
The price of customer presence in Attended Home

Delivery with Customer Availability Profiles

Roberto Zanotti

0000-0002-3073-4895

Dept. of Clinical and Experimental Sciences,

Università degli Studi di Brescia,

viale Europa 11, 25123 Brescia, Italy

E-mail: roberto.zanotti@unibs.it

Daniele Manerba, Renata Mansini

0000-0002-3502-5289, 0000-0002-2194-0339

Dept. of Information Engineering,

Università degli Studi di Brescia,

via Branze 38, 25123 Brescia, Italy

E-mails: {daniele.manerba, renata.mansini}@unibs.it

Abstract—Attended Home Delivery is a last-mile distribution
paradigm in which the customer must be present at home
to receive the goods in person. In this context, we study a
vehicle routing and scheduling problem in which the customers’
availability is given as a time-dependent probability profile,
and the company incurs a penalty cost proportional to the
probability of not finding the customer at home during the
selected timeslot for delivery. Using an efficient Mixed-Integer
Linear Programming formulation for the problem as a black-box
tool and lexicographic optimization procedures, we develop an
economic analysis to support the company in exploiting the trade-
off between basic optimization and the possibility of increasing
the customer presence probabilities by paying additional costs.
Managerial insights are derived from the change in the value
and structure of optimal solutions under different budget levels
allocated to improving customer availability profiles.

I. INTRODUCTION AND LITERATURE REVIEW

S
INCE the advent of e-commerce, the delivery of goods

purchased online directly to customers’ homes has rapidly

become the leading business model for retail companies and,

in turn, one of the most important logistics operations within

urban areas, and beyond. The largest share of deliveries

performed in e-commerce consists of parcels, small packages,

food, and groceries. The volume of this business is impressive

and continues to grow rapidly. Over the past 10-12 years, the

global e-commerce market has grown tenfold, reaching a value

of 3.3 trillion dollars in 2022, approximately 22% of total

retail sales. The COVID-19 pandemic significantly boosted

this trend: the share of online retail rose from 15% in 2019

to 21% in 2021, exceeding even the most optimistic forecasts

(see, e.g., [11]). Experts now agree that the sector still holds

considerable long-term growth potential, with projections es-

timating it could reach 5.4 trillion dollars within the next 3–4

years [21].

Despite being very convenient (and sometimes necessary)

for customers, home delivery services pose significant logisti-

cal challenges for companies and municipalities, in particular

concerning last-mile deliveries. Last-mile delivery refers to

the final stage of the distribution process, in which goods are
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transported from a local hub or depot to the end customer’s

address. From an economic point of view, last-mile operations

represent by far the most expensive part of the fulfillment

chain, accounting for more than 50% of the total shipping

costs. On average, companies charge the consumers up to

80% of the shipping cost per package to cover them, taking

the rest from the profit margins of sold products. Given the

costs and the high impact in terms of emissions [8][15] and

social implications [19], there is a considerable amount of

literature devoted to the evaluation of alternative ways of

handling the last mile, from parcel lockers [5] to drones [13],

from autonomous robots [7] to crowd-shipping [2][3][12][22].

However, home delivery is one of the predominant delivery

paradigms in the industry, whether because it is necessary

given the types of goods being purchased (grocery, high-

value items) or because customers perceive value when goods

are delivered directly to their home. In this paper, we focus

on a specific implementation of home delivery operations

known as Attended Home Delivery (AHD). In the AHD

setting, unlike standard home deliveries, the presence of the

customer at home is required when the courier arrives. This

requirement prominently brings the time dimension into the

delivery operations, since couriers and customers must be

synchronized with each other.

From a practical perspective, delivery synchronization is

typically managed at the time of ordering by collecting not

only the customer’s location, but also a time window (timeslot)

on a specific day for the expected delivery. While, in princi-

ple, the width of a customer’s service time window can be

arbitrarily chosen, it is intuitive that narrower time windows

result in higher delivery costs for companies [18], which are

often passed on to customers through additional delivery fees.

Moreover, the delivery company needs to maintain a certain

level of control over the time windows schedule available

for its services, i.e., it is not realistic to leave an arbitrary

choice to the online customer. For this reason, AHD services

are often based on a discrete set of available time windows

from which customers can select their favorite one. This way,

the company still provides customers with a certain degree of

flexibility while allowing itself the possibility of finding, at a

tactical level, the best schedule to propose. An active stream
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in the literature has addressed the optimization of this AHD

tactical aspect, using approximated or explicit evaluation of

the corresponding routing costs (see, e.g., [1][9][23]).

