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Abstract—The integration of Large Language Models (LLMs)
into optimization has created a powerful synergy, opening excit-
ing research opportunities. This paper investigates how LLMs can
enhance existing optimization algorithms. Using their pre-trained
knowledge, we demonstrate their ability to propose innovative
heuristic variations based on a semantic understanding of the
algorithm’s components. To evaluate this, we applied a non-
trivial optimization algorithm, Construct, Merge, Solve & Adapt
(CMSA)—a hybrid metaheuristic for combinatorial optimization
problems that incorporates a heuristic in the solution con-
struction phase. Our results show that an alternative heuristic
proposed by GPT-4o outperforms the expert-designed heuristic
of CMSA, with the performance gap widening on larger and
denser graphs.

I. INTRODUCTION

T
HERE is a wide variety of optimization algorithms of

all kinds and flavors. A simple search using the term

‘optimization algorithm’ in databases like Scopus or platforms

like GitHub yields thousands of results, with that number

growing every year. Additionally, optimization researchers

often maintain private collections of their algorithms. All these

algorithms—open-source or proprietary, and implemented in

diverse programming languages—can potentially be improved.

By refining their original code with modern techniques and

technologies, we can achieve more efficient designs and im-

plementations that go beyond what their creators originally

envisioned.

In recent years, the development and growth of Large Lan-

guage Models (LLMs)—popularized by models such as Ope-

nAI’s GPT-4 [24], Anthropic’s Claude [31], Google’s Gem-

ini [32], Meta’s Llama 3 [33], and recently DeepSeek [11]—

has opened the door to a wealth of new possibilities. Among

the most transformative advancements is code generation.

Tools like GitHub Copilot1, which integrates seamlessly with

code editors like Visual Studio Code2, Windsurf3, and Cursor4,

an editor with built-in LLM capabilities, have become essential

tools for many software developers, revolutionizing their daily

workflows. For example, a Python developer could request

1https://github.com/features/copilot
2https://code.visualstudio.com/
3https://windsurf.com/editor
4https://www.cursor.com/

an LLM to generate a template for invoking external APIs,

and the LLM would automatically produce the required code.

LLMs have become invaluable for streamlining coding tasks,

especially those that are routine and highly repetitive [14].

Therefore, it is natural to wonder: if LLMs excel at simple

programming tasks, could they also aid in improving sophis-

ticated optimization algorithms?

One of the recent examples of leveraging LLMs in opti-

mization algorithms is the development of frameworks for

generating new black-box metaheuristics [30]. Finding an

effective metaheuristic, for example, for a combinatorial op-

timization problem can be a significant challenge. However,

using LLMs to build upon an existing metaheuristic as context

and employing them as tools to discover new heuristics or

more efficient implementations (e.g., reducing RAM usage or

computation time) in a given programming language remains a

largely unexplored area. Implementing metaheuristics, unlike

other algorithms, requires a focus on computational efficiency,

mathematical expressions in scientific computing, and efficient

data structure selection. Thus, designing new algorithms in this

field demands expert implementation skills.

In this paper, we demonstrate how LLMs like GPT-4o

can be leveraged to enhance a sophisticated optimization

algorithm, specifically the Construct, Merge, Solve & Adapt

(CMSA) hybrid metaheuristic [1, 3, 2]. Starting with an expert-

developed C++ implementation of CMSA for the Maximum

Independent Set (MIS) problem (of approximately 400 code

lines), we employed an in-context prompting strategy com-

bined with interactive dialogue (see Figure 1). Our results

show that the LLM successfully comprehended the complex

logic and parameter interactions within the CMSA implemen-

tation for MIS, demonstrating algorithmic insight to discover

novel heuristics while suggesting improvements to the C++

codebase. This successful example opens up new possibilities

for enhancing existing complex optimization algorithms by

using LLMs as assistants.

The paper unfolds as follows. In Section II, we introduce

code generation using LLMs, making it accessible for readers

without prior experience in this field. We also explain the MIS

problem and provide a brief overview of the CMSA algorithm.

