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Abstract—Differentiable Logic Gate Networks (DLNs) offer a
compelling framework for symbolic interpretability and reducing
inference cost. Building on prior works using Menger and Zadeh
T-norms, we investigate the Lukasiewicz T-norm as an alternative
relaxation for classical logic gates. While it provides strong
gradients in some regions, its flat areas result in vanishing
gradients that hinder training. To address this issue, we use an
initialization strategy that is analogous to residual connection in
Neural Networks to encourage error signal propagation during
training. Our empirical results show that Lukasiewicz based
DLNSs, though slightly less accurate, benefit from faster inference
and lower memory requirements compared to Neural Networks,
giving the opportunity of practical application in, e.g., resource
constrained devices. Due to the structural clarity, DLNs facilitate
direct inspection and tracing of information flow, which makes
them suitable for application in explainable artificial intelligence
(XAD).

I. INTRODUCTION

IFFERENTIABLE logic gate networks (DLNs) provide
D a promising framework for combining the interpretability
of classical logic circuits with the scalability of gradient-
based learning. Prior work has demonstrated that continuous
relaxations of binary logic gates, such as those based on
the Zadeh and Menger T-norms enable the use of standard
backpropagation techniques while allowing conversion back
to classical logic post training [19], [28], [15], [29]. Building
on this foundation, we extend the study of T-norm-based
relaxations by investigating the Lukasiewicz T-norm as a
candidate operator for differentiable logic networks.

In production environments, inference efficiency directly
affects user experience, operational costs, and energy con-
sumption, making it a critical optimization target, especially
for edge devices and real time systems [2], [21] with strict
latency and resource constraints. Common strategies such as
reduced-precision computation [3], [7], binary networks [22],
and sparsity exploitation [8], [16] offer partial solutions but
often come with trade-offs in accuracy or generality. DLNs
offer an alternative path, where logic gate networks were
trained using a continuous relaxation based on the fuzzy
logic functions to enable gradient descent. Each computational

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

219

Piotr Wasilewski
0000-0003-0027-1102
Systems Research Institute,
Polish Academy of Sciences
6 Newelska, 01-447 Warsaw, Poland
Faculty of Computer Science,
Dalhousie University
6050 University Avenue, Halifax,
Nova Scotia, Canada
Email: pwasilew @ibspan.waw.pl

unit in DLNs learns a probability distribution over 16 of
these differentiable fuzzy logic functions using softmax. Post
training, these units are assigned the most probable gate,
resulting in networks that are naturally sparse and require
no weights, leading to exceptional inference speeds. In our
previous work [28], we followed this approach using the
Zadeh T-norm for continuous relaxation. Although it is not
differentiable at a = b, we assume the output to be a in those
cases to preserve gradient flow. In this paper, we extend this
line of research by exploring the Lukasiewicz T-norm as a
relaxation operator for logic gate networks. Although similar
to the Zadeh T-norm, the Lukasiewicz operator provides strong
gradients but only in certain regions; however, it suffers from
wide, flat areas with vanishing gradients. To address this, we
use initialization strategies [20] that bias the network toward
gate configurations that better propagate gradients, especially
during the early stages of training.

Recent research on medical applications delving into large-
data processing such as MRI [27], [14], EEG [6], [11] data,
X-ray images [4] and clinical notes [5] which requires high
computational resources. The introduction of DLNs open a
new opportunity for processing relatively small data with low
latency and small memory footprint e.g. pulsimeter, oxygen
blood saturation measuring and non-invasive glucose monitor-
ing.

II. DIFFERENTIABLE LOGIC GATE NETWORKS

Hardware implementations utilizing logic gates exhibit ex-
ceptional performance characteristics nanosecond execution
speeds, true parallelism, and deterministic reliability. How-
ever, designing complex systems at the gate level presents
formidable challenges. Development with Verilog or VHDL
lacks convenient debugging tools, requires specialized equip-
ment for verification, and involves lengthy development cycles
[23]. These constraints necessitate novel approaches such as
symbolic learning that can select optimal logic gate config-
urations, dramatically reducing design cycles. On the other
hand, binary logic gates are inherently discontinuous, making
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gradient based training infeasible. Inspired by this, Differ-
entiable Logic Gate Networks was introduced by [19] and
further investigated by [28], offering an elegant solution to
this challenge by incorporating principles from Differentiable
Fuzzy Logics (DFL) [10].