A recent alternative to use multiple time windows (thus

avoiding the need to solve tactical timeslot assignment and

pricing problems) is the introduction of Customer Availability

Profiles (CAPs), presented in [10]. After partitioning a work-

ing day into timeslots, a CAP assigns to each timeslot the

probability that the customer will be at home. This framework

grants the company full flexibility in planning delivery routes

and schedules, at the cost of potentially incurring a penalty

when a delivery is attempted in a timeslot during which the

customer is actually not at home. For the company, such a

penalty may represent an estimation of the costs to sustain

for the recovery of the service missed (e.g., re-delivery at a

different time or day) and/or a compensation to the customer

for having lowered the quality of their service. Since the

customer presence in a timeslot is not deterministically known

a-priori but just estimated through a probability, then it makes

sense to calculate the penalty as proportional to the probability

of not finding the customer at home in the timeslot selected

by the company.

AHD optimization problems that explicitly include CAPs

are more tailored to support a company in the decision-making

process at a day-ahead tactical level (see, e.g., the multi-

attribute approach proposed in [4]). They can better assess

the trade-off that derives from simultaneously minimizing the

traveling cost and maximizing the so-called service hit rate

(equivalent to minimizing the corresponding penalty cost).

The total hit-rate cost reflects the quality level of the delivery

service and should be considered by the company together

with the operating costs. However, in practice, the company

may adopt additional strategies, such as offering discounted

fees or other forms of compensation to encourage customers

to be available during timeslots that are operationally desirable

but associated with low presence probabilities. To the best

of our knowledge, this integrated approach, where CAPs are

treated with a certain degree of flexibility, has not yet been

explored in the context of AHD problems. Hence, in this

work, by developing mathematical tools including Mixed-

Integer Linear Programming (MILP) models and tailored

lexicographic solution methodologies, we provide a detailed

economic analysis on the trade-offs related to investing in

customers’ behavior modification along with classical routing

and scheduling decisions.

A. Contribution

Building on the current state of the art, this paper provides

three main contributions:

• We propose a novel integrated problem in the AHD

context, along with its mathematical formulation, that

extends existing settings by allowing the company to

actively invest a budget to improve customer presence

probabilities. In this framework, availability profiles are

no longer treated as fixed inputs but as strategic decision

variables within the optimization process.

• We develop a multi-step analytical methodology based

on lexicographic optimization that enables a structured

economic analysis of the trade-offs involved, first by

determining a maximum budget for influencing customer

availability and then by systematically evaluating the

impact of investing partial amounts of that budget.

• We conduct an extensive computational analysis on a

large set of instances to derive actionable managerial

insights. In particular, we quantify the strategic trade-

off in which the company accepts higher penalties on

some deliveries to obtain significant savings in travel

costs, making the price of customer presence a clearly

identifiable and decision-relevant concept.

B. Structure of the paper

The remainder of the paper is organized as follows. Sec-

tion II introduces the optimization problem and provides its

mathematical formulation. Section III describes the improved

decisional setting in which the company has additional flexi-

bility regarding the CAPs. Section IV details our experimental

campaign, describing both the adopted methodology and the

instances used, while Section V shows the results obtained

and comments on them, deriving managerial insights on the

process. Conclusions are drawn in Section VI.

II. PROBLEM STATEMENT AND MATHEMATICAL

FORMULATION

In this section, we state the optimization problem addressed

in this work by building upon an analogous framework pre-

sented in the literature [6]. We then formulate the problem as

a Mixed-Integer Linear Programming (MILP) model.

A. Problem definition

We consider the problem of addressing daily delivery op-

erations for a set P of geographically dispersed customers.

The deliveries are performed by a uniform fleet of vehicles,

K = {1, . . . , λK}, which originates from and returns to a

central depot D. Each vehicle has a uniform capacity, Q, and

all routes must be completed within a maximum operational

period, tmax. For each customer p ∈ P , there is a specific

demand dp, and a constant service time s is required for every

stop. The road network defines the feasible routes along which

vehicles can travel, both from the depot to each customer and

between any two customer locations. Let tij denote the travel

time between any two locations i and j, where each location

may be either the depot or a customer. To incorporate customer

availability profiles, the planning horizon is discretized into a

set of sequential, non-overlapping timeslots, T = {1, . . . , λT }.

Each timeslot t ∈ T is defined by a start time at and an

end time bt. Let ρpt represent the likelihood that customer p
is available at home during timeslot t. A key assumption is

that 0 < ρpt < 1 for all customers and timeslots, ruling out

complete certainty of presence or absence. If a delivery attempt

fails, a penalty is incurred. This penalty is calculated as the

product of a failure cost parameter αp, potentially different for

each customer p ∈ P , multiplied by the probability (1− ρpt)
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of the customer p not being home during the delivery during

timeslot t ∈ T . The failure costs are assumed to be calculated

in time units, thus representing the additional time spent by

the courier to recover the service (e.g., by scheduling a second

visit or by moving the goods to a collecting point) and/or

the additional time spent by the customer to retrieve their

parcel (e.g., roundtrip from the house to the collecting points

where the goods have been left), which must be compensated

by the company as well. Finally, while in many operational

settings the failure costs can be seen as constant for all the

customers, in this work we prefer to consider the general

case in which they depend on the customer (e.g., on their

distance to the depot, fidelity program, or delivery priority).

The optimization objective is to determine a set of vehicle

routes, along with their corresponding delivery schedules, that

minimizes a composite cost function. This function aggregates

the total vehicle travel costs with the overall penalty cost

arising from potential synchronization failures (i.e., missed

deliveries).

Unlike some prior studies that incorporate numerous op-

erational details (see [6][10][24]), our model focuses solely

on the core features of the optimization problem to keep the

analysis clear and concise. For this reason, some simplifying

assumptions are made concerning, e.g., the homogeneity of the

vehicle fleet, the constant service time for all the customers,

and the presence of a unique depot where all the vehicles

depart and come back. Note, however, that these assumptions

are realistic in many AHD services, as the e-grocery ones.

B. Problem formulation

The problem is modeled on an extended directed graph

G = (V,A). The ordered node set V is constructed from three

distinct subsets:

• the ordered set NP = {1, . . . , λN} of λN nodes, each

representing a customer.

• the ordered set NS = {λN + 1, . . . , λN + λK} of λK

nodes, each being a replica of the unique depot D.

This duplication allows us to have one starting node

per vehicle, thereby distinguishing each vehicle’s route

without the need to introduce additional vehicle-indexed

arc variables.

• a single node e = λN+λK+1, representing the common

terminal node for all the routes of the vehicles. This node

is a further replica of the unique depot D, and its presence

allows us to model vehicle routes as elementary paths.

The arc set A is defined as the set of all feasible connections,

i.e., A = {(i, j) : i ∈ NP , j ∈ NP } ∪ {(i, j) : i ∈ NS , j ∈
NP }∪{(i, e) : i ∈ NP }. A weight corresponding to the travel

time tij is assigned to each arc (i, j) ∈ A. For those arcs

starting or arriving in a replica of the depot, the corresponding

travel time is replicated as well. Given the above graph, the

problem asks for a set of λK directed elementary paths, one

for each vehicle k ∈ K, which originate at the corresponding

starting depot node λN +k and terminate at e. Figure 1 shows

an example of the creation of our extended graph starting from

a standard network. The total travel time of a vehicle is the

sum of the weights of the arcs along its path, and the total

travel cost is the aggregate travel time of all vehicles.

The following decision variables are defined to model the

problem:

• xij : a binary variable that is equal to 1 if the direct arc

from node i to node j is part of a vehicle’s route, and 0

otherwise;

• zij : a continuous variable denoting the time of arrival at

node j, when it is reached directly from node i via arc

(i, j);
• ykit: a binary variable that is equal to 1 if vehicle k

services node i during timeslot t, and 0 otherwise.

Then, the problem under study can be efficiently formulated

through the following MILP model, in which, given a subset

of nodes V̄ ⊂ V , δ−(V̄ ) = {(i, j) ∈ A : i /∈ V̄ , j ∈ V̄ } and

δ+(V̄ ) = {(i, j) ∈ A : i ∈ V̄ , j /∈ V̄ } represent the set of arcs

entering and leaving the set of nodes V̄ , respectively:

min
∑

(i,j)∈δ−({e})

zij +
∑

p∈P

∑

t∈T

∑

k∈K

αp (1− ρpt) y
k
pt (1)

subject to
∑

(i,j)∈δ+({h})

xij ≤ 1, h ∈ NS (2)

∑

(i,j)∈δ−({e})

xij =
∑

k∈K

∑

(i,j)∈δ+({λN+k})

xij (3)

∑

(i,j)∈δ+({h})

xij =
∑

t∈T

∑

k∈K

ykht, h ∈ NP (4)

∑

(i,j)∈δ−({h})

xij =
∑

t∈T

∑

k∈K

ykht, h ∈ NP (5)

∑

k∈K

∑

t∈T

ykht = 1, h ∈ NP (6)

ykλN+k,1 =
∑

(i,j)∈δ+({λN+k})

xij , k ∈ K (7)

yke,λT
=

∑

(i,j)∈δ+({λN+k})

xij , k ∈ K (8)

∑

t∈T

∑

p∈P

dpy
k
pt ≤ Q, k ∈ K (9)

∑

t∈T

∑

k∈K

aty
k
ht ≤

∑

(i,j)∈δ−({h})

zij ≤
∑

t∈T

∑

k∈K

bty
k
ht, h ∈ NP

(10)
∑

(i,j)∈δ+({h})

zij −
∑

(i,j)∈δ−({h})

zij =
∑

(i,j)∈δ+({h})

(s+ tij)xij ,

h ∈ NP (11)

zij = tijxij , h ∈ NS , (i, j) ∈ δ+({h}) (12)

(tλN+1,i + tij + s)xij ≤ zij ≤ (tmax− tje − s)xij ,

(i, j) ∈ A | i, j /∈ NS ∪ {e} (13)
∑

t∈T

ykjt ≥
∑

t∈T

ykit + xij − 1, (i, j) ∈ A, k ∈ K (14)

xij ∈ {0, 1}, (i, j) ∈ A (15)

ykit ∈ {0, 1}, i ∈ V, t ∈ T, k ∈ K (16)
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Fig. 1: Example of creation of our extended graph (on the right) starting from a standard network (on the left) involving a

single depot, three customers, and two vehicles. In the extended graph, some arcs can be traversed only by a certain vehicle

(red and blue arcs), while some others are in common (black arcs). Each vehicle starts from its own depot node, but they both

arrive at the same final depot node e.

zij ≥ 0, (i, j) ∈ A. (17)

The objective function (1) minimizes the total cost for the

company, which is composed of the overall traveling time

of the vehicles (first term) and the overall penalty cost paid

for visiting customers in timeslots where there is a non-null

probability of missing them (second term). Note that, for the

sake of simplicity, this cost function is expressed in terms of

time units as the scheduling variables and, therefore, also the

penalties are measured in time.

Constraints (2) and (3) impose that all vehicle tours must

originate from their specified start nodes and end at the

common depot, e. The requirement for each customer in the set

NP to be visited exactly once is established through the flow

conservation constraints (4) and (5). Constraints (6) guarantee

that each customer visit is assigned to a single vehicle k ∈ K
and occurs within a single timeslot t ∈ T . If a vehicle k ∈ K is

used, constraints (7) and (8) ensure its corresponding start (i.e.,

ykλN+k,1 = 1) and end (i.e., yke,λT
= 1) depot timeslots are

activated. Furthermore, vehicle capacity limits are handled by

constraints (9), which prevent the total demand of customers

on any given route from exceeding the vehicle capacity, Q.

The temporal feasibility of the routes is governed by the set

of constraints from (10) to (13). Specifically, (10) enforces the

arrival time within the time window [at, bt] for each service

performed within timeslot t ∈ T , while (11) defines the pro-

gression of time between consecutive visits to customers i and

j, accounting for service and travel times. The initial arrival

time for each route’s first customer is set by constraints (12).

Constraints (13) introduce instead lower and upper bounds on

the start of the service in a specific node j. This time has to be

greater than the time required to reach the previous node from

the depot, plus the time needed to reach j from the previous

node, plus the service time in the previous node. The start

of the service in node j also needs to make a return to the

depot feasible, i.e., it needs to be lower than the maximum

working time minus the time to serve the node minus the

time to return to the depot. Together, these temporal constraints

also serve the crucial function of eliminating subtours. Finally,

the link between the routing variables (x) and the vehicle

assignment variables (y) is established by constraints (14), to

ensure that any two consecutively visited nodes are served by

the same vehicle. These last constraints are needed since our

formulation determines vehicle assignments without needing

an explicit vehicle index on the x variables, a feature enabled

by the unique starting depot for each vehicle. The domains of

decision variables are defined in constraints (15) through (17).

The above formulation is similar to that presented in [4] and

adopts a perspective that differs from that previously available

in the literature [10][14][20][24]. In particular, the presented

extended graph allowed us to obtain a more compact and more

efficient MILP model through the introduction of:

• two-indexed binary variables for arc selection, which em-

bed vehicle-specific route information without requiring

a third index, similar to the method in [16];

• continuous scheduling variables to enforce time-based

subtour elimination, drawing inspiration from modeling

techniques for ordering problems [17].

The model efficiency obtained allows us to adopt state-of-

the-art MILP solvers to find optimal solutions for real-world

instance sizes.

III. AN IMPROVED DECISIONAL SETTING INCLUDING

CAPS FLEXIBILITY

As stated in the introduction, the above formulation assumes

that customer availability profiles are fixed input data and

cannot be modified. However, in practice, companies often

have the opportunity to foster some specific customer behavior

of interest by offering some form of incentives (e.g., a discount

on delivery fees). Assuming that the company has a budget B
to support such modifications and a communication channel

to reach the customers (e.g., email), it becomes possible to

evaluate when and to what extent it is convenient for the

company to implement such an influence on the customers’

behavior.
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To this aim, let us introduce an additional continuous

decision variable γpt representing the increment (induced by

the company) with respect to ρpt of the presence probability

of customer p ∈ P during timeslot t ∈ T 1. Then, it is possible

to create a new optimization model by modifying the one

already presented in Section II-B, namely model (1)–(17).

