
time needed to find the ‘best’ implementation of a metaheuris-
tic for a specific problem. In this context, LLMs could be
tasked with discovering novel variations and operators that
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create new metaheuristics—potentially even surpassing state-
of-the-art algorithms for particular problems [30].

The first notable demonstration of heuristic discovery using
LLMs was conducted by FunSearch [27], which showcased
the potential of leveraging LLMs to generate novel heuristics
for the Bin Packing (BP) Problem through a heuristic evolution
process. However, a recent study [29] points out that the
heuristics developed by FunSearch face challenges in general-
izing across diverse BP problem instances. While FunSearch
relies on an incomplete or suboptimal base program as a start-
ing point, our approach starts with a complete and carefully
designed implementation of an optimization algorithm. Other
related works can be summarized as follows. Stein and Bick
[30)’s LIaMEA is a framework that integrates evolutionary
algorithms with LLMs to iteratively generate and refine novel
black-box metaheuristics during runtime. Similarly, Hemberg
et al. [13] proposed LLM GP, combining genetic programming
with LLMs to evolve operators through LLM assistance.
Meanwhile, Pluhacek et al. [26] demonstrated via prompt
engineering that LLMs can generate innovative metaheuristics
by identifying and decomposing six high-performing swarm
algorithms for continuous optimization.

While these studies already give a glimpse of possible
use cases for LLMs in optimization, they primarily focus
on creating new algorithms rather than improving existing
ones—that is, building upon pre-existing complex code. This
distinction is significant given the vast landscape of published
optimization algorithms—a simple GitHub search for ‘opti-
mization algorithm’ returns over 20,000 results, representing
a wealth of algorithm implementations that could benefit from
improvement. This is why we believe an opportunity exists to
create a subfield focused on generating code from existing
optimization algorithms. Building on this, our work explores
using LLMs to enhance implemented algorithms, enabling the
models to uncover new heuristics overlooked by experts in
the original implementations. In this sense, our approach treats
LLMs as assistants to researchers, not replacements. By doing
so, we leverage LLMs to work with existing code (as context)
and improve it using the current knowledge these black-box
model models have gained during their pre-training phase.

B. Maximum Independent Set (MIS) Problem

To validate our hypothesis that LLMs can enhance existing
optimization algorithms, we will employ an algorithm (de-
tailed in the following subsection) to solve the Maximum
Independent Set (MIS) problem, a well-studied and NP-
hard combinatorial optimization problem with applications in
network design, scheduling, and bioinformatics. Formally, the
MIS problem is defined as follows: Given an undirected graph
G = (V, E), the objective is to find a largest subset S C V
such that no two vertices in S are adjacent in G, i.e., there is
no edge (u,v) € FE for all pairs u # v € S. Figure 2 shows
three examples of optimal MIS solutions (non-white nodes) in
different graphs.

C. CMSA

Construct, Merge, Solve & Adapt (CMSA) is a hybrid
metaheuristic, also known as a matheuristic, that combines
elements of classical metaheuristics with exact solvers (such as
Integer Linear Programming (ILP) solvers) for combinatorial
optimization [3]. Each CMSA iteration is a sequence of four
fundamental phases:

1) Construct: Generates solutions probabilistically through
a probabilistic greedy mechanism (remember this phase;
it will be key in the next section).

2) Merge: Combines solution components from the gener-
ated solutions to form a reduced subproblem.

3) Solve: Applies an exact solver (in the case of the MIS: an
ILP solver) to optimally solve the reduced subproblem.

4) Adapt: Updates parameters and data structures based on
the quality of the solution returned by the solver.