Next, in Section III,We present our methodology for enhancing
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BOT, can you improve my 
CMSA heuristic for the 

Maximum Independent Set  
(MIS) problem?
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way to incorporate the 
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code in C++.

I hadn?t 
thought of that, 

thank you!
You're 

welcome!   
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algorithms.
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Fig. 1: : A dialogue showing how a chatbot applies our approach to improving optimization algorithms.

CMSA for the MIS problem using LLMs, detailing the process

and providing steps for result reproducibility. Section IV

presents our experimental results and their interpretation. The

limitations of our approach and future research directions are

discussed in Section V. The paper concludes by summarizing

our key findings and emphasizing the potential impact of

LLMs on existing metaheuristics.

II. BACKGROUND

A. Code Generation with LLMs

Code generation is one of the primary research areas in

LLMs [14, 16, 6]. The concept is straightforward: given

a prompt, such as “I need an algorithm to sort a list

of numbers in Python”, the LLM is expected to return a

corresponding algorithm (e.g., Quicksort) implemented in

Python. This capability arises because LLMs are trained on

massive amounts of data, which include code from diverse

programming languages available on the internet. These codes

are sourced not only from GitHub repositories but also from

StackOverflow, technical documentation, scientific articles,

and publicly available books.

A more explicit prompt can lead to more sophisticated

responses. For example, the prompt “I need an efficient

sorting algorithm for a list of numbers in Python, which

can be processed in parallel, utilizing modern optimization

techniques” in GPT-4o generates a ParallelMergeSort.

While efficient, it can be further refined by interacting with

the model. For instance, asking “Find new ways to improve it”

results in an enhanced version using techniques like optimized

Quicksort for small arrays, better memory management

with NumPy, and heap merge for combining sorted arrays.

This approach leverages MergeSort’s ease of paralleliza-

tion. However, the model might have suggested a different

algorithm if the focus was on memory optimization without

parallelism. This emphasizes the importance of prompt design

and iterative refinement of responses [39].

LLM response quality depends on the data used for training,

and with the refinement of datasets and the increase in size,

their performance in code generation has improved [38].

Moreover, no LLM is flawless when it comes to generating

error-free code. Continuing with the ParallelMergeSort

example, a model might return code with bugs, so interaction

with the model (e.g., copying and pasting error messages from

the Python interpreter) is necessary to refine the responses.

One could even ask the model to generate its own test suite

to verify its algorithm. Different LLMs for these tasks are

generally evaluated through benchmarks. One of the most

widely used is HUMANEVAL [7], which features programming

challenges that assess language comprehension, algorithmic

competencies, and basic mathematics—some of which are

comparable to straightforward software developer interview

questions.

Furthermore, code generation using LLMs is a broad area, as

code may originate or be destined for very different domains,

including the following: data science code for analyzing data

and building predictive models [35]; systems code for manag-

ing hardware and low-level operations [17, 10]; frontend code

development for web applications and UI [37]; and optimiza-

tion code for solving complex computational problems. Each

domain presents its own unique challenges and requirements,

with our focus being on the latter, specifically in the field of

metaheuristics.

Concerning the automatic generation of metaheuristics with

LLMs, given the famous “No Free Lunch Theorem” [36],

researchers understand that no single metaheuristic algorithm

can outperform all others across all optimization problems.

This fundamental principle naturally leads to an interesting

possibility: LLMs could serve as powerful automatic gener-

ators of black-box metaheuristics, significantly reducing the

time needed to find the ‘best’ implementation of a metaheuris-

tic for a specific problem. In this context, LLMs could be

tasked with discovering novel variations and operators that
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create new metaheuristics—potentially even surpassing state-

of-the-art algorithms for particular problems [30].

The first notable demonstration of heuristic discovery using

LLMs was conducted by FunSearch [27], which showcased

the potential of leveraging LLMs to generate novel heuristics

for the Bin Packing (BP) Problem through a heuristic evolution

process. However, a recent study [29] points out that the

heuristics developed by FunSearch face challenges in general-

izing across diverse BP problem instances. While FunSearch

relies on an incomplete or suboptimal base program as a start-

ing point, our approach starts with a complete and carefully

designed implementation of an optimization algorithm. Other

related works can be summarized as follows. Stein and Bäck

[30]’s LlaMEA is a framework that integrates evolutionary

algorithms with LLMs to iteratively generate and refine novel

black-box metaheuristics during runtime. Similarly, Hemberg

et al. [13] proposed LLM GP, combining genetic programming

with LLMs to evolve operators through LLM assistance.

Meanwhile, Pluhacek et al. [26] demonstrated via prompt

engineering that LLMs can generate innovative metaheuristics

by identifying and decomposing six high-performing swarm

algorithms for continuous optimization.

While these studies already give a glimpse of possible

use cases for LLMs in optimization, they primarily focus

on creating new algorithms rather than improving existing

ones—that is, building upon pre-existing complex code. This

distinction is significant given the vast landscape of published

optimization algorithms—a simple GitHub search for ‘opti-

mization algorithm’ returns over 20,000 results, representing

a wealth of algorithm implementations that could benefit from

improvement. This is why we believe an opportunity exists to

create a subfield focused on generating code from existing

optimization algorithms. Building on this, our work explores

using LLMs to enhance implemented algorithms, enabling the

models to uncover new heuristics overlooked by experts in

the original implementations. In this sense, our approach treats

LLMs as assistants to researchers, not replacements. By doing

so, we leverage LLMs to work with existing code (as context)

and improve it using the current knowledge these black-box

model models have gained during their pre-training phase.

B. Maximum Independent Set (MIS) Problem

To validate our hypothesis that LLMs can enhance existing

optimization algorithms, we will employ an algorithm (de-

tailed in the following subsection) to solve the Maximum

Independent Set (MIS) problem, a well-studied and NP-

hard combinatorial optimization problem with applications in

network design, scheduling, and bioinformatics. Formally, the

MIS problem is defined as follows: Given an undirected graph

G = (V,E), the objective is to find a largest subset S ⊆ V

such that no two vertices in S are adjacent in G, i.e., there is

no edge (u, v) ∈ E for all pairs u ̸= v ∈ S. Figure 2 shows

three examples of optimal MIS solutions (non-white nodes) in

different graphs.

C. CMSA

Construct, Merge, Solve & Adapt (CMSA) is a hybrid

metaheuristic, also known as a matheuristic, that combines

elements of classical metaheuristics with exact solvers (such as

Integer Linear Programming (ILP) solvers) for combinatorial

optimization [3]. Each CMSA iteration is a sequence of four

fundamental phases:

1) Construct: Generates solutions probabilistically through

a probabilistic greedy mechanism (remember this phase;

it will be key in the next section).

2) Merge: Combines solution components from the gener-

ated solutions to form a reduced subproblem.

3) Solve: Applies an exact solver (in the case of the MIS: an

ILP solver) to optimally solve the reduced subproblem.

4) Adapt: Updates parameters and data structures based on

the quality of the solution returned by the solver.

This hybrid architecture combines the efficiency of meta-

heuristics for search space exploration with the precision of

exact methods in reduced spaces. The CMSA algorithm is

controlled by some key parameters. First, and most impor-

tantly, each solution component has an associated age value,

which is initialized to zero when a component is added

to the subproblem. Moreover, a solution component in the

subproblem is subject to an increase of its age value, in case

it does not form part of the subproblem’s solution generated

by the exact solver. In this context, the parameter agemax

plays a crucial role, defining the maximum age of solution

components before they are removed from the incumbent

subproblem, thereby preventing stagnation and encouraging

diversity. Other parameters include na, which sets the number

of solution constructions per iteration, tmax, the total CPU

time, tlimit, the time limit for the ILP solver per iteration,

and 0 ≤ drate ≤ 1, which controls the determinism rate for

solution construction. Note that higher values of drate lead to

more deterministic solution constructions, while lower values

increase randomness. Well-chosen values for these parameters

ensure a balanced exploration of the search space, effective

exploitation of promising areas via exact subproblem solving,

and efficient use of computational resources.

We selected CMSA for the purpose of this paper due to its

relative complexity in implementation as compared to simple

metaheuristics. For instance, implementing CMSA for the MIS

problem in C++ presents significant technical challenges. The

four phases must be precisely defined, properly integrated,

and implemented efficiently to leverage the framework’s full

potential. This complexity would only increase when dealing

with more sophisticated optimization problems. In essence, a

CMSA implementation demands expertise not only in meta-

heuristics and exact methods but also proficiency in C++ (or

whatever programming language is chosen for implementa-

tion).

For our study, we utilize the original C++ implementation

to solve the MIS problem, which was provided by CMSA’s

inventor and can be downloaded from our repository (https://

github.com/camilochs/optimizing-the-optimizer). This choice
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Fig. 2: Examples of maximum independent sets.

serves two crucial purposes: first, it ensures we are working

with a well-implemented version of the algorithm, and second,

it presents an interesting opportunity to test LLMs’ capability

to enhance expert-written code. This scenario allows us to

evaluate whether LLMs can identify potential improvements

even in code developed by domain experts. Our findings are

presented in the following section.

III. LLM-IMPROVED CMSA FOR MIS

In this section, we present a methodology for leverag-

ing LLMs to improve existing optimization algorithms. By

“improve existing optimization algorithms,” we specifically

mean expert-crafted implementations that have already been

optimized for performance, rather than simplistic or base-

line versions. In contrast, prior approaches often start from

scratch—generating code from an initial prompt and refining it

iteratively—or rely on overly simplified implementations that

fail to reflect the complexity of real-world optimization prob-

lems. Our approach centers on dialog-based interaction with an

LLM via a chatbot interface, uncovering novel improvements

in the code that even an expert can benefit from. We detail

this in the following subsections.

A. Discovering New Heuristics

LLMs are pattern-recognition machines [23, 28], and code

is a rich source of structured textual patterns. This allows

LLMs to identify underutilized elements—such as variables or

functions—that could play a strategic role within a heuristic.

Such insights may be missed by human experts, especially

in complex codebases. These discoveries require a deep syn-

tactic and semantic understanding of both the code and the

optimization problem, enabling them to suggest meaningful

modifications to heuristic strategies, going beyond superficial

code changes. In this way, LLMs can serve as advanced

assistants for optimization algorithm designers, offering novel

heuristic improvements informed by reasoning over their vast

pretraining knowledge.

To demonstrate our methodology, we employ an LLM

to improve one of the heuristics in the CMSA code

used to solve the MIS problem. Specifically, the function

generation_solution() implements the solution con-

struction phase of the CMSA framework [1]:

while (int(positions.size()) > 0) {

double dec = standard_distribution(generator);

int position = 0;

if (dec <= determinism_rate) {

position = *(positions.begin());

} else {

int max = candidate_list_size;

if (max > int(positions.size())) {

max = int(positions.size());

}

double rnum = standard_distribution(generator);

int pos = produce_random_integer(max, rnum);

set<int>::iterator sit2 = positions.begin();

for (int i = 0; i < pos; ++i) {

++sit2;

}

position = *sit2;

}

greedy_sol.score += 1;

greedy_sol.vertices.insert(increasing_degree_order[

position]);

if (age[increasing_degree_order[position]] == -1) {

age[increasing_degree_order[position]] = 0;

}

positions.erase(position);

for (auto sit = neigh[increasing_degree_order[position

]].begin();

sit != neigh[increasing_degree_order[position]].

end(); ++sit) {

positions.erase(position_of[*sit]);

}

}

Listing 1: Probabilistic greedy algorithm for MIS in CMSA.