More precisely, the objective function (1) is substituted with

the following one

min fTC + fHRC − fHRI (18)

where

fTC =
∑

(i,j)∈δ−({e})

zij (19)

fHRC =
∑

p∈P

∑

t∈T

∑

k∈K

αp (1− ρpt) y
k
p,t (20)

fHRI =
∑

p∈P

∑

t∈T

αpγpt (21)

and the following inequalities

0 ≤ γpt ≤ (1− ρpt)
∑

k∈K

ykpt, p ∈ P, t ∈ T (22)

∑

p∈P

∑

t∈T

αpγpt ≤ B (23)

are added to the system of constraints (2)–(17).

The new objective function (18), in which the overall

traveling cost is named fTC and the overall hit-rate cost based

on the pure CAPs initially given by the customers is named

fHRC , now incorporates a third term representing the saving

on the hit-rate cost when considering the CAPs modified by

the company investment, which is named fHRI . In constraints

(22), the new decision variables are allowed to take non-

negative values up to the residual presence probability of

a customer in a certain timeslot. However, since it makes

sense to pay for improving presence probabilities only for

timeslots included in the visiting schedule, constraints (22)

set to 0 the corresponding variables γ when it is not the case.

Finally, constraint (23) limits the company’s investment in the

modification of the CAPs to a certain budget B.

With respect to the model just stated, it is important to

clarify two points:

• despite the definition of the decision variables γ, in

reality, the company cannot directly adjust the customers’

probability profiles. The model instead quantifies the

amount of additional presence probability the company

is aiming for and returns the proportional compensations

to be offered to the customers for being at home during

the selected timeslot. While the customers still have the

freedom to choose what to do, the offered compensation

is meant to convince them to stay at home during the

desired timeslot.

1Note that this variable represents an increment and not a free variation
with respect to ρpt since it never makes sense for the company to pay for
diminishing the presence probability of a customer during a timeslot.

• the third term of objective function (18) represents a

saving only for the problem as it is modeled, not on

the actual overall cost for the company, which is of

course made up by the total objective function value plus

the amount invested to influence the customers, i.e., the

same amount of the saving. Hence, the company wants

to evaluate the possibility of investing more than the

traveling and expected hit-rate costs to better balance

them.

From now on, we will refer to the MILP model (18) subject

to constraints (2)–(17) and (22)–(23) as the Attended Home

Delivery Problem with CAPs Flexibility (AHDP-CF).

IV. EXPERIMENTAL SETTING

This section describes the experimental setup adopted to

evaluate how the budget constraint affects the optimization

problem considered. Section IV-A outlines the generation of

benchmark instances, while Section IV-B and Section IV-C

describe the analytical methodology developed and the corre-

sponding implementation details, respectively.

A. Instances generation

To obtain statistically meaningful results, our experiments

consider a very large set of benchmark instances, in which

many of their characteristics are randomly varied. More pre-

cisely, we generated 500 instances involving 10 customers

(i.e., |P | = 10) and 3 vehicles (i.e., λK = 3). Customers

are randomly distributed within a 20000×20000 m2 area. Eu-

clidean distances are computed between each node2, assuming

a constant speed of 11.11 m/s (i.e., 40 km/h). They are then

truncated to integer values. Customer demands dp range from

5 to 30 units, with a fixed service time of 7 minutes. Vehicle

capacity is set to Q = 3·

∑
p∈NP

dp

λK
to align total fleet capacity

with aggregate demand. Each vehicle’s work shift is limited to

tmax = 14400 seconds (i.e., 4 hours), while the time horizon is

divided into 8 equal timeslots (i.e., λT = 8). This time horizon

has been chosen to mimic the typical half-day shift of many

couriers; however, the model can tackle wider time horizons

and denser timeslot division of the shift. Each customer is

assigned to one of seven CAPs, each representing different

customer presence behaviors during the day. Six profiles are

adapted from [10] and eventually discretized, namely, V-shape,

A-shape, M-shape, W-shape, Linear-Increase, and Linear-

Decrease, whereas the last profile is randomly generated.

A detailed visualization of the six non-random profiles is

reported in Figure 2. Clearly, each profile is intended to mimic

a peculiar behavior of a customer during the time horizon.

Failure costs αp are drawn from a Normal distribution with

mean equal to the service time s and standard deviation equal

to s/2, truncated in [2, 15] minutes.

The generated instances are publicly available at https:

//or-dii.unibs.it/instances/AHDPCF.zip.

2While real distances between customers seldom correspond to Euclidean
ones, the absence of a real street map and the randomness used to generate
the customer locations justify the adoption of this simple metric.
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Fig. 2: A plot of the six non-random discrete Customer

Availability Profiles adopted, across 8 timeslots.

B. Analytical methodology

The methodology adopted for our quantitative analysis is

mainly based on the possibility to solve the MILP model

AHDP-CF proposed in Section III and a two-step lexico-

graphic approach that interprets the proposed multi-attribute

optimization problem as an actual multi-objective one. The

analysis includes a systematic change of the available budget

B. To this aim, let Bmax represent the maximum sensible

budget that the company can consider and let β be a real

value in [0, 1]. Then, let us define B = βBmax as the available

budget. In our analysis, β is used as a sensitivity parameter to

evaluate the behavior of the optimal solution for the company

against different budgets. The value of Bmax, instead, which

is instance-dependent, is calculated during the optimization

process described below.

More precisely, for each of the generated instances, the

following optimization steps are implemented:

• Step 1: A lexicographic optimization is performed on

AHDP-CF where, first, the priority is given to the min-

imization of the overall objective function (18) and,

then, the sole minimization of the hit-rate investment is

pursued. This second optimization step is needed since

there could be multiple optimal solutions, all with the

same objective function value but different proportions

of the three objective function terms fTC , fHRC , and

fHRI . Among these solutions, the one with the lowest

possible value of fHRI is of our interest. More in detail:

– Step 1.a: The MILP model AHDP-CF is solved to

optimality without considering the budget constraint

(23). This way, the model returns a solution in which

the presence probabilities of interest (i.e., those cor-

responding to the timeslots visited) are increased at

least up to the most convenient value with respect to

the traveling time minimization. Let us call fStep1.a

the value of the optimal solution just obtained.

– Step 1.b: The MILP model AHDP-CF is solved

to optimality again without considering the budget

constraint (23) but with the new objective function

min fHRI (24)

and with the following additional constraint

fTC + fHRC − fHRI ≤ fStep1.a. (25)

Constraint (25) ensures that the value of the primary

objective function obtained in the previous step is not

deteriorated. Let us call fStep1.b
HRI the value of fHRI

calculated in the optimal solution.

• Step 2: The value of Bmax is set to fStep1.b
HRI , since it

does not make sense to consider larger budgets for the

current instance.

• Step 3: The parameter β is set to a value in [0, 1] and

the actual budget B is calculated.

• Step 4: The MILP model AHDP-CF is solved to optimal-

ity, now including also the budget constraint (23). Let us

call solβ the optimal solution obtained. This solution is

the one analyzed in the later discussion of the results.

C. Implementation and resolution details

Experiments were performed on a machine equipped with

an Intel Xeon Gold 6140x (18 physical cores, 36 logical

threads) CPU, 64GB RAM, and running a Windows 11 64-

bit operating system. The solution framework, including the

lexicographic procedure and MILP models, was implemented

in Java 16. Gurobi v12.0.0 was adopted for solving the MILPs;

the default parameter setting is used, and no time limit is

imposed on the resolution, thus ensuring termination only

upon optimality.

V. RESULTS AND DISCUSSION

This section presents and discusses the results of the com-

putational experiments conducted to evaluate the impact of

investing a certain budget for improving the expected hit-

rate (representing the quality of the delivery service) on our

AHDP-CF. Our analysis focuses on the trade-offs between the

investment in higher customer presence probabilities and the

resulting operational costs and solution structure. To provide

clear managerial insights, we always compare the solutions

solβ obtained by using an increasing budget (from β = 0.05
up to β = 1, with a 0.05 increment) against solution sol0,

which represents the baseline scenario where no budget is

available (i.e., when β = 0).

Our analysis is designed to provide quantitative insights into

how different budget levels β reshape the optimal solution. In

each part of the discussion, results are reported as sequences

of boxplots, one for each β value that has been tested, thus

aggregating the results obtained over all the 500 instances

generated. In a boxplot, the cross denotes the average value,

while the thick line indicates the median. The upper part of

the colored box corresponds to the 75th percentile, while the

lower one is associated with the 25th percentile. Moreover,

the whiskers span from the minimum to the maximum value,
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Fig. 3: Solution examples for different β values: β = 0 (left), β = 0.50 (center), β = 1.00, (right). The number in a gray

square near each node indicates the timeslot selected for the corresponding visit.

excluding the outliers (which are reported as simple dots).

Finally, we want to assess the impact of the available budget

from several perspectives, each of which is related to a differ-

ent Key Performance Indicator (KPI) that can be calculated on

the solutions obtained by implementing the analytical method

proposed in Section IV-B. In this discussion, we decided to

focus on the following KPIs of interest:

• CSS (change in start times): represents, averaged over

all the customers, the absolute value of the difference in

seconds between the service start times scheduled in solβ
and those scheduled in sol0.

• PCT (percentage of changed timeslots): represents the

percentage of customers for which the timeslot scheduled

for the delivery in solβ is different from that scheduled

in sol0.

• PAC (percentage of affected customers): represents the

percentage of customers in solβ for which the company

has invested at least something greater than 0 (clearly, in

sol0 where the budget is null, the baseline comparison

value is always 0).

• PCTC (percentage change in traveling cost): represents

the difference between the traveling cost of solβ and that

of sol0, as a percentage of the traveling cost of sol0.

• PCHC (percentage change in hit-rate cost): represents the

difference between the hit-rate cost fHRC of solβ and

that of sol0, as a percentage of the available budget B.

To illustrate how investment drives structural changes in

a single instance, Figure 3 compares the routes obtained

with three different β values, namely, 0.0, 0.50, and 1.00.

Although node-to-vehicle assignments remain fixed, increasing

β reorders visits. The solution with β = 1.00 corresponds to

the solution that could be obtained by solving a standard VRP

with travel time minimization. The other solutions show more

complicated routes, since the cost of visiting customers in less

favorable timeslots cannot be fully compensated by the budget.

Figure 4 illustrates the distribution of the change in the

service start times (CSS) for customers across various budget

levels. A noticeable trend emerges, characterized by three

Fig. 4: Change of the start of the service (CSS), averaged over

all customers.

distinct phases. Initially, for low budget levels (β ≤ 0.30),

CSSs are negligible, as the median, 25th, and 75th percentiles

are all concentrated close to zero. As the budget increases

into the intermediate range of 0.35 ≤ β ≤ 0.60, the median

CSS remains at zero, but the distribution skews significantly

upward. This indicates that, while the start time for more than

half of the customers is unaffected, a growing portion of them

experiences a substantial shift, as seen in the 75th percentile

progressively increasing to a value of nearly 1500 seconds. For

the highest budget levels (β ≥ 0.65), a different operational

behavior emerges where the entire distribution shifts upwards.

In particular, the median CSS itself starts to increase, reaching

nearly 900 seconds for β = 1, signifying that the investment

now alters the start times for the majority of the customers.

This tripartite behavior is a pattern that can be noticed in most

analyzed KPIs, indicating a fundamental shift in the solution’s
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characteristics based on the amount of budget invested. In

contrast to such a behavior of the median, the average CSS

has an almost linear increase from 0 to around 1250 seconds.

Figure 5 presents the distribution for the percentage of

customers (PCT) whose selected timeslot changes with respect

to the zero-budget baseline. The analysis reveals the same clear

Fig. 5: Percentage of customers for which the timeslot selected

by the company changes (PCT).

threshold-based behavior as in the previous KPI. The average

PCT still increases linearly across β values, going from 0 to

about 35%. The median’s behavior, however, is more distinctly

segmented. In the first segment (β ≤ 0.30), the median PCT

is null, thus indicating that most customers are unaffected.

A sharp transition then occurs at β = 0.35 where the 75th

percentile rises while the median stays at 0. For β ≥ 0.60,

the median increases in three steps and stabilizes at 30% for

β ≥ 0.85.

To understand the mechanism driving these outcomes, Fig-

ure 6 illustrates the investment strategy identified in the opti-

mal solutions, by showing the percentage of customers (PAC)

for which the company invests in changing their behavior. In

Fig. 6: Percentage of customers on which the company invests

its budget (PAC).

contrast to the complex, threshold-based behavior seen in the

previous KPIs, the application of the budget is remarkably

direct and nearly linear. As β increases, the percentage of

affected customers also rises monotonically and with relatively

low variability. The median and average PAC values remain

closely aligned throughout the entire range, starting near 15%

and climbing steadily until they approach 100% for higher

investment levels. A notable insight emerges when comparing

this strategy to its impact on rescheduling (Figure 5), i.e., the

percentage of customers receiving investment is considerably

higher than the percentage whose timeslot is changed. For

instance, if we consider median values at β = 0.70, the budget

is invested in a 90% of the customers, while the percentage of

customers with an altered timeslot is just 20%. This implies

that, for a significant portion of customers (around 70%), the

budget is invested not to change their assigned timeslot, but to

increase the likelihood of delivery success for the scheduled

timeslot in sol0.

Figure 7 evaluates the impact of the budget on the routing

decisions by showing the percentage change in traveling costs

(PCTC). Note that, differently from the previous ones, this KPI

Fig. 7: Percentage change in traveling costs (PCTC).

may result in both negative and positive values. When they are

negative, the fTC derived from the solution including some

investment is lower than the no-budget solution. This is the

more frequent behavior. The resulting trend reveals a complex

behavior that strongly mirrors (even if horizontally specular)

the tripartite behavior of the first two KPIs analyzed rather than

the linear investment strategy itself. Such a behavior appears,

in this case, with thresholds at β = 0.40 and β = 0.70.

The average PCTC decreases linearly from 0% to -1.4%,

while the median PCTC value reaches a minimum of about

-1%. Interestingly enough, there are some cases in which

the budget investment increases the traveling cost, meaning

that the model favors some decrease in hit-rate cost at the

expense of a smaller increase in traveling cost. These situations

correspond to noisy results, due to the possible existence of

multiple optimal solutions for the problem. In fact, when a

certain non-null budget is available, it is never optimal to

invest in changing the solution structure without improving

the traveling cost, since the hit-rate saving must always be

compensated by the budget investment. This means, for every

solution with an increase in traveling costs, there must be an

equally optimal solution in which the traveling cost remains

the same or improves compared to sol0. Anyway, across all
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the β values, these cases fall beyond the 75th percentile, and,

therefore, they do not disrupt the validity of our analysis.

The final analysis, presented in Figure 8, examines the

portion of the budget dedicated to compensating for changes in

the objective function component fHRC , as a percentage of the

available budget to invest (PCHC). As before, this KPI may

Fig. 8: Percentage change in hit-rate cost (PCHC).

result in both negative and positive values. Here, a positive

value means that the value of fHRC when a budget is available

is greater than that obtained with zero budget. This is the more

common situation. The trend follows a clear phased pattern,

like in most previous KPIs. The median PCHC is initially

zero, becomes positive and rises through the mid-range of

β values, and finally stabilizes just under 20%. Notably, the

high variability observed at low-to-moderate investment levels

decreases significantly as the solution stabilizes. Interpreting

these results provides a deeper insight into the solution’s

trade-offs. When the median PCHC value is close to zero, it

suggests that the budget is primarily used to increase success

probability within the timeslots scheduled for visits in sol0.

Instead, when the median PCHC stabilizes just under 20% for

high β values, it indicates that roughly a fifth of the budget is

now used to offset the corresponding increase in the hit-rate

cost. This increase reveals a strategic selection of different

timeslots for the visits that allows the traveling cost reduction

seen previously for the same β values. The PCHC distribution

also reveals a wide range of outcomes. Extreme cases show

that the PCHC can reach almost 275%, where the hit-rate cost

increase is 2.75 times the available budget. Conversely, very

few times, negative values may also occur. These situations

reveal the presence of multiple optimal solutions, as seen for

the previous KPI. Again, the frequency of these cases does

not affect the insights derived.

VI. CONCLUSIONS

In this paper, we studied the Attended Home Delivery

problem with Customer Availability Profiles and introduced a

novel and managerially relevant dimension, namely, the ability

for a company to invest a budget to actively influence customer

presence probabilities during certain timeslots of interest. We

proposed the corresponding new optimization setting together

with its MILP formulation, called the Attended Home De-

livery problem with CAPs flexibility (AHDP-CF). Through

a structured analytical methodology based on lexicographic

optimization, we conducted an extensive computational study

to quantify the impact of the possible investment. Our analysis

revealed that the relationship between the investment in service

quality and the resulting operational outcomes is characterized

by two distinct thresholds that define three different ranges in

which the invested budget has different impacts. We showed

that small, incremental investments (within the first range)

yield negligible changes to the solution, whereas substantial

budgets (within the third range) enable a fundamental re-

structuring of the delivery routes and schedules. The primary

managerial insight derived is the possible quantification of a

strategic trade-off. Many times, it is optimal for the company

to leverage the budget to accept higher penalties on some

customer visits in exchange for significant savings in overall

traveling costs. This work, therefore, provides a clear and

quantitative understanding of the price of customer presence

in AHD logistics. The framework and insights presented

can serve as a valuable decision-support tool for logistics

companies, allowing them to move beyond treating customer

availabilities as fixed data and instead see them as a strategic

lever that can be priced and optimized.

Future research could extend this work in several direc-

tions. Developing scalable heuristic or metaheuristic algo-

rithms would allow the AHDP-CF to be applied to larger, real-

world instances. Moreover, exploring dynamic settings where

investment decisions can be adjusted during the operational

day presents another promising avenue for future investigation.

Finally, one may also want to incorporate into the problem

the willingness to accept of a customer against the company’s

offers by adopting more sophisticated models specifically

tailored for individual choices.
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