This hybrid architecture combines the efficiency of meta-
heuristics for search space exploration with the precision of
exact methods in reduced spaces. The CMSA algorithm is
controlled by some key parameters. First, and most impor-
tantly, each solution component has an associated age value,
which is initialized to zero when a component is added
to the subproblem. Moreover, a solution component in the
subproblem is subject to an increase of its age value, in case
it does not form part of the subproblem’s solution generated
by the exact solver. In this context, the parameter age,,qz
plays a crucial role, defining the maximum age of solution
components before they are removed from the incumbent
subproblem, thereby preventing stagnation and encouraging
diversity. Other parameters include n,, which sets the number
of solution constructions per iteration, t,,.,, the total CPU
time, t;;mqt, the time limit for the ILP solver per iteration,
and 0 < d,qte < 1, which controls the determinism rate for
solution construction. Note that higher values of d, ... lead to
more deterministic solution constructions, while lower values
increase randomness. Well-chosen values for these parameters
ensure a balanced exploration of the search space, effective
exploitation of promising areas via exact subproblem solving,
and efficient use of computational resources.

We selected CMSA for the purpose of this paper due to its
relative complexity in implementation as compared to simple
metaheuristics. For instance, implementing CMSA for the MIS
problem in C++ presents significant technical challenges. The
four phases must be precisely defined, properly integrated,
and implemented efficiently to leverage the framework’s full
potential. This complexity would only increase when dealing
with more sophisticated optimization problems. In essence, a
CMSA implementation demands expertise not only in meta-
heuristics and exact methods but also proficiency in C++ (or
whatever programming language is chosen for implementa-
tion).

For our study, we utilize the original C++ implementation
to solve the MIS problem, which was provided by CMSA’s
inventor and can be downloaded from our repository (https://
github.com/camilochs/optimizing-the-optimizer). This choice
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Fig. 2: Examples of maximum independent sets.

serves two crucial purposes: first, it ensures we are working
with a well-implemented version of the algorithm, and second,
it presents an interesting opportunity to test LLMs’ capability
to enhance expert-written code. This scenario allows us to
evaluate whether LLMs can identify potential improvements
even in code developed by domain experts. Our findings are
presented in the following section.

III. LLM-IMPROVED CMSA FOR MIS

In this section, we present a methodology for leverag-
ing LLMs to improve existing optimization algorithms. By
“improve existing optimization algorithms,” we specifically
mean expert-crafted implementations that have already been
optimized for performance, rather than simplistic or base-
line versions. In contrast, prior approaches often start from
scratch—generating code from an initial prompt and refining it
iteratively—or rely on overly simplified implementations that
fail to reflect the complexity of real-world optimization prob-
lems. Our approach centers on dialog-based interaction with an
LLM via a chatbot interface, uncovering novel improvements
in the code that even an expert can benefit from. We detail
this in the following subsections.

A. Discovering New Heuristics

LLMs are pattern-recognition machines [23, 28], and code
is a rich source of structured textual patterns. This allows
LLMs to identify underutilized elements—such as variables or
functions—that could play a strategic role within a heuristic.
Such insights may be missed by human experts, especially
in complex codebases. These discoveries require a deep syn-
tactic and semantic understanding of both the code and the
optimization problem, enabling them to suggest meaningful
modifications to heuristic strategies, going beyond superficial
code changes. In this way, LLMs can serve as advanced
assistants for optimization algorithm designers, offering novel
heuristic improvements informed by reasoning over their vast
pretraining knowledge.

To demonstrate our methodology, we employ an LLM
to improve one of the heuristics in the CMSA code
used to solve the MIS problem. Specifically, the function

generation_solution () implements the solution con-
struction phase of the CMSA framework [1]:

while (int (positions.size()) > 0) {
double dec = standard_distribution (generator);
int position = 0;

if (dec <= determinism_rate) {

position = * (positions.begin());
} else {
int max candidate_list_size;

int (positions.size())) {
int (positions.size());

if (max
max

v i

}

double rnum = standard_distribution (generator);

int pos = produce_random_integer (max, rnum);
set<int>::iterator sit2 = positions.begin();
for (int 1 = 0; i < pos; ++i) {

++sit2;

}
position = *xsit2;

}

greedy_sol.score += 1;
greedy_sol.vertices.insert (increasing_degree_order|
position]);

= -1 {
0;

if (agelincreasing_degree_order[position]]
age[increasing_degree_order[position]]

}
positions.erase (position);

for (auto sit = neigh[increasing_degree_order[position
11.begin();
sit != neigh[increasing_degree_order[position]].
end(); ++sit) {
positions.erase (position_of[*sit]);
}
}

Listing 1: Probabilistic greedy algorithm for MIS in CMSA.