It implements a greedy randomized construction heuristic

that selects exactly one vertex vi ∈ Ṽ at each step (where Ṽ

is the set of nodes that can feasibly be chosen), until the MIS

solution is complete:

vi =

{

vmin if r ≤ α

vrandom ∈ CL(k) otherwise

where

• vmin is the vertex with minimum degree (among the ones

from Ṽ )
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• r is a random number between [0, 1]
• α is the determinism rate

• CL(k) is a candidate list of size k

• vrandom is a randomly selected vertex from the candidate

list

The heuristic combines deterministic greedy selection

(based on vertex degree) with randomization to create diverse

solutions. It selects vertices either by taking the best available

vertex (greedy choice) with probability α, or by randomly

selecting from a restricted candidate list with probability

(1− α).

1) New heuristic from the LLM: The original greedy heuris-

tic, while efficient in terms of runtime, fails to incorporate the

age variable—a key element of the CMSA framework. It only

uses the age variable to restart the solutions, meaning it is not

utilized in the candidate selection mechanism. In Figure 3, we

present two example dialogues of interactions with the LLM

according to our approach. Let us begin with the first one. In

case (a), the LLM proposes an enhanced heuristic that takes

into account both node degrees and the current age values.

The vertex selection mechanism suggested by the LLM can

be technically described as follows:

vi =

{

argmin{Pw(vj) | vj ∈ Ṽ } if r ≤ α

roulette-wheel selection w.r.t. Pw(.) values otherwise

where Pw(vj) is a weighted probability:

Pw(vj) =
w(vj)

∑
vl∈V w(vl)

, w(v) =
1

2 + age(v)
+

1

1 + degree(v)
(1)

The weight function w(v) favors vertices with low age and

degree values to promote diversity in the selection process.

Thus, the LLM was able to change the original heuristic by

incorporating the age values to diversify the node selection

process, while balancing it with degree information through a

composite weight function. It makes a lot of sense to decrease

the probability of solution components with high age values

being incorporated in newly constructed solutions.

Although the LLM successfully identifies an overlooked

use of the age variable within the CMSA construction

heuristic, any dialog-based system ultimately requires human

feedback [5]. As such, the LLM occasionally makes mistakes.

For example, as shown in Figure 3 (a), the line double

weight = 1.0 / (1 + age[v]) may result in a divi-

sion by zero, since age values in CMSA are set to -1 for

solution components that do not belong to the subproblem.

The human-provided fix consisted in replacing 1 + age[v]

with 2 + age[v]. Notably, this kind of use of the age

variable—despite its initial flaw and the correction provided

through human feedback—had never been considered by any

researchers working on CMSA algorithms.

This new CMSA variant is henceforth called

LLM-CMSA-V1. It was obtained by replacing the

generate_solution() of the original CMSA im-

plementation with the new function provided by the

LLM.

2) Improving LLM-CMSA-V1 with the LLM: Since our

methodology relies on dialog-based interactions with the LLM

via a chatbot interface, it is also possible to request im-

provements to previously generated code—still available in

the current session context. For example, one might ask: “Are

there ways to enhance the dynamic selection heuristic to allow

for a more diverse and advanced search?” The LLM responds

with several suggestions, one of which involves incorporating

the concept of entropy. The C++ code provided by the LLM

is characterized by a corresponding change, which involves

replacing the definition of Pw(.) (see Equation 1) with the

following entropy-adjusted probabilities:

PH(vj) =
Pw(vj) +H

∑

vl∈V Pw(vl) +H

where

H = −
∑

vl∈V

Pw(vl) log(Pw(vl))

The entropy adjustment increases selection diversity by adding

the system’s uncertainty to each probability.

This CMSA variant is henceforth called

LLM-CMSA-V2. We directly replaced the

generate_solution() function of the original

CMSA with the LLM-generated code.

B. Code Optimization Strategies

After discovering the two new CMSA variants with the help

of the LLM, it is also possible to request a different kind

of improvement—not in terms of proposing new algorithmic

heuristics, but rather in enhancing the underlying C++ code.

These enhancements may involve the use of more efficient

data structures, changes in data types, or other low-level

optimizations that preserve the algorithmic logic. For instance,

one might ask: “Could the LLM create an improvement at the

C++ code level?” In other words, is there a more efficient

way to implement the new CMSA variants without altering

their core behavior?

It is reasonable to assume that, since the LLM has been pre-

trained on vast amounts of source code, it could suggest highly

optimized C++ implementations—even for contexts such as

optimization algorithm design (e.g., metaheuristics), where

low-level improvements to data structures or code organization

are not typically the focus of human designers. This leads us to

the next prompt, which we apply to both previously generated

heuristics, LLM-CMSA-V1 and LLM-CMSA-V2:5

5This prompt uses the “C++ code” checkbox, as shown in Figure 3 (b).
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Human prompt

Given the following heuristic implemented in C++

(generate_solution()), without altering its core

logic or functionality, please analyze the code to

identify potential improvements in the use of data

structures, cache optimization, and other low-level

optimizations. Focus on enhancing performance by

suggesting more efficient data structures, reducing

memory overhead, improving data locality, and

leveraging modern C++ features where applicable.

Please provide an updated version of the code with

comments explaining each optimization.

However, dialog-based interactions with the LLM are not

free from hallucinations—that is, the model may generate

code with bugs or memory management issues in C++ (as

shown in Figure 3 (b)). One effective way to address these

problems is through human feedback, engaging in a trial-and-

error refinement process with the model—a common practice

in code generation workflows (see [5]). Eventually, the LLM

produces code that compiles successfully. Upon reviewing the

final output, it becomes evident that the generated code is more

complex, less readable, and incorporates unconventional or

less familiar programming techniques. For example, it replaces

the set and vector data structures with more advanced,

low-level alternatives:6

#include <bitset>

...

// Constants for optimization

constexpr size_t BLOCK_SIZE = 64;

...

// Bitset for boolean operations

std::bitset<32768> available;

// Adjust size based on max n_of_vertices

available.set();

// Aligned vector to optimize cache usage

alignas(BLOCK_SIZE) std::vector<int> active_vertices;

active_vertices.reserve(n_of_vertices);

Listing 2: Fragment code optimization suggested by LLM.

Meanwhile, the original code is shown in the following

listing.

set<int> positions;

vector<int> position_of(n_of_vertices, 0);

for (int i = 0; i < n_of_vertices; ++i) {

positions.insert(i);

position_of[increasing_degree_order[i]] = i;

}

Listing 3: Fragment of original code from CMSA.

The logic remains the same, except for changes in variable

names: positions is replaced with available, and

position_of is substituted with active_vertices.7

Although the changes do not affect the heuristic’s logic

but rather the underlying C++ structures, they do not always

lead to measurable improvements in efficiency, specifically

6The comments in the code were generated by the LLM.
7Explicitly instructing the prompt to retain the variable names might have

avoided this issue.

in reducing the runtime, which in practice would allow us

to explore better candidates when building a valid CMSA

solution. Nevertheless, the generated code compiles and runs

correctly.

The two new CMSA variants with these performance

improvements will be named: LLM-CMSA-V1-PERF

and LLM-CMSA-V2-PERF.

This iterative process with the LLM, asking it to identify

underutilized variables or functions in the existing code,

demonstrates its potential as a sophisticated assistant for

optimization experts. For instance, in this case, the LLM

proposes a new CMSA construction heuristic utilizing the

age parameter. Unlike simple code generation, the LLM

enhances not only the algorithm itself but also the existing

code (e.g., C++ implementations), suggesting improvements

without altering its logic. This opens the door to using LLMs

not just for developing optimization algorithms but also for

updating and refining sophisticated legacy code, leveraging the

extensive knowledge embedded in LLMs.

C. Reproducibility

Although it is not possible to replicate the exact results of an

LLM, due to their autoregressive nature that predicts the most

probable token based on a probability distribution (with the

next token being determined stochastically) [18], it is possible

to reproduce similar responses by using the same prompts,

the same LLM, and its parameters. For this reason, our repos-

itory (https://github.com/camilochs/optimizing-the-optimizer)

includes a chatbot that implements the same prompts used

in our research (as shown in Figure 3). In fact, each element

in Figure 3 (textbox and checkbox) loads pre-built prompts,

known as in-context prompts [12, 20], to eliminate the need

for manual input. Thus, our chatbot features two types of in-

context prompts: (1) external ones, related to the C++ CMSA

code for the MIS, and (2) internal ones, focused on improving

the heuristic, the C++ code, and specifying which function

in the code requires enhancement. Next, we will assess the

quality of the heuristics proposed by the LLM.

IV. EMPIRICAL EVALUATION

This section is divided into two parts: the preliminary phase

(setup, benchmark, and CMSA parameter tuning) and the

experimental results.

A. Preliminary

First, we used Chatbot Arena [9] to test various LLMs

without incurring costs. 8 For our experiments, we finally

selected GPT-4o (version: 2024-11-20)9 as it is one of the top-

performing models to date. Experiments concerning algorithm

8https://lmarena.ai/
9The parameters used for the LLM were the default values: temperature

= 0.7 (controls randomness in responses), top-p = 1 (nucleus sam-
pling threshold for token probability), and max-output-tokens = 2048

(maximum number of tokens in the output).
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(c) Erdős–Rényi

Fig. 4: Comparative analysis of solution quality: Original CMSA vs. LLM-CMSA variants (V1 and V2).

variants CMSA, LLM-CMSA-V1, and LLM-CMSA-V2 were

conducted on a cluster equipped with Intel® Xeon® CPU 5670

processors (12 cores at 2.933 GHz) and 32 GB of RAM.

Our benchmark set consists of three types of graphs:

Barabási-Albert, Watts-Strogatz, and Erdős-Rényi graphs, with

four different sizes and four density levels (see Figure 4). For

each combination of size and density level, the benchmark set

contains 1 tuning instance and 30 testing instances. This makes

a total of 48 tuning instances and 1440 testing instances. We

used a limited tuning set to find robust, general parameters,

deliberately avoiding the overfitting that would result from

tuning on a set identical to our evaluation instances. The

parameters of all three CMSA variants (original, V1, V2) were

tuned using irace, a tool for tuning algorithm parameters

based on problem instances [22]. Due to the lack of space

(and not being the important point of this paper), we do not

report the final values here. We used 150, 300, 450, and 600

CPU seconds as computation time limits for graphs of the four

different sizes.

B. Numerical Results

In addition to the three tuned algorithms, we also tested two

variants obtained by using the efficiency-improved C++ codes

described in Section III-B. These two variants are henceforth

called LLM-CMSA-V1-PERF and LLM-CMSA-V2-PERF.

Each of the five algorithms was applied exactly once to each

testing instance. The results of the main three variants are

reported employing box plots in Figure 4. The considered

graph size and density level are indicated at the top of each box

plot. The main key observation is that both LLM-generated

CMSA variants outperform the standard CMSA variant with

growing graph size and density. This clearly shows that the

suggestion of the LLM to make use of the age values for

solution component selection during solution construction was

a very good one.

To be able to make statistical claims, we produced so-called

critical difference (CD) plots (see Figure 5), in which the

algorithms’ whiskers show their average ranking concerning

a set of problem instances. Moreover, algorithm whiskers are

connected by a bold horizontal bar in case they perform sta-

tistically equivalent.10 Figure 5 shows three CD plots, one for

each graph type. In these plots we also included the efficiency-

optimized LLM-generated CMSA variants. The following ob-

servations can be made. Even though both LLM-CMSA-V1

and LLM-CMSA-V2 outperform CMSA with statistical sig-

nificance for all three graph types, in all three cases the

first variant outperforms the second variant. This means that

the idea of using the entropy of the selection probabilities

was not fruitful. Moreover, the efficiently-optimized algorithm

variants are statistically equivalent to their non-optimized

counterparts. This means that, even though they might save

RAM, which is a non-tested hypothesis, they do not benefit

by producing better results. Furthermore, preliminary checks

indicated no significant runtime improvements from these C++

optimizations in our test environment, suggesting the original

expert implementation was already highly efficient or that the

specific low-level changes were not impactful in this context.