Instead of operating on discrete values {0,1}, DLNs allow
inputs and outputs to take continuous values in the range [0, 1].
This enables smooth transitions between logical states and
creates differentiable pathways through which gradients can
flow during training.

Architecturally, DLNs differ from standard neural networks
in their connection patterns. Each computational unit (analo-
gous to a neuron) processes a pair of randomly assigned inputs,
rather than computing a weighted sum across all inputs. This
design results in inherently sparse connections, in contrast to
the dense layers typical in traditional neural networks.

The core learning mechanism of DLNs involves dynami-
cally selecting the most appropriate fuzzy logic operation at
each unit to minimize the overall loss function. Unlike neural
networks, which learn weights, DLNs learn which logical
operations best model the underlying patterns in the data.

A Boolean operation can be defined as a function f :
{0,1} x {0,1} — {0, 1}, leading to a total of 16 possible
Boolean operations (Table I). Each of these can be extended
to fuzzy logic. For example, the Boolean AND (A) operation
can be defined as:

1 ifa=0b=1,
aNb= )
0 otherwise.

The fuzzy logic equivalent to Boolean AND using Menger’s
T-norm [15] is:
Tr(a,b) =a-b.

To represent the fuzzy logic operation probabilistically, each
computational unit can be represented as:

15
r=>Y pi-fila,b), fori=0,1,...,15,
=0

where the probabilities p; are derived from a softmax over a
learnable logit vector w:

eWi

pi=——— fori=0,1,...,15.

> =0 €7
Each f; denotes a fuzzy logic function corresponding to one
of the 16 Boolean operations, table I.

Each layer in a DLN consists of several such units, and
their outputs propagate forward to support complex decision-
making processes. The choice of T-norm is a crucial hyperpa-
rameter, influencing both accuracy and inference speed, which
we explore in the following subsections.

A. Menger Based Differentiable Logic Gate Networks

The original DLN formulation [19] used Menger’s T-norm
(T (a, b) = a-b), also known as the probabilistic T-norm. This

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

choice is intuitive due to its smooth and easily computable
derivatives:
8TM(a,b) —b 8TM(CL, b) o
da o
which are well-suited for gradient based optimization algo-
rithms [24], [10].

Empirical results show that models based on the Menger
T-norm achieve competitive accuracy compared to neural
networks on many benchmarks while offering significantly
lower memory usage and computational complexity due to
their reliance on binary logic operations. Compared to other
T-norms [28], Menger based DLNs (DLNsj,;) demonstrate
robustness to noise, albeit with slightly slower inference
times. However, the DLN}, variant suffers from the vanishing
gradient problem, as the partial derivatives diminish when
0Ty (a,b)/da < 1, causing the backpropagated error signal to
attenuate and hindering effective learning in deeper networks.
To address this [19] proposed scaling the gradients by a
factor f > 1 for DLNs with more than six layers. While
this technique mitigates the vanishing gradient problem, it
also introduces the risk of exploding gradients, potentially
destabilizing training.

B. Zadeh Based Differentiable Logic Gate Networks

To mitigate gradient vanishing, [28] proposed replacing
Menger’s T-norm with Zadeh’s T-norm [29], defined as
Tz(a,b) = min(a,b). While the forward computation is
straightforward, care must be taken during backpropagation
to ensure consistent gradient flow, especially when a = b,
where the gradient could flow to either input.

To address this, the authors [28] chose to default to
propagating the gradient through a in the case of equality
(although choosing b would yield the same results). The partial
derivatives are defined as:

0Tz(a,b) |1 ifa<b,
da 0 otherwise, Ob

0Tz(a,b) O if a <D,
1 otherwise.

This setup ensures a well-defined and consistent backward
pass. One key advantage of Zadeh’s T-norm is that the deriva-
tives of all fuzzy operations are limited to the set {—1,0,1},
and it is never simultaneously zero for both a and b. This
guarantees that the gradient is neither vanishing nor exploding,
enabling more stable and effective training.

Consequently, Zadeh based DLNs (DLNsy) are good at
recognizing discrete, singular features and outperform DLNsy
in inference speed, albeit with a slight trade off in accuracy
on some benchmarks [28].

C. Binary Logic Gate Networks

Compared to traditional neural networks, the inference
process in Differentiable Logic Networks can be significantly
less efficient due to the need to compute all 16 fuzzy logic
operations for every computational unit. In contrast, neural
networks rely heavily on matrix multiplication as their com-
putational backbone, a process that is now widely accelerated
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by modern hardware, such as Nvidia’s Tensor Cores, among
others.

One potential optimization is to reduce the number of
fuzzy logic operations computed by selecting only the logic
gate with the highest probability for each unit. Since fuzzy
operations generalize Boolean operations, when inputs are
strictly binary (i.e., O or 1), the resulting outputs are the
same as the binary connectives equivalent; converting from
smooth fuzzy operators to crisp binary ones theoretically does
not compromise accuracy, especially when the training data is
already binary. This transition could also substantially reduce
memory consumption and computational complexity due to
the efficiency of binary operations.

To implement this optimization, DLNs can be converted
into Binary Logic Gate Networks (LGNs) by choosing the
fuzzy operation where the softmax function results in the
highest probability; thus, this retains the same architectural
structure, namely, the number of layers and computational
units; however, each unit in LGNs only computes a single
binary logic gate instead of a weighted sum of all 16 functions.

III. EUKASIEWICZ BASED DIFFERENTIABLE LOGIC GATE
NETWORKS

In this study, we investigate fuzzy logic operations based
on the Lukasiewicz T-norm, defined as T (a,b) = max{0,a+
b — 1}. Like the Zadeh T-norm used in [28], the Lukasiewicz
T-norm relies on min and max operators. Consequently, it ex-
hibits similar challenges during backpropagation, particularly
regarding non smooth gradients and ambiguous gradient flow
paths.

To address this, we adopt the same backward pass strat-
egy proposed in [28], which resolves the gradient ambiguity
by enforcing consistent choices. The partial derivatives with
respect to the inputs are defined as:

OTi(a,b) [0 ifa+b—1<0,
da |1 otherwise,

0Ty(a,b) [0 ifa+b—1<0,
b |1 otherwise.

This yields sharp gradients in the set {—1,0,1} for the
network, which can help limit exploding gradients. However,
a significant portion of the domain of 7} results in zero
gradients, leading to the risk of vanishing gradients during
training.

To mitigate this, we implement a residual initialization
scheme inspired by [20]. Instead of initializing the learnable
weights uniformly at random, the authors bias them toward
logic gates that act as pass through operators. Owing to the
symmetry between inputs, they treat gates corresponding to A
and B (i.e., the 3rd and 5th gates in Table I) as functionally
equivalent in this context. We experiment with two variants
of this initialization: one where gate A is assigned a 90%
initial probability (with all other gates initialized to 0.67%) as
in [20], and in this work we introduce another variant where
both gates A and B are initialized with 45% probability each.

For inference, we transform the computational units of
Differentiable Logic Networks into hard logic gates and gen-
erate corresponding C code for the network. This C code is
compiled using the —O1 optimization flag for models with
fewer than 50,000 computational units and —0O0 for larger
models due to limitations in compilation time and memory
overhead.

Modern 64-bit CPUs are ubiquitous across consumer de-
vices, which implies that Boolean values must typically be
extended via zero extension or sign extension to align with
the ALU’s expected input width. The implementation proposed
by [19] uses a 64-bit encoding for Boolean inputs to match
the native word size of contemporary CPUs. For consistency,
our initial implementation of Zadeh-based Differentiable Logic
Networks (DLNs) [28] followed the same encoding strategy.
However, empirical evaluation with our available devices for
experiments revealed that using an 8-bit encoding for Boolean
values significantly reduces inference time. This change in
using different numbers of bits to represent Boolean values
does not affect the accuracy of the models. Therefore, in order
to maximize performance under our setup, we proceed with
using 8-bit encodings for all classical logic operations in the
networks instead of 64-bit.

IV. EXPERIMENTS AND RESULTS

To ensure a fair comparison with previous work [19], [28],
we evaluate our proposed approach on both structured and
unstructured data types. For structured datasets, categorical
attributes are one-hot encoded, while continuous features such
as age or tumor size are discretized and then followed by one-
hot encoding. This preprocessing ensures compatibility with
post training discretized models that require binary or discrete
input representations. For unstructured data such as CIFAR-10
[12], we adopt a similar discretization strategy as [19], [28] for
pixel intensities by applying a series of progressive thresholds,
enabling a finer grained binary encoding of continuous values.
This technique reduces information loss during binarization
and supports more expressive representations in logic based
models. We created two variants of the CIFAR-10 dataset for
3 thresholds and 31 thresholds, which we will discuss in more
detail in CIFAR-10. In contrast, for the MNIST dataset, we
retain the original grayscale pixel values and train directly on
the real valued inputs to evaluate DLNs’ performance on real
values data.

During evaluation, all DLNSs, regardless of implementation,
are converted into Binary Logic Gate Networks where the
computational unit calculates fixed Boolean functions with
the highest probability. All the variants of DLN; are denoted
as DLN;, DLNg:, DLNg:« for without residual initialization,
residual initialization at the feedforward gate A, and residual
initialization at gates A and B. All models are implemented
using PyTorch [18], Adam optimizer [9] and trained on an
NVIDIA RTX 2000 Ada GPU. Inference time is measured
using a single threaded setup on an AMD Ryzen 5 3550H
CPU and averaged across 100 runs. To indicate statistically
significant differences in inference time across models, we
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TABLE 1
LIST OF ALL LUKASIEWICZ T-NORM LOGIC GATES.

ID Operator Lukasiewicz T-norm 00 01 10 11

0 False 0 0 0 0 0

1 alb maz{0,a +b— 1} 0 0 0 1

2 —(a=0b) max{0,a— b} 0 0 1 0

3 a a 0 0 1 1

4 —(a<b) maz{0,—a+ b} 0 1 0 0

5 b b 0 1 0 1

6 =(a<b)  min{l,maz{0,a — b} + maz{0,—a + b}} 0 1 1 0

7 aVb min{l,a + b} 0 1 1 1

8 —(aVvb) maz{0,1—a—>b} 1 0 0 0

9 asb maz{0,min{l,1 —a+ b} + min{l,14+a—b} —1} 1 0 0 1

10 —b 1-0 1 0 1 0

11 a<=b min{l,1+a — b} 1 0 1 1

12 -a 1—a 1 1 0 0

13 a=b min{l,1 —a+ b} 1 1 0 1

14 —(anb) min{l,2—a—0b} 1 1 1 0

15 True 1 1 1 1 1

TABLE I TABLE III
RESULTS ON THE MONK DATA SETS AVERAGED OVER 100 RUNS. MONK DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE TESTS. WE
DENOTE: p € [0.001,0.5) BY *, p € [0.0001,0.001) BY **, AND
Method MONK-1 MONK-2 MONK-3 p € [0,0.0001) BY ***
ANN 100.00% 100.00% 93.5%
DLNy, 100.00% 78.24% 95.37% DLNy DLNz DLN; DLNg: DLNps«
DLN; 100.00% 89.32% 91.74% DLNy, e o -
DLNg 100.00% 56.94% 93.98% DLNy ® EEE %%
DLNg« 100.00% 61.57% 78.24% DLN,, sk ® *
DLNg 100.00% 49.77% 69.44% DLN; « sk sk
# Parameters Inf. Time Memory DLNj s+ sokok wkk *

ANN 162 161.20 4 26.50ns 648B
DLNy 1441|7272 8.06 £0.17ns  72B|36B|36B
DLNz 14472172 7.77£0.13ns  72B|36B|36B
DLN, 1447272 7.20+0.12ns  72B|36B | 36B terestingly, DLN; achieves a higher accuracy than the ANN
DLNg = 144 (72|72 6.83£0.16ns 72B|36B | 36B i
DIN, o 144I72 } s erR Lo loe oon I 0B I i (94.0% vs. 93.5%) in the last dataset (see table II), results of

denote: p € [0.001,0.5) by *, p € [0.0001,0.001) by **,
and p € [0,0.0001) by *¥*.

A. MONK

The MONK datasets [26] constitute a benchmark suite of bi-
nary classification tasks designed to evaluate the performance
of machine learning models on symbolic and logical reasoning
problems. Each dataset consists of discrete-valued features and
a binary target label, with the classification rules defined using
logical expressions.

MONK-1 defines a concept in disjunctive normal form
(DNF), making it relatively simple and well suited for sym-
bolic learners such as Differentiable Logic Gate Networks.
MONK-2 resembles a parity problem, where the target func-
tion is based on a combination of attributes that cannot be
easily expressed in either DNF or conjunctive normal form
(CNF). MONK-3 is structurally similar to MONK-1 and is
also defined using DNF. However, it introduces label noise into
the training set, making it a useful benchmark for evaluating
a model’s robustness and generalization under imperfect data.

The ANN achieves the highest accuracy on the MONK-
1 and MONK-2 datasets, but it requires significantly more
memory than DLNs, regardless of the implementation. DLNy,
outperforms all other models on the MONK-3 dataset. In-

significant difference tests are presented in table III and basic
statistical analysis in figure 1. Adding residual initializations
to DLN; yields mixed results: accuracy improves on MONK-
2 but decreases on the other datasets. In terms of inference
time, the DLNz+« DLNg«+ methods show similar improvement
in performance.

B. Adult dataset

The Adult dataset [1], also known as the “Census Income"
dataset, is a widely used benchmark in the machine learning
community. It originates from the UCI Machine Learning
Repository and involves a binary classification task aimed
at predicting whether an individual’s annual income exceeds
$50,000. The dataset comprises 48,842 samples and includes
both continuous and categorical features, such as age, educa-
tion, occupation, and work class.

TABLE IV
RESULTS FOR THE ADULT DATA SET AVERAGED OVER 100 RUNS.
Adult Acc.  #Param. Infer. Time =~ Memory
ANN 84.90% 3,810  287.95 £ 6.19ns 15KB
DLNy 84.83% 1,280 59.47 £ 2.34ns 640B
DLN, 75.40% 1,280 71.12 £ 0.45ns 640B
DLNg 82.62% 1,280 94.98 £ 0.88ns 640B
DLNg+ 84.57% 1,280 59.99 £ 2.02ns 640B
DLNg«  84.59% 1,280 81.27 £ 1.91ns 640B
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TABLE V
ADULT DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE TESTS. WE
DENOTE: p € [0.001,0.5) BY *, p € [0.0001,0.001) BY **, AND

p € 10,0.0001)
DLNy DLNz; DLNy DLNg:  DLNgs«
DLNy otk EEES EEE] ook
DLN #+ sk EEES ook EEE]

In this benchmark, DLN,;, DLN; +, and DLN :+ demonstrate
comparable accuracy to the artificial neural network (ANN),
but with much lower inference time and memory usage (table
IV), inference time significant difference tests are in table
V and see figure 2 for basic statistical analysis. Among all
implementations, DLN,, is the fastest in terms of inference
speed and similar accuracy compared to the baseline ANN.
Interestingly, when we initialize the Lukasiewicz models with
higher probabilities at gates A and B, the accuracy doesn’t
improve, but inference time goes down. This shows DLNg« a
good compromise between speed and performance.

C. Breast Cancer dataset

The Breast Cancer dataset [30] was collected from the
University Medical Center, Institute of Oncology, Ljubljana,
Yugoslavia. It is one of three domains provided by the On-
cology Institute that have frequently appeared in the machine
learning literature.

The dataset consists of 286 instances, with 201 belonging
to one class and 85 to another. Each instance is described
by nine attributes. The dataset is commonly used to assess
classification performance on medical diagnostic tasks, par-
ticularly in scenarios involving imbalanced class distributions
and heterogeneous feature types.

TABLE VI
RESULTS FOR THE BREAST CANCER DATA SET AVERAGED OVER 100
RUNS.
Breast Cancer Acc.  #Param. Infer. Time  Memory
ANN 75.31% 434 792.43 + 100.23ns 1.4KB
DLNy 71.43% 640 38.34 + 0.27ns 320B
DLNz 68.56% 640 35.14 + 0.22ns 320B
DLNg 70.00% 640 26.72 4+ 1.07ns 320B
DLNg« 74.29% 640 30.62 + 1.25ns 320B
DLNg 70.00% 640 35.58 + 1.10ns 320B

In this experiment, table VI shows ANN reaches an accu-
racy of 75.3%, followed closely by DLNz« at 74.3%, while
using only a fraction of the inference time and memory.
DLN; stands out as the fastest model, although it has very
low accuracy. The results of significant difference tests for
inference speed are presented in table VII, and essential
statistical analysis is presented in figure 3. Notably, using
residual initialization brings a major boost for DLNg, raising
its accuracy from 70.0% to 74.3%. However, when both gates
A and B are initialized together, the model’s accuracy actu-
ally drops. Once again, DLN;+ has a good balance between
accuracy and run time complexity.
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TABLE VII
BREAST CANCER DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE
TESTS. WE DENOTE: p € [0.001,0.5) BY *, p € [0.0001,0.001) BY **,
AND p € [0,0.0001)

DLNy DLNz DLNg  DLNz:  DLNgss
DLN,, ETE]) ETE) EXE *
DLNZ kK esfesk 3k
DLN; FET] gk * kdok
DLN « sk *% * *
DLNy «x # etk *

D. MNIST Dataset

To ensure comparability with prior studies [19], [28], we
evaluate our proposed approach on the MNIST dataset [13].
MNIST is a standard benchmark in computer vision and ma-
chine learning, consisting of grayscale images of handwritten
digits ranging from 0 to 9. The dataset comprises 70,000
samples, partitioned into 60,000 training images and 10,000
test images, each originally sized at 28 x 28 pixels.

To examine the models’ adaptability to reduced input di-
mensionality, we additionally resize the images to 20 x 20
pixels by removing the borders, thereby constructing a sec-
ondary, lower-resolution version of the dataset. Each image is
associated with a label corresponding to the digit it represents,
making this a ten class classification problem. The dataset
serves as a robust testbed for evaluating both accuracy and
generalization across a range of model architectures.

In both the small and normal configurations, the results
in table VIII show ANNs outperform DLNs in terms of
accuracy across all implementations (ANN (small): 96.3%,
ANN: 98.40%), though this comes at the cost of higher
inference time and memory usage. Among the smaller DLN
models, DLNy, (small) achieves the highest accuracy, but it
is the slowest (1.127 + 0.03us) see table IX and figure 4
for inference speed significant difference tests and statistical
analysis. On the other end, DLN; (small) offers the fastest
inference but with the lowest accuracy. DLNg«« (small) yields
higher accuracy than DLNg+« (small) and on average, it also
has a faster inference time; however, this is not a statistically
significant increase. Both initialization strategies show clear
improvements in accuracy compared to the uninitialized base
model.

It’s also worth pointing out that DLN,; and DLNg+ have
comparable accuracy (97.6% vs. 97.3%), but DLN;« has the
advantage in terms of faster inference.

E. CIFAR-10 Dataset

CIFAR-10 [12] is a well established benchmark dataset
composed of 60,000 color images, each with a resolution of
32 x 32 pixels. The images span 10 distinct object categories,
including airplanes, automobiles, birds, cats, and more. The
dataset is partitioned into 50,000 training samples and 10,000
test samples. Its compact image size makes it particularly
suitable for experimentation under limited computational re-
sources, facilitating the development and evaluation of novel
algorithms.
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TABLE VIII
RESULTS FOR THE MNIST DATA SET AVERAGED OVER 100 RUNS, WHERE OPS STAND FOR NUMBER OF BINARY OPERATIONS NEEDED TO PERFORM
COMPUTATIONS.
MNIST Acc. #Param.  Memory Infer. Time OPs
ANN (small) 97.92% 118282 462KB 3.66 = 0.15us  236M
DLNy (small) 96.34% 48000 23KB 1.13 + 0.03us 48K
DLNz (small) 94.52% 48000 23KB 1.10 £ 0.03us 48K
DLNg (small) 93.93% 48000 23KB 1.25 + 0.30us 48K
DLNg+« (small) 95.55% 48000 23KB 1.09 &+ 0.03us 48K
DLNg s« (small)  96.31% 48000 23KB 1.05 £ 0.03us 48K
ANN 98.40% 22609930 86MB  1009.17 £ 9.23us 45G
DLNy 97.61% 384000 188KB 83.16 £ 0.09us 384K
DLNy; 93.33% 384000 188KB 79.12 + 0.06pus 384K
DLNg 95.05% 384000 188KB 79.63 +0.11us 384K
DLNg« 97.36% 384000 188KB 78.58 +0.13us 384K
DLNp «x 97.40% 384000 188KB 78.49 + 0.10us 384K
TABLE IX
MNIST DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE TESTS. WE DENOTE: pE [0.0017 0.5) BY *, pE [0,0001, 0.001) BY **, AND
p € [0,0.0001)
DLNys (small) DLNyz (small) DLNg (small) DLNg« (small)  DLNgsx (small)
DLNy; (small) *
DLNyz (small) ®
DLNg (small) * * ok Hokk
DLNg« (small) Hk
DLNg «« (small) Hokk
DLNy DLNz DLNg DLNg « DLNy #x
DLNZ sekok soksk ok soksk
DLNL Fkk sesfesk sfeskesk ek
DLNL* sksksk sk ek

DLNL** stk EE TS EE TS
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Fig. 4. Basic statistical analysis for MNIST dataset inference time (ns) results (lower is better)

Following the methodology proposed in [19], we reduce
the color channel resolution to discrete threshold levels to
accommodate binary input constraints of logic based models.
Specifically, we apply three value thresholds for the small and
medium models and 31 thresholds for the large models. Instead
of a simple binarization using a 0.5 cutoff, which often results
in significant information loss, we use a set of progressive
thresholds (e.g., 0.25, 0.5, 0.75) to discretize pixel intensities
more effectively. For instance, a pixel with intensity p; = 0.6
can be represented as p; = [1,1,1,0], where ¢ denotes the
pixel’s position in the flattened image. This multi threshold
encoding mitigates the discretization loss when converting
fuzzy inputs into binary representations, thus improving the
suitability of the data for binary logic gate models.

Although dropout and data augmentation are widely used to
improve generalization in vision tasks, we intentionally refrain
from employing these techniques to maintain consistency with
our experimental framework. For all DLN implementations,
we use the notation S, M, and L to represent small, medium,
and large models, respectively, based on the number of pa-
rameters.

In the smaller model configurations, DLN implementations
achieve lower accuracy compared to ANNs (see table X).
Among the different DLN implementations, DLN,, consis-
tently achieves the highest accuracy across all model sizes (S,
M, L). The initialization methods show consistent improve-
ment in accuracy over the base DLN; model for all model
sizes without significant impact on the inference time (see

table XI and figure 5).
V. DISCUSSION

The experimental results show consistently low accuracy
for Lukasiewicz T-norm based models, which aligns with our
initial hypothesis. We attribute this to a substantial portion of
the domain in Lukasiewicz based fuzzy logic yielding zero
gradients, which prevents error signals from backpropagating
effectively to higher layers. Moreover, across all experiments,
larger networks benefit significantly from both proposed ini-
tialization schemes, showing notable improvements over the
baseline DLNs;. This supports the idea that biasing the model
toward feedforward gates while avoiding gates that contribute
to gradient vanishing, particularly during the early stages
of training when error rates are highest, can substantially
enhance error propagation. Interestingly, these initialization
methods also increase the models inference speed compared
to the baseline models. While increasing the number of
feedforward-biased gates does lead to higher accuracy, the
improvement is modest and not consistently observed across
all experiments. In smaller models, such as those trained on
MONK-2, MONK-3, and the Breast Cancer dataset, biasing
toward feedforward gates results in a decrease in accuracy
performance. We hypothesize that when the number of model
parameters is limited, the biasing restricts the model’s capacity
to flexibly select appropriate logic gates, thereby impairing its
learning ability. However, in larger models, the inflexibility
introduced by the initialization schemes results in measur-
able improvements in both accuracy and inference time. One
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TABLE X
RESULTS FOR THE CIFAR-10 DATA SET AVERAGED OVER 100 RUNS, WHERE OPS STAND FOR NUMBER OF BINARY OPERATIONS NEEDED TO PERFORM
COMPUTATIONS, S,M,L STAND FOR SMALL, MEDIUM AND LARGE NUMBER OF PARAMETERS IN THE MODEL RESPECTIVELY PRESENTED IN THE THIRD

COLUMN.
CIFAR-10 Acc.  #Param. Memory Infer. Time OPs
ANN 57.08% 12.6M 48MB  519.38 +6.70us 25G
DLNy (S) 45.75% 48K 24KB 1.75 4 0.00us 48K
DLNz (S) 45.45% 48K 24KB 2.00 £ 0.00us 48K
DLNg (S) 36.92% 48K 24KB 1.63 4 0.00us 48K
DLNg+ (S) 41.14% 48K 24KB 1.66 = 0.00us 48K
DLNz« (S)  42.44% 48K 24KB 1.88 4 0.00us 48K
DLNy (M) 57.34% 512K 250KB  167.19 £ 0.14pus 512K
DLNz (M) 55.55% 512K 250KB  163.54 £ 0.11pus 512K
DLN; (M) 52.23% 512K 250KB  158.81 £ 0.25us 512K
DLNg« (M) 54.88% 512K 250KB  159.22 £ 0.11pus 512K
DLNg« (M)  55.30% 512K 250KB  159.59 £ 0.18us 512K
DLNy (L) 60.32% 1.28M 625KB  399.08 £0.34pus  1.28M
DLNz (L) 57.28% 1.28M 625KB  382.81 £0.16us 1.28M
DLNg (L) 53.48% 1.28M 625KB  377.30£0.21us  1.28M
DLNg+« (L) 57.78% 1.28M 625KB  379.28 £0.26pus  1.28M
DLNz« (L)  58.09% 1.28M  625KB  377.20+0.23us  1.28M
TABLE XI
CIFAR-10 DATA SET SIGNIFICANT INFERENCE TIME DIFFERENCE TESTS. WE DENOTE: p € [0.001,0.5) BY *, p € [0.0001,0.001) BY **, AND
p € [0,0.0001)
DLNy (S) DLNz (S) DLNz (S) DLNg: (S)  DLNg« (S)
DLN; (S) EEES kokk kokk kkck
DLN;+ (S) EEES EEES EEES EEES
DLN« (S) sk sk sk sk
DLNy (M) DLNz; (M) DLN; (M) DