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Abstract—Differentiable Logic Gate Networks (DLNs) offer a
compelling framework for symbolic interpretability and reducing
inference cost. Building on prior works using Menger and Zadeh
T-norms, we investigate the Łukasiewicz T-norm as an alternative
relaxation for classical logic gates. While it provides strong
gradients in some regions, its flat areas result in vanishing
gradients that hinder training. To address this issue, we use an
initialization strategy that is analogous to residual connection in
Neural Networks to encourage error signal propagation during
training. Our empirical results show that Łukasiewicz based
DLNs, though slightly less accurate, benefit from faster inference
and lower memory requirements compared to Neural Networks,
giving the opportunity of practical application in, e.g., resource
constrained devices. Due to the structural clarity, DLNs facilitate
direct inspection and tracing of information flow, which makes
them suitable for application in explainable artificial intelligence
(XAI).

I. INTRODUCTION

D
IFFERENTIABLE logic gate networks (DLNs) provide

a promising framework for combining the interpretability

of classical logic circuits with the scalability of gradient-

based learning. Prior work has demonstrated that continuous

relaxations of binary logic gates, such as those based on

the Zadeh and Menger T-norms enable the use of standard

backpropagation techniques while allowing conversion back

to classical logic post training [19], [28], [15], [29]. Building

on this foundation, we extend the study of T-norm-based

relaxations by investigating the Łukasiewicz T-norm as a

candidate operator for differentiable logic networks.
In production environments, inference efficiency directly

affects user experience, operational costs, and energy con-

sumption, making it a critical optimization target, especially

for edge devices and real time systems [2], [21] with strict

latency and resource constraints. Common strategies such as

reduced-precision computation [3], [7], binary networks [22],

and sparsity exploitation [8], [16] offer partial solutions but

often come with trade-offs in accuracy or generality. DLNs

offer an alternative path, where logic gate networks were

trained using a continuous relaxation based on the fuzzy

logic functions to enable gradient descent. Each computational

unit in DLNs learns a probability distribution over 16 of

these differentiable fuzzy logic functions using softmax. Post

training, these units are assigned the most probable gate,

resulting in networks that are naturally sparse and require

no weights, leading to exceptional inference speeds. In our

previous work [28], we followed this approach using the

Zadeh T-norm for continuous relaxation. Although it is not

differentiable at a = b, we assume the output to be a in those

cases to preserve gradient flow. In this paper, we extend this

line of research by exploring the Łukasiewicz T-norm as a

relaxation operator for logic gate networks. Although similar

to the Zadeh T-norm, the Łukasiewicz operator provides strong

gradients but only in certain regions; however, it suffers from

wide, flat areas with vanishing gradients. To address this, we

use initialization strategies [20] that bias the network toward

gate configurations that better propagate gradients, especially

during the early stages of training.

Recent research on medical applications delving into large-

data processing such as MRI [27], [14], EEG [6], [11] data,

X-ray images [4] and clinical notes [5] which requires high

computational resources. The introduction of DLNs open a

new opportunity for processing relatively small data with low

latency and small memory footprint e.g. pulsimeter, oxygen

blood saturation measuring and non-invasive glucose monitor-

ing.

II. DIFFERENTIABLE LOGIC GATE NETWORKS

Hardware implementations utilizing logic gates exhibit ex-

ceptional performance characteristics nanosecond execution

speeds, true parallelism, and deterministic reliability. How-

ever, designing complex systems at the gate level presents

formidable challenges. Development with Verilog or VHDL

lacks convenient debugging tools, requires specialized equip-

ment for verification, and involves lengthy development cycles

[23]. These constraints necessitate novel approaches such as

symbolic learning that can select optimal logic gate config-

urations, dramatically reducing design cycles. On the other

hand, binary logic gates are inherently discontinuous, making
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gradient based training infeasible. Inspired by this, Differ-

entiable Logic Gate Networks was introduced by [19] and

further investigated by [28], offering an elegant solution to

this challenge by incorporating principles from Differentiable

Fuzzy Logics (DFL) [10].

Instead of operating on discrete values {0, 1}, DLNs allow

inputs and outputs to take continuous values in the range [0, 1].
This enables smooth transitions between logical states and

creates differentiable pathways through which gradients can

flow during training.

Architecturally, DLNs differ from standard neural networks

in their connection patterns. Each computational unit (analo-

gous to a neuron) processes a pair of randomly assigned inputs,

rather than computing a weighted sum across all inputs. This

design results in inherently sparse connections, in contrast to

the dense layers typical in traditional neural networks.

The core learning mechanism of DLNs involves dynami-

cally selecting the most appropriate fuzzy logic operation at

each unit to minimize the overall loss function. Unlike neural

networks, which learn weights, DLNs learn which logical

operations best model the underlying patterns in the data.

A Boolean operation can be defined as a function f :
{0, 1} × {0, 1} → {0, 1}, leading to a total of 16 possible

Boolean operations (Table I). Each of these can be extended

to fuzzy logic. For example, the Boolean AND (∧) operation

can be defined as:

a ∧ b =

{

1 if a = b = 1,

0 otherwise.

The fuzzy logic equivalent to Boolean AND using Menger’s

T-norm [15] is:

TM (a, b) = a · b.

To represent the fuzzy logic operation probabilistically, each

computational unit can be represented as:

r =

15
∑

i=0

pi · fi(a, b), for i = 0, 1, . . . , 15,

where the probabilities pi are derived from a softmax over a

learnable logit vector w:

pi =
ewi

∑

15

j=0
ewj

, for i = 0, 1, . . . , 15.

Each fi denotes a fuzzy logic function corresponding to one

of the 16 Boolean operations, table I.

Each layer in a DLN consists of several such units, and

their outputs propagate forward to support complex decision-

making processes. The choice of T-norm is a crucial hyperpa-

rameter, influencing both accuracy and inference speed, which

we explore in the following subsections.

A. Menger Based Differentiable Logic Gate Networks

The original DLN formulation [19] used Menger’s T-norm

(TM (a, b) = a·b), also known as the probabilistic T-norm. This

choice is intuitive due to its smooth and easily computable

derivatives:

∂TM(a, b)

∂a
= b,

∂TM(a, b)

∂b
= a,

which are well-suited for gradient based optimization algo-

rithms [24], [10].

Empirical results show that models based on the Menger

T-norm achieve competitive accuracy compared to neural

networks on many benchmarks while offering significantly

lower memory usage and computational complexity due to

their reliance on binary logic operations. Compared to other

T-norms [28], Menger based DLNs (DLNsM ) demonstrate

robustness to noise, albeit with slightly slower inference

times. However, the DLNM variant suffers from the vanishing

gradient problem, as the partial derivatives diminish when

∂TM(a, b)/∂a < 1, causing the backpropagated error signal to

attenuate and hindering effective learning in deeper networks.

To address this [19] proposed scaling the gradients by a

factor f > 1 for DLNs with more than six layers. While

this technique mitigates the vanishing gradient problem, it

also introduces the risk of exploding gradients, potentially

destabilizing training.

B. Zadeh Based Differentiable Logic Gate Networks

To mitigate gradient vanishing, [28] proposed replacing

Menger’s T-norm with Zadeh’s T-norm [29], defined as

TZ(a, b) = min(a, b). While the forward computation is

straightforward, care must be taken during backpropagation

to ensure consistent gradient flow, especially when a = b,
where the gradient could flow to either input.

To address this, the authors [28] chose to default to

propagating the gradient through a in the case of equality

(although choosing b would yield the same results). The partial

derivatives are defined as:

∂TZ(a, b)

∂a
=

{

1 if a ≤ b,

0 otherwise,

∂TZ(a, b)

∂b
=

{

0 if a ≤ b,

1 otherwise.

This setup ensures a well-defined and consistent backward

pass. One key advantage of Zadeh’s T-norm is that the deriva-

tives of all fuzzy operations are limited to the set {−1, 0, 1},

and it is never simultaneously zero for both a and b. This

guarantees that the gradient is neither vanishing nor exploding,

enabling more stable and effective training.

Consequently, Zadeh based DLNs (DLNsZ) are good at

recognizing discrete, singular features and outperform DLNsM

in inference speed, albeit with a slight trade off in accuracy

on some benchmarks [28].

C. Binary Logic Gate Networks

Compared to traditional neural networks, the inference

process in Differentiable Logic Networks can be significantly

less efficient due to the need to compute all 16 fuzzy logic

operations for every computational unit. In contrast, neural

networks rely heavily on matrix multiplication as their com-

putational backbone, a process that is now widely accelerated
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by modern hardware, such as Nvidia’s Tensor Cores, among

others.
One potential optimization is to reduce the number of

fuzzy logic operations computed by selecting only the logic

gate with the highest probability for each unit. Since fuzzy

operations generalize Boolean operations, when inputs are

strictly binary (i.e., 0 or 1), the resulting outputs are the

same as the binary connectives equivalent; converting from

smooth fuzzy operators to crisp binary ones theoretically does

not compromise accuracy, especially when the training data is

already binary. This transition could also substantially reduce

memory consumption and computational complexity due to

the efficiency of binary operations.
To implement this optimization, DLNs can be converted

into Binary Logic Gate Networks (LGNs) by choosing the

fuzzy operation where the softmax function results in the

highest probability; thus, this retains the same architectural

structure, namely, the number of layers and computational

units; however, each unit in LGNs only computes a single

binary logic gate instead of a weighted sum of all 16 functions.

III. ŁUKASIEWICZ BASED DIFFERENTIABLE LOGIC GATE

NETWORKS

In this study, we investigate fuzzy logic operations based

on the Łukasiewicz T-norm, defined as TŁ(a, b) = max{0, a+
b− 1}. Like the Zadeh T-norm used in [28], the Łukasiewicz

T-norm relies on min and max operators. Consequently, it ex-

hibits similar challenges during backpropagation, particularly

regarding non smooth gradients and ambiguous gradient flow

paths.
To address this, we adopt the same backward pass strat-

egy proposed in [28], which resolves the gradient ambiguity

by enforcing consistent choices. The partial derivatives with

respect to the inputs are defined as:

∂TŁ(a, b)

∂a
=

{

0 if a+ b− 1 ≤ 0,

1 otherwise,

∂TŁ(a, b)

∂b
=

{

0 if a+ b− 1 ≤ 0,

1 otherwise.

This yields sharp gradients in the set {−1, 0, 1} for the

network, which can help limit exploding gradients. However,

a significant portion of the domain of TŁ results in zero

gradients, leading to the risk of vanishing gradients during

training.
To mitigate this, we implement a residual initialization

scheme inspired by [20]. Instead of initializing the learnable

weights uniformly at random, the authors bias them toward

logic gates that act as pass through operators. Owing to the

symmetry between inputs, they treat gates corresponding to A
and B (i.e., the 3rd and 5th gates in Table I) as functionally

equivalent in this context. We experiment with two variants

of this initialization: one where gate A is assigned a 90%

initial probability (with all other gates initialized to 0.67%) as

in [20], and in this work we introduce another variant where

both gates A and B are initialized with 45% probability each.

For inference, we transform the computational units of

Differentiable Logic Networks into hard logic gates and gen-

erate corresponding C code for the network. This C code is

compiled using the -O1 optimization flag for models with

fewer than 50,000 computational units and -O0 for larger

models due to limitations in compilation time and memory

overhead.

Modern 64-bit CPUs are ubiquitous across consumer de-

vices, which implies that Boolean values must typically be

extended via zero extension or sign extension to align with

the ALU’s expected input width. The implementation proposed

by [19] uses a 64-bit encoding for Boolean inputs to match

the native word size of contemporary CPUs. For consistency,

our initial implementation of Zadeh-based Differentiable Logic

Networks (DLNs) [28] followed the same encoding strategy.

However, empirical evaluation with our available devices for

experiments revealed that using an 8-bit encoding for Boolean

values significantly reduces inference time. This change in

using different numbers of bits to represent Boolean values

does not affect the accuracy of the models. Therefore, in order

to maximize performance under our setup, we proceed with

using 8-bit encodings for all classical logic operations in the

networks instead of 64-bit.

IV. EXPERIMENTS AND RESULTS

To ensure a fair comparison with previous work [19], [28],

we evaluate our proposed approach on both structured and

unstructured data types. For structured datasets, categorical

attributes are one-hot encoded, while continuous features such

as age or tumor size are discretized and then followed by one-

hot encoding. This preprocessing ensures compatibility with

post training discretized models that require binary or discrete

input representations. For unstructured data such as CIFAR-10

[12], we adopt a similar discretization strategy as [19], [28] for

pixel intensities by applying a series of progressive thresholds,

enabling a finer grained binary encoding of continuous values.

This technique reduces information loss during binarization

and supports more expressive representations in logic based

models. We created two variants of the CIFAR-10 dataset for

3 thresholds and 31 thresholds, which we will discuss in more

detail in CIFAR-10. In contrast, for the MNIST dataset, we

retain the original grayscale pixel values and train directly on

the real valued inputs to evaluate DLNs’ performance on real

values data.

During evaluation, all DLNs, regardless of implementation,

are converted into Binary Logic Gate Networks where the

computational unit calculates fixed Boolean functions with

the highest probability. All the variants of DLNŁ are denoted

as DLNŁ, DLNŁ*, DLNŁ** for without residual initialization,

residual initialization at the feedforward gate A, and residual

initialization at gates A and B. All models are implemented

using PyTorch [18], Adam optimizer [9] and trained on an

NVIDIA RTX 2000 Ada GPU. Inference time is measured

using a single threaded setup on an AMD Ryzen 5 3550H

CPU and averaged across 100 runs. To indicate statistically

significant differences in inference time across models, we
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TABLE I
LIST OF ALL ŁUKASIEWICZ T-NORM LOGIC GATES.

ID Operator Łukasiewicz T-norm 00 01 10 11
0 False 0 0 0 0 0
1 a ∧ b max{0, a+ b− 1} 0 0 0 1
2 ¬(a ⇒ b) max{0, a− b} 0 0 1 0
3 a a 0 0 1 1
4 ¬(a ⇐ b) max{0,−a+ b} 0 1 0 0
5 b b 0 1 0 1
6 ¬(a ⇔ b) min{1,max{0, a− b}+max{0,−a+ b}} 0 1 1 0
7 a ∨ b min{1, a+ b} 0 1 1 1
8 ¬(a ∨ b) max{0, 1− a− b} 1 0 0 0
9 a ⇔ b max{0,min{1, 1− a+ b}+min{1, 1 + a− b} − 1} 1 0 0 1
10 ¬b 1− b 1 0 1 0
11 a ⇐ b min{1, 1 + a− b} 1 0 1 1
12 ¬a 1− a 1 1 0 0
13 a ⇒ b min{1, 1− a+ b} 1 1 0 1
14 ¬(a ∧ b) min{1, 2− a− b} 1 1 1 0
15 True 1 1 1 1 1

TABLE II
RESULTS ON THE MONK DATA SETS AVERAGED OVER 100 RUNS.

Method MONK-1 MONK-2 MONK-3
ANN 100.00% 100.00% 93.5%
DLNM 100.00% 78.24% 95.37%
DLNZ 100.00% 89.32% 91.74%
DLNŁ 100.00% 56.94% 93.98%
DLNŁ* 100.00% 61.57% 78.24%
DLNŁ** 100.00% 49.77% 69.44%

# Parameters Inf. Time Memory
ANN 162 161.20± 26.50ns 648B
DLNM 144 | 72 | 72 8.06± 0.17ns 72B | 36B | 36B
DLNZ 144 | 72 | 72 7.77± 0.13ns 72B | 36B | 36B
DLNŁ 144 | 72 | 72 7.20± 0.12ns 72B | 36B | 36B
DLNŁ* 144 | 72 | 72 6.83± 0.16ns 72B | 36B | 36B
DLNŁ** 144 | 72 | 72 6.78± 0.15ns 72B | 36B | 36B

denote: p ∈ [0.001, 0.5) by *, p ∈ [0.0001, 0.001) by **,

and p ∈ [0, 0.0001) by ***.

A. MONK

The MONK datasets [26] constitute a benchmark suite of bi-

nary classification tasks designed to evaluate the performance

of machine learning models on symbolic and logical reasoning

problems. Each dataset consists of discrete-valued features and

a binary target label, with the classification rules defined using

logical expressions.

MONK-1 defines a concept in disjunctive normal form

(DNF), making it relatively simple and well suited for sym-

bolic learners such as Differentiable Logic Gate Networks.

MONK-2 resembles a parity problem, where the target func-

tion is based on a combination of attributes that cannot be

easily expressed in either DNF or conjunctive normal form

(CNF). MONK-3 is structurally similar to MONK-1 and is

also defined using DNF. However, it introduces label noise into

the training set, making it a useful benchmark for evaluating

a model’s robustness and generalization under imperfect data.

The ANN achieves the highest accuracy on the MONK-

1 and MONK-2 datasets, but it requires significantly more

memory than DLNs, regardless of the implementation. DLNM

outperforms all other models on the MONK-3 dataset. In-

TABLE III
MONK DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE TESTS. WE

DENOTE: p ∈ [0.001, 0.5) BY *, p ∈ [0.0001, 0.001) BY **, AND

p ∈ [0, 0.0001) BY ***

DLNM DLNZ DLNŁ DLNŁ* DLNŁ**

DLNM *** *** ***
DLNZ * *** ***
DLNŁ *** * *
DLNŁ* *** ***
DLNŁ** *** *** *

terestingly, DLNŁ achieves a higher accuracy than the ANN

(94.0% vs. 93.5%) in the last dataset (see table II), results of

significant difference tests are presented in table III and basic

statistical analysis in figure 1. Adding residual initializations

to DLNŁ yields mixed results: accuracy improves on MONK-

2 but decreases on the other datasets. In terms of inference

time, the DLNŁ* DLNŁ** methods show similar improvement

in performance.

B. Adult dataset

The Adult dataset [1], also known as the “Census Income"

dataset, is a widely used benchmark in the machine learning

community. It originates from the UCI Machine Learning

Repository and involves a binary classification task aimed

at predicting whether an individual’s annual income exceeds

$50,000. The dataset comprises 48,842 samples and includes

both continuous and categorical features, such as age, educa-

tion, occupation, and work class.

TABLE IV
RESULTS FOR THE ADULT DATA SET AVERAGED OVER 100 RUNS.

Adult Acc. #Param. Infer. Time Memory
ANN 84.90% 3, 810 287.95± 6.19ns 15KB
DLNM 84.83% 1, 280 59.47± 2.34ns 640B
DLNZ 75.40% 1, 280 71.12± 0.45ns 640B
DLNŁ 82.62% 1, 280 94.98± 0.88ns 640B
DLNŁ* 84.57% 1, 280 59.99± 2.02ns 640B
DLNŁ** 84.59% 1, 280 81.27± 1.91ns 640B
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Fig. 1. Basic statistical analysis for MONK dataset inference time (ns) results (lower is better)

Fig. 2. Basic statistical analysis for Adult dataset inference time (ns) results (lower is better)
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TABLE V
ADULT DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE TESTS. WE

DENOTE: p ∈ [0.001, 0.5) BY *, p ∈ [0.0001, 0.001) BY **, AND

p ∈ [0, 0.0001)

DLNM DLNZ DLNŁ DLNŁ* DLNŁ**

DLNM *** *** ***
DLNZ *** *** *** ***
DLNŁ *** *** *** ***
DLNŁ* *** *** ***
DLNŁ** *** *** *** ***

In this benchmark, DLNM , DLNŁ*, and DLNŁ** demonstrate

comparable accuracy to the artificial neural network (ANN),

but with much lower inference time and memory usage (table

IV), inference time significant difference tests are in table

V and see figure 2 for basic statistical analysis. Among all

implementations, DLNM is the fastest in terms of inference

speed and similar accuracy compared to the baseline ANN.

Interestingly, when we initialize the Łukasiewicz models with

higher probabilities at gates A and B, the accuracy doesn’t

improve, but inference time goes down. This shows DLNŁ* a

good compromise between speed and performance.

C. Breast Cancer dataset

The Breast Cancer dataset [30] was collected from the

University Medical Center, Institute of Oncology, Ljubljana,

Yugoslavia. It is one of three domains provided by the On-

cology Institute that have frequently appeared in the machine

learning literature.
The dataset consists of 286 instances, with 201 belonging

to one class and 85 to another. Each instance is described

by nine attributes. The dataset is commonly used to assess

classification performance on medical diagnostic tasks, par-

ticularly in scenarios involving imbalanced class distributions

and heterogeneous feature types.

TABLE VI
RESULTS FOR THE BREAST CANCER DATA SET AVERAGED OVER 100

RUNS.

Breast Cancer Acc. #Param. Infer. Time Memory
ANN 75.31% 434 792.43± 100.23ns 1.4KB
DLNM 71.43% 640 38.34± 0.27ns 320B
DLNZ 68.56% 640 35.14± 0.22ns 320B
DLNŁ 70.00% 640 26.72± 1.07ns 320B
DLNŁ* 74.29% 640 30.62± 1.25ns 320B
DLNŁ** 70.00% 640 35.58± 1.10ns 320B

In this experiment, table VI shows ANN reaches an accu-

racy of 75.3%, followed closely by DLNŁ* at 74.3%, while

using only a fraction of the inference time and memory.

DLNŁ stands out as the fastest model, although it has very

low accuracy. The results of significant difference tests for

inference speed are presented in table VII, and essential

statistical analysis is presented in figure 3. Notably, using

residual initialization brings a major boost for DLNŁ, raising

its accuracy from 70.0% to 74.3%. However, when both gates

A and B are initialized together, the model’s accuracy actu-

ally drops. Once again, DLNŁ* has a good balance between

accuracy and run time complexity.

TABLE VII
BREAST CANCER DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE

TESTS. WE DENOTE: p ∈ [0.001, 0.5) BY *, p ∈ [0.0001, 0.001) BY **,
AND p ∈ [0, 0.0001)

DLNM DLNZ DLNŁ DLNŁ* DLNŁ**

DLNM *** *** *** *
DLNZ *** *** **
DLNŁ *** *** * ***
DLNŁ* *** ** * *
DLNŁ** * *** *

D. MNIST Dataset

To ensure comparability with prior studies [19], [28], we

evaluate our proposed approach on the MNIST dataset [13].

MNIST is a standard benchmark in computer vision and ma-

chine learning, consisting of grayscale images of handwritten

digits ranging from 0 to 9. The dataset comprises 70,000

samples, partitioned into 60,000 training images and 10,000

test images, each originally sized at 28× 28 pixels.

To examine the models’ adaptability to reduced input di-

mensionality, we additionally resize the images to 20 × 20
pixels by removing the borders, thereby constructing a sec-

ondary, lower-resolution version of the dataset. Each image is

associated with a label corresponding to the digit it represents,

making this a ten class classification problem. The dataset

serves as a robust testbed for evaluating both accuracy and

generalization across a range of model architectures.

In both the small and normal configurations, the results

in table VIII show ANNs outperform DLNs in terms of

accuracy across all implementations (ANN (small): 96.3%,

ANN: 98.40%), though this comes at the cost of higher

inference time and memory usage. Among the smaller DLN

models, DLNM (small) achieves the highest accuracy, but it

is the slowest (1.127 ± 0.03µs) see table IX and figure 4

for inference speed significant difference tests and statistical

analysis. On the other end, DLNŁ (small) offers the fastest

inference but with the lowest accuracy. DLNŁ** (small) yields

higher accuracy than DLNŁ* (small) and on average, it also

has a faster inference time; however, this is not a statistically

significant increase. Both initialization strategies show clear

improvements in accuracy compared to the uninitialized base

model.

It’s also worth pointing out that DLNM and DLNŁ* have

comparable accuracy (97.6% vs. 97.3%), but DLNŁ* has the

advantage in terms of faster inference.

E. CIFAR-10 Dataset

CIFAR-10 [12] is a well established benchmark dataset

composed of 60,000 color images, each with a resolution of

32× 32 pixels. The images span 10 distinct object categories,

including airplanes, automobiles, birds, cats, and more. The

dataset is partitioned into 50,000 training samples and 10,000

test samples. Its compact image size makes it particularly

suitable for experimentation under limited computational re-

sources, facilitating the development and evaluation of novel

algorithms.
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Fig. 3. Basic statistical analysis for Breast Cancer dataset inference time (ns) results (lower is better)

TABLE VIII
RESULTS FOR THE MNIST DATA SET AVERAGED OVER 100 RUNS, WHERE OPS STAND FOR NUMBER OF BINARY OPERATIONS NEEDED TO PERFORM

COMPUTATIONS.

MNIST Acc. #Param. Memory Infer. Time OPs
ANN (small) 97.92% 118282 462KB 3.66± 0.15µs 236M
DLNM (small) 96.34% 48000 23KB 1.13± 0.03µs 48K
DLNZ (small) 94.52% 48000 23KB 1.10± 0.03µs 48K
DLNŁ (small) 93.93% 48000 23KB 1.25± 0.30µs 48K
DLNŁ* (small) 95.55% 48000 23KB 1.09± 0.03µs 48K
DLNŁ** (small) 96.31% 48000 23KB 1.05± 0.03µs 48K
ANN 98.40% 22609930 86MB 1009.17± 9.23µs 45G
DLNM 97.61% 384000 188KB 83.16± 0.09µs 384K
DLNZ 93.33% 384000 188KB 79.12± 0.06µs 384K
DLNŁ 95.05% 384000 188KB 79.63± 0.11µs 384K
DLNŁ* 97.36% 384000 188KB 78.58± 0.13µs 384K
DLNŁ** 97.40% 384000 188KB 78.49± 0.10µs 384K

TABLE IX
MNIST DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE TESTS. WE DENOTE: p ∈ [0.001, 0.5) BY *, p ∈ [0.0001, 0.001) BY **, AND

p ∈ [0, 0.0001)

DLNM (small) DLNZ (small) DLNŁ (small) DLNŁ* (small) DLNŁ** (small)
DLNM (small) *
DLNZ (small) *
DLNŁ (small) * * ** ***
DLNŁ* (small) **
DLNŁ** (small) ***

DLNM DLNZ DLNŁ DLNŁ* DLNŁ**

DLNM *** *** *** ***
DLNZ *** *** ** ***
DLNŁ *** *** *** ***
DLNŁ* *** ** ***
DLNŁ** *** *** ***
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Fig. 4. Basic statistical analysis for MNIST dataset inference time (ns) results (lower is better)

Following the methodology proposed in [19], we reduce

the color channel resolution to discrete threshold levels to

accommodate binary input constraints of logic based models.

Specifically, we apply three value thresholds for the small and

medium models and 31 thresholds for the large models. Instead

of a simple binarization using a 0.5 cutoff, which often results

in significant information loss, we use a set of progressive

thresholds (e.g., 0.25, 0.5, 0.75) to discretize pixel intensities

more effectively. For instance, a pixel with intensity pi = 0.6
can be represented as pi = [1, 1, 1, 0], where i denotes the

pixel’s position in the flattened image. This multi threshold

encoding mitigates the discretization loss when converting

fuzzy inputs into binary representations, thus improving the

suitability of the data for binary logic gate models.

Although dropout and data augmentation are widely used to

improve generalization in vision tasks, we intentionally refrain

from employing these techniques to maintain consistency with

our experimental framework. For all DLN implementations,

we use the notation S, M, and L to represent small, medium,

and large models, respectively, based on the number of pa-

rameters.

In the smaller model configurations, DLN implementations

achieve lower accuracy compared to ANNs (see table X).

Among the different DLN implementations, DLNM consis-

tently achieves the highest accuracy across all model sizes (S,

M, L). The initialization methods show consistent improve-

ment in accuracy over the base DLNŁ model for all model

sizes without significant impact on the inference time (see

table XI and figure 5).

V. DISCUSSION

The experimental results show consistently low accuracy

for Łukasiewicz T-norm based models, which aligns with our

initial hypothesis. We attribute this to a substantial portion of

the domain in Łukasiewicz based fuzzy logic yielding zero

gradients, which prevents error signals from backpropagating

effectively to higher layers. Moreover, across all experiments,

larger networks benefit significantly from both proposed ini-

tialization schemes, showing notable improvements over the

baseline DLNsŁ. This supports the idea that biasing the model

toward feedforward gates while avoiding gates that contribute

to gradient vanishing, particularly during the early stages

of training when error rates are highest, can substantially

enhance error propagation. Interestingly, these initialization

methods also increase the models inference speed compared

to the baseline models. While increasing the number of

feedforward-biased gates does lead to higher accuracy, the

improvement is modest and not consistently observed across

all experiments. In smaller models, such as those trained on

MONK-2, MONK-3, and the Breast Cancer dataset, biasing

toward feedforward gates results in a decrease in accuracy

performance. We hypothesize that when the number of model

parameters is limited, the biasing restricts the model’s capacity

to flexibly select appropriate logic gates, thereby impairing its

learning ability. However, in larger models, the inflexibility

introduced by the initialization schemes results in measur-

able improvements in both accuracy and inference time. One
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TABLE X
RESULTS FOR THE CIFAR-10 DATA SET AVERAGED OVER 100 RUNS, WHERE OPS STAND FOR NUMBER OF BINARY OPERATIONS NEEDED TO PERFORM

COMPUTATIONS, S,M,L STAND FOR SMALL, MEDIUM AND LARGE NUMBER OF PARAMETERS IN THE MODEL RESPECTIVELY PRESENTED IN THE THIRD

COLUMN.

CIFAR-10 Acc. #Param. Memory Infer. Time OPs
ANN 57.08% 12.6M 48MB 519.38± 6.70µs 25G
DLNM (S) 45.75% 48K 24KB 1.75± 0.00µs 48K
DLNZ (S) 45.45% 48K 24KB 2.00± 0.00µs 48K
DLNŁ (S) 36.92% 48K 24KB 1.63± 0.00µs 48K
DLNŁ* (S) 41.14% 48K 24KB 1.66± 0.00µs 48K
DLNŁ** (S) 42.44% 48K 24KB 1.88± 0.00µs 48K
DLNM (M) 57.34% 512K 250KB 167.19± 0.14µs 512K
DLNZ (M) 55.55% 512K 250KB 163.54± 0.11µs 512K
DLNŁ (M) 52.23% 512K 250KB 158.81± 0.25µs 512K
DLNŁ* (M) 54.88% 512K 250KB 159.22± 0.11µs 512K
DLNŁ** (M) 55.30% 512K 250KB 159.59± 0.18µs 512K
DLNM (L) 60.32% 1.28M 625KB 399.08± 0.34µs 1.28M
DLNZ (L) 57.28% 1.28M 625KB 382.81± 0.16µs 1.28M
DLNŁ (L) 53.48% 1.28M 625KB 377.30± 0.21µs 1.28M
DLNŁ* (L) 57.78% 1.28M 625KB 379.28± 0.26µs 1.28M
DLNŁ** (L) 58.09% 1.28M 625KB 377.20± 0.23µs 1.28M

TABLE XI
CIFAR-10 DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE TESTS. WE DENOTE: p ∈ [0.001, 0.5) BY *, p ∈ [0.0001, 0.001) BY **, AND

p ∈ [0, 0.0001)

DLNM (S) DLNZ (S) DLNŁ (S) DLNŁ* (S) DLNŁ** (S)
DLNM (S) *** *** *** ***
DLNZ (S) *** *** *** ***
DLNŁ (S) *** *** *** ***
DLNŁ* (S) *** *** *** ***
DLNŁ** (S) *** *** *** ***

DLNM (M) DLNZ (M) DLNŁ (M) DLNŁ* (M) DLNŁ** (M)
DLNM (M) *** *** *** ***
DLNZ (M) *** *** *** ***
DLNŁ (M) *** *** *
DLNŁ* (M) *** *** *

DLNM (L) DLNZ (L) DLNŁ (L) DLNŁ* (L) DLNŁ** (L)
DLNM (L) *** *** *** ***
DLNZ (L) *** *** *** ***
DLNŁ (L) *** *** ***
DLNŁ* (L) *** *** *** ***
DLNŁ** (L) *** *** ***

possible explanation for the improved runtime efficiency is

that a majority of the operations in these models are iden-

tity functions. At lower compiler optimization levels (e.g.,

-O0), identity operations are implemented as simple memory

transfers between registers. However, under aggressive opti-

mization settings (e.g., -O3), compilers often eliminate such

operations entirely by reusing registers, resulting in minimal

computational overhead. This behavior significantly reduces

the runtime burden of inference in models where identity gates

dominate. Figure 6 illustrates the gate selection distributions

for DLNsŁ (Baseline), DLNsŁ* (A), and DLNsŁ** (A - B) on

the MNIST dataset. A clear concentration of feedforward gates

a for DLNsŁ*, and feedforward gates a and b for DLNsŁ**,

which correspond to identity mappings, are evident in the

latter two configurations. This suggests that the initialization

schemes effectively steer the models toward simpler compu-

tational pathways. Interestingly, these identity heavy models

not only benefit from faster inference but also demonstrate

improved gradient stability, particularly during the early stages

of training. The stable signal propagation enabled by identity

operations likely contributes to the observed accuracy gains.

However, the dominance of feedforward gates in DLNsŁ* and

DLNsŁ** after training also implies underutilization of the

network’s expressive capacity. While this may be beneficial

for efficiency, it raises questions about the models’ ability to

learn more complex representations when required.

Furthermore, we observe that increasing model size gen-

erally leads to an improvement in accuracy. This trend is

consistent with the two findings from [19], [28] show that

larger DLN models possess greater representational capacity.

In current DLNs implementations, input pairs are connected

randomly to computational units. This random connectivity

hinders memory coalescing during data loading, which in turn

leads to data starvation as computational kernels are forced to

wait for data to be fetched. It is due to transferring memory

from global memory (VRAM) to local memory (Registers)

cost hundreds times more compute cycles comparing to the

actually computations itself [17]. Replacing a convex combina-

tion of gates with a single, discrete gate can lead to significant

performance degradation. For instance, if a computational unit
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Fig. 5. Basic statistical analysis for CIFAR-10 dataset inference time (ns) results (lower is better)

Fig. 6. DLNsŁ, DLNsŁ*, DLNsŁ** gate distributions in MNIST dataset
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has probabilities p1 = 0.60 and p4 = 0.40 for two logic

gates, deterministically selecting a gate at p1 fails to capture

the nuanced behavior expressed in the soft combination. This

simplification may overlook critical interactions among the

logic operators.

VI. CONCLUSIONS

We proposed a differentiable logic gate network based on

a relaxation of classical logic gates using the Łukasiewicz

T-norm. Our empirical findings support the hypothesis that

the Łukasiewicz T-norm is not well-suited for gradient based

training due to its gradient vanishing properties. This is

consistent with observations reported in [10]. The experiments

further demonstrate that encouraging better error propagation

by biasing the weights of the computational units toward

feedforward logic gates and avoiding the gates that can cause

zeros in gradient significantly improves model accuracy and

mitigates the gradient vanishing issue.

DLNs offer a distinct advantage over traditional neural net-

works in terms of interpretability. Due to the structural clarity,

this facilitates direct inspection and tracing of information

flow, making DLNs particularly suitable for applications in ex-

plainable artificial intelligence (XAI). Unlike standard neural

networks, where interpretability often relies on post hoc anal-

ysis or surrogate explanations, DLNs provide intrinsic trans-

parency through their architecture. This transparency reveals a

recurrent pattern in trained DLN models: a disproportionately

high number of units are configured as feedforward (identity)

gates. While this contributes to computational efficiency and

stable training dynamics, it also suggests a significant under-

utilization of the available computational capacity within the

network. Many logic gate units effectively act as passthrough

mechanisms, bypassing transformation or decision making

roles.

Regardless of implementation details, differentiable logic

gate networks generally require less memory and exhibit

lower inference time compared to standard neural networks,

highlighting their computational efficiency despite variable

performance in accuracy. These findings underscore key differ-

ences across implementations of DLNs. While logic networks

trained using Menger’s T-norm may achieve higher accuracy,

the Łukasiewicz based models exhibit faster inference times.

This emphasizes the importance of careful design and evalu-

ation when developing differentiable logic gate networks. In

some applications, reducing inference time with a marginal

decrease in accuracy may be preferable to higher accuracy

but significantly slower performance.

Further performance gains in DLNs may be realized by

optimizing the flow of information through structured and ef-

ficient connectivity patterns. One notable limitation in existing

architectures is the underutilization of computational units,

which can be mitigated by reusing logic elements across input

features in a convolution like fashion [20] By enabling each

compute unit to process multiple bit pairs in parallel rather

than in a one-by-one manner, the network can exploit the

capabilities of modern 64-bit arithmetic logic units (ALUs)

on CPUs. This approach not only enhances the utilization

of computational units in DLNs but also contributes to re-

ducing computational overhead during inference. Introducing

regularization strategies to constrain the weight vectors of

computational units may help reduce discretization loss when

translating from fuzzy to hard logic (Boolean). These offer

promising directions for improving both the accuracy and

efficiency of DLNs in practical applications.

Finally, while most medical machine learning studies focus

on developing high-accuracy and computationally intensive

models, DLNs offer a practical potential in low-latency,

resource-constrained use cases. Applications such as oxygen

blood saturation measuring or non-invasive glucose monitoring

suggest alternative research directions for logic gate networks.
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279. Available: http://dx.doi.org/10.15439/2021F86

[5] L. Dey, S. Jana, T. Dasgupta, and T. Gupta, “Deciphering Clinical
Narratives – Augmented Intelligence for Decision Making in Healthcare
Sector,” in *Proc. 18th Conf. on Computer Science and Intelligence
Systems*, M. Ganzha, L. Maciaszek, M. Paprzycki, and D. Ślęzak, Eds.,
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