It implements a greedy randomized construction heuristic
that selects exactly one vertex v; € V at each step (where 1%
is the set of nodes that can feasibly be chosen), until the MIS
solution is complete:

ifr<a«a
otherwise

Umin

V; =
Urandom € CL ( k)

where
e Umin 1S the vertex with minimum degree (among the ones
from V')
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e 7 is a random number between [0, 1]

e « is the determinism rate

o CL(k) is a candidate list of size k

e Urandom 18 @ randomly selected vertex from the candidate
list

The heuristic combines deterministic greedy selection
(based on vertex degree) with randomization to create diverse
solutions. It selects vertices either by taking the best available
vertex (greedy choice) with probability «, or by randomly
selecting from a restricted candidate list with probability
(1-—a).

1) New heuristic from the LLM: The original greedy heuris-
tic, while efficient in terms of runtime, fails to incorporate the
age variable—a key element of the CMSA framework. It only
uses the age variable to restart the solutions, meaning it is not
utilized in the candidate selection mechanism. In Figure 3, we
present two example dialogues of interactions with the LLM
according to our approach. Let us begin with the first one. In
case (a), the LLM proposes an enhanced heuristic that takes
into account both node degrees and the current age values.
The vertex selection mechanism suggested by the LLM can
be technically described as follows:

argmin{P,,(v;) | v; € V'} ifr<a
v, =
roulette-wheel selection w.r.t. Py (.) values otherwise
where P, (v;) is a weighted probability:
w(vy) 1 1

Pu(vj) = w(v)

T2t age(v)

m, 1 + degree(v)

The weight function w(v) favors vertices with low age and
degree values to promote diversity in the selection process.
Thus, the LLM was able to change the original heuristic by
incorporating the age values to diversify the node selection
process, while balancing it with degree information through a
composite weight function. It makes a lot of sense to decrease
the probability of solution components with high age values
being incorporated in newly constructed solutions.

Although the LLM successfully identifies an overlooked
use of the age variable within the CMSA construction
heuristic, any dialog-based system ultimately requires human
feedback [S]. As such, the LLM occasionally makes mistakes.
For example, as shown in Figure 3 (a), the line double
weight = 1.0 / (1 + age[v]) may result in a divi-
sion by zero, since age values in CMSA are set to -1 for
solution components that do not belong to the subproblem.
The human-provided fix consisted in replacing 1 + age[V]
with 2 + age[v]. Notably, this kind of use of the age
variable—despite its initial flaw and the correction provided
through human feedback—had never been considered by any
researchers working on CMSA algorithms.

This new CMSA variant is henceforth called
LLM-CMSA-V1. It was obtained by replacing the
generate_solution () of the original CMSA im-
plementation with the new function provided by the
LLM.

2) Improving LLM-CMSA-VI1 with the LLM: Since our
methodology relies on dialog-based interactions with the LLM
via a chatbot interface, it is also possible to request im-
provements to previously generated code—still available in
the current session context. For example, one might ask: “Are
there ways to enhance the dynamic selection heuristic to allow
for a more diverse and advanced search?” The LLM responds
with several suggestions, one of which involves incorporating
the concept of entropy. The C++ code provided by the LLM
is characterized by a corresponding change, which involves
replacing the definition of P, (.) (see Equation 1) with the
following entropy-adjusted probabilities:

Pu,(vj) + H

Py(v;) = ey Polvr) + H

where

H=— 3" Pufu)log(Pu(u)

v eV

The entropy adjustment increases selection diversity by adding
the system’s uncertainty to each probability.

This CMSA variant is  henceforth called
LILM-CMSA-V2. We  directly replaced the
generate_solution () function of the original
CMSA with the LLM-generated code.

B. Code Optimization Strategies

After discovering the two new CMSA variants with the help
of the LLM, it is also possible to request a different kind
of improvement—not in terms of proposing new algorithmic
heuristics, but rather in enhancing the underlying C++ code.
These enhancements may involve the use of more efficient
data structures, changes in data types, or other low-level
optimizations that preserve the algorithmic logic. For instance,
one might ask: “Could the LLM create an improvement at the
C++ code level?” In other words, is there a more efficient
way to implement the new CMSA variants without altering
their core behavior?

It is reasonable to assume that, since the LLM has been pre-
trained on vast amounts of source code, it could suggest highly
optimized C++ implementations—even for contexts such as
optimization algorithm design (e.g., metaheuristics), where
low-level improvements to data structures or code organization
are not typically the focus of human designers. This leads us to
the next prompt, which we apply to both previously generated
heuristics, LLM-CMSA-V1 and LLM-CMSA-V2:3

3This prompt uses the “C++ code” checkbox, as shown in Figure 3 (b).
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Given the following heuristic implemented in C++
(generate_solution ()), without altering its core
logic or functionality, please analyze the code to
identify potential improvements in the use of data
structures, cache optimization, and other low-level
optimizations. Focus on enhancing performance by
suggesting more efficient data structures, reducing
memory overhead, improving data locality, and
leveraging modern C++ features where applicable.
Please provide an updated version of the code with
comments explaining each optimization.

However, dialog-based interactions with the LLM are not
free from hallucinations—that is, the model may generate
code with bugs or memory management issues in C++ (as
shown in Figure 3 (b)). One effective way to address these
problems is through human feedback, engaging in a trial-and-
error refinement process with the model—a common practice
in code generation workflows (see [5]). Eventually, the LLM
produces code that compiles successfully. Upon reviewing the
final output, it becomes evident that the generated code is more
complex, less readable, and incorporates unconventional or
less familiar programming techniques. For example, it replaces
the set and vector data structures with more advanced,
low-level alternatives:®

#include <bitset>

// Constants for optimization
constexpr size_t BLOCK_SIZE = 64;

// Bitset for boolean operations

std::bitset<32768> available;

// Adjust size based on max n_of_ vertices
available.set ();

// Aligned vector to optimize cache usage

alignas (BLOCK_SIZE) std::vector<int> active_vertices;
active_vertices.reserve (n_of_vertices);

Listing 2: Fragment code optimization suggested by LLM.

Meanwhile, the original code is shown in the following
listing.

set<int> positions;

vector<int> position_of (n_of_vertices, 0);

for (int 1 = 0; i < n_of_vertices; ++i) {
positions.insert (i) ;
position_of[increasing_degree_order[i]] = i;

Listing 3: Fragment of original code from CMSA.

The logic remains the same, except for changes in variable
names: positions is replaced with available, and
position_of is substituted with active_vertices.’

Although the changes do not affect the heuristic’s logic
but rather the underlying C++ structures, they do not always
lead to measurable improvements in efficiency, specifically

6The comments in the code were generated by the LLM.
7Explicitly instructing the prompt to retain the variable names might have
avoided this issue.

in reducing the runtime, which in practice would allow us
to explore better candidates when building a valid CMSA
solution. Nevertheless, the generated code compiles and runs
correctly.

The two new CMSA variants with these performance
improvements will be named: LLM-CMSA-V1-PERF
and LLM-CMSA-V2-PERF.

This iterative process with the LLM, asking it to identify
underutilized variables or functions in the existing code,
demonstrates its potential as a sophisticated assistant for
optimization experts. For instance, in this case, the LLM
proposes a new CMSA construction heuristic utilizing the
age parameter. Unlike simple code generation, the LLM
enhances not only the algorithm itself but also the existing
code (e.g., C++ implementations), suggesting improvements
without altering its logic. This opens the door to using LLMs
not just for developing optimization algorithms but also for
updating and refining sophisticated legacy code, leveraging the
extensive knowledge embedded in LLMs.

C. Reproducibility

Although it is not possible to replicate the exact results of an
LLM, due to their autoregressive nature that predicts the most
probable token based on a probability distribution (with the
next token being determined stochastically) [18], it is possible
to reproduce similar responses by using the same prompts,
the same LLM, and its parameters. For this reason, our repos-
itory (https://github.com/camilochs/optimizing-the-optimizer)
includes a chatbot that implements the same prompts used
in our research (as shown in Figure 3). In fact, each element
in Figure 3 (textbox and checkbox) loads pre-built prompts,
known as in-context prompts [12, 20], to eliminate the need
for manual input. Thus, our chatbot features two types of in-
context prompts: (1) external ones, related to the C++ CMSA
code for the MIS, and (2) internal ones, focused on improving
the heuristic, the C++ code, and specifying which function
in the code requires enhancement. Next, we will assess the
quality of the heuristics proposed by the LLM.