Finally, Figure 6 shows two representative examples of the

convergence behavior based on 10 runs of the main three

CMSA variants. In both examples, the LLM-generated CMSA

10The critical difference (CD) plot, which uses the Friedman test for overall
differences and the Nemenyi post-hoc test for pairwise comparisons, is a
recognized standard for the statistical comparison of multiple randomized
algorithms for combinatorial optimization.
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(a) Barabási–Albert

(b) Watts–Strogatz

(c) Erdős–Rényi

Fig. 5: Critical difference (CD) plots for all graph types.

variants quickly produce solutions of a quality that standard

CMSA does not even obtain at the end of its runs.

V. DISCUSSION

Our study highlights the potential for LLMs to engage

in algorithmic reasoning, successfully identifying concep-

tual enhancements for CMSA, such as the LLM-CMSA-V1

heuristic which outperformed the expert baseline. Interest-

ingly, the LLM’s subsequent suggestion incorporating en-

tropy (LLM-CMSA-V2), while plausible, was less effective.

Perhaps its added complexity was not beneficial, or even

detrimental, within the specific CMSA/MIS context, making

the simpler LLM-proposed V1 superior. This observation

reinforces the need for rigorous empirical validation of any

proposed heuristic. However, our study also has the following

limitations: due to space constraints, we tested only one LLM

(GPT-4o) for CMSA improvements, and future work could

benefit from comparing additional LLMs, especially open-

weight ones. Additionally, we did not explore using GPT-4o to

enhance other complex algorithms for additional optimization

problems. These limitations could be addressed in an extended

article. Despite these limitations, our comprehensive analysis

of CMSA with new heuristics for solving MIS instances
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Fig. 6: Examples of algorithm evolution over time.

presents promising opportunities for new lines of research

emerging from our work:

1) Specialized benchmarks. While our study focuses on

CMSA for the MIS problem, the field lacks bench-

marks tailored to optimization. Just as general-purpose

code generation relies on standard benchmarks, we need

domain-specific ones to evaluate LLMs’ ability to dis-

cover improved heuristics.

2) LLM-based agent integration. Figure 3 illustrates man-

ual interaction, but tasks like execution and debugging

could be handled by autonomous agents. A platform

where such agents collaborate on improving existing op-

timization algorithms may yield major advances [15, 21].

3) Adapt code to the target domain. Optimization algo-

rithms often require adaptation—not only by switching

programming languages to improve performance and

maintainability, but also by transitioning from single-

threaded execution to parallelism (e.g., using CUDA).

LLMs can support this process [25, 19, 8], though

domain-specific fine-tuning may be necessary.

An underlying issue in using LLMs for code generation

is how we deal with errors. Although they may produce

similar outcomes, errors made by a human programmer (or

optimization researcher) and those produced by an LLM

differ fundamentally in origin. Understanding these conceptual

differences is essential for developing sound methodologies for

integrating human- and machine-generated code [4].

On the other hand, a fundamental question arises: should

the LLM be credited for discovering a superior heuristic

compared to the best implementation by a human expert?

While prompt design clearly influences the outcome, it raises

important questions about authorship, ownership, and the role
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of AI in scientific discovery (see [34]).

VI. CONCLUSIONS

In our research, we demonstrate that LLMs can be effec-

tively applied to enhance existing optimization algorithms.

We used the non-trivial Construct, Merge, Solve, and Adapt

(CMSA) algorithm implemented in C++ to solve the classical

Maximum Independent Set problem. By leveraging in-context

prompts with GPT-4o, the model successfully understood

the operational context of the CMSA implementation and

proposed conceptually new heuristics for the probabilistic

construction phase. After a thorough comparative analysis, the

heuristics proposed by the LLM outperformed those manually

designed by an expert in CMSA. This highlights the potential

of LLMs not merely as tools but as artificial collaborators

capable of identifying unused code segments through semantic

analysis and contributing meaningfully to the complex task of

algorithm design.
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