IV. EMPIRICAL EVALUATION

This section is divided into two parts: the preliminary phase
(setup, benchmark, and CMSA parameter tuning) and the
experimental results.

A. Preliminary

First, we used Chatbot Arena [9] to test various LLMs
without incurring costs. ® For our experiments, we finally
selected GPT-40 (version: 2024-11-20)° as it is one of the top-
performing models to date. Experiments concerning algorithm

8https://Imarena.ai/

9The parameters used for the LLM were the default values: temperature
= 0.7 (controls randomness in responses), top—p = 1 (nucleus sam-
pling threshold for token probability), and max-output-tokens = 2048
(maximum number of tokens in the output).
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Fig. 4: Comparative analysis of solution quality: Original CMSA vs. LLM-CMSA variants (V1 and V2).

variants CMSA, LLM-CMSA-V1, and LLM-CMSA-V2 were
conducted on a cluster equipped with Intel® Xeon® CPU 5670
processors (12 cores at 2.933 GHz) and 32 GB of RAM.

Our benchmark set consists of three types of graphs:
Barabasi-Albert, Watts-Strogatz, and Erd6s-Rényi graphs, with
four different sizes and four density levels (see Figure 4). For
each combination of size and density level, the benchmark set
contains 1 tuning instance and 30 testing instances. This makes
a total of 48 tuning instances and 1440 testing instances. We
used a limited tuning set to find robust, general parameters,
deliberately avoiding the overfitting that would result from
tuning on a set identical to our evaluation instances. The
parameters of all three CMSA variants (original, V1, V2) were
tuned using irace, a tool for tuning algorithm parameters
based on problem instances [22]. Due to the lack of space
(and not being the important point of this paper), we do not
report the final values here. We used 150, 300, 450, and 600
CPU seconds as computation time limits for graphs of the four
different sizes.

B. Numerical Results

In addition to the three tuned algorithms, we also tested two
variants obtained by using the efficiency-improved C++ codes
described in Section III-B. These two variants are henceforth
called LLM-CMSA-V1-PERF and LLM-CMSA-V2-PERF.
Each of the five algorithms was applied exactly once to each
testing instance. The results of the main three variants are
reported employing box plots in Figure 4. The considered
graph size and density level are indicated at the top of each box
plot. The main key observation is that both LLM-generated
CMSA variants outperform the standard CMSA variant with
growing graph size and density. This clearly shows that the

suggestion of the LLM to make use of the age values for
solution component selection during solution construction was
a very good one.

To be able to make statistical claims, we produced so-called
critical difference (CD) plots (see Figure 5), in which the
algorithms’ whiskers show their average ranking concerning
a set of problem instances. Moreover, algorithm whiskers are
connected by a bold horizontal bar in case they perform sta-
tistically equivalent.'® Figure 5 shows three CD plots, one for
each graph type. In these plots we also included the efficiency-
optimized LLM-generated CMSA variants. The following ob-
servations can be made. Even though both LLM-CMSA-V1
and LLM-CMSA-V2 outperform CMSA with statistical sig-
nificance for all three graph types, in all three cases the
first variant outperforms the second variant. This means that
the idea of using the entropy of the selection probabilities
was not fruitful. Moreover, the efficiently-optimized algorithm
variants are statistically equivalent to their non-optimized
counterparts. This means that, even though they might save
RAM, which is a non-tested hypothesis, they do not benefit
by producing better results. Furthermore, preliminary checks
indicated no significant runtime improvements from these C++
optimizations in our test environment, suggesting the original
expert implementation was already highly efficient or that the
specific low-level changes were not impactful in this context.

Finally, Figure 6 shows two representative examples of the
convergence behavior based on 10 runs of the main three
CMSA variants. In both examples, the LLM-generated CMSA

10The critical difference (CD) plot, which uses the Friedman test for overall
differences and the Nemenyi post-hoc test for pairwise comparisons, is a
recognized standard for the statistical comparison of multiple randomized
algorithms for combinatorial optimization.
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Fig. 5: Critical difference (CD) plots for all graph types.

variants quickly produce solutions of a quality that standard
CMSA does not even obtain at the end of its runs.

V. DISCUSSION

Our study highlights the potential for LLMs to engage
in algorithmic reasoning, successfully identifying concep-
tual enhancements for CMSA, such as the LLM-CMSA-V1
heuristic which outperformed the expert baseline. Interest-
ingly, the LLM’s subsequent suggestion incorporating en-
tropy (LLM-CMSA-V2), while plausible, was less effective.
Perhaps its added complexity was not beneficial, or even
detrimental, within the specific CMSA/MIS context, making
the simpler LLM-proposed V1 superior. This observation
reinforces the need for rigorous empirical validation of any
proposed heuristic. However, our study also has the following
limitations: due to space constraints, we tested only one LLM
(GPT-40) for CMSA improvements, and future work could
benefit from comparing additional LLMs, especially open-
weight ones. Additionally, we did not explore using GPT-40 to
enhance other complex algorithms for additional optimization
problems. These limitations could be addressed in an extended
article. Despite these limitations, our comprehensive analysis
of CMSA with new heuristics for solving MIS instances

Solution Quality

—— CMSA
—— LLMCMSA VI
—— LLM.CMSA.V2

Time (seconds)

(a) Watts—Strogatz (n2000, k10)

Solution Quality

— COMSA
— LLM.CMSAVL
—— LLM.CMSA V2

Time (seconds )
(b) Erd6s—Rényi (n2000, 020705)

Fig. 6: Examples of algorithm evolution over time.

presents promising opportunities for new lines of research
emerging from our work:

1) Specialized benchmarks. While our study focuses on
CMSA for the MIS problem, the field lacks bench-
marks tailored to optimization. Just as general-purpose
code generation relies on standard benchmarks, we need
domain-specific ones to evaluate LLMs’ ability to dis-
cover improved heuristics.

2) LLM-based agent integration. Figure 3 illustrates man-
ual interaction, but tasks like execution and debugging
could be handled by autonomous agents. A platform
where such agents collaborate on improving existing op-
timization algorithms may yield major advances [15, 21].

3) Adapt code to the target domain. Optimization algo-
rithms often require adaptation—not only by switching
programming languages to improve performance and
maintainability, but also by transitioning from single-
threaded execution to parallelism (e.g., using CUDA).
LLMs can support this process [25, 19, 8], though
domain-specific fine-tuning may be necessary.

An underlying issue in using LLMs for code generation
is how we deal with errors. Although they may produce
similar outcomes, errors made by a human programmer (or
optimization researcher) and those produced by an LLM
differ fundamentally in origin. Understanding these conceptual
differences is essential for developing sound methodologies for
integrating human- and machine-generated code [4].

On the other hand, a fundamental question arises: should
the LLM be credited for discovering a superior heuristic
compared to the best implementation by a human expert?
While prompt design clearly influences the outcome, it raises
important questions about authorship, ownership, and the role
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of Al in scientific discovery (see [34]).

VI. CONCLUSIONS

In our research, we demonstrate that LLMs can be effec-
tively applied to enhance existing optimization algorithms.
We used the non-trivial Construct, Merge, Solve, and Adapt
(CMSA) algorithm implemented in C++ to solve the classical
Maximum Independent Set problem. By leveraging in-context
prompts with GPT-40, the model successfully understood
the operational context of the CMSA implementation and
proposed conceptually new heuristics for the probabilistic
construction phase. After a thorough comparative analysis, the
heuristics proposed by the LLM outperformed those manually
designed by an expert in CMSA. This highlights the potential
of LLMs not merely as tools but as artificial collaborators
capable of identifying unused code segments through semantic
analysis and contributing meaningfully to the complex task of
algorithm design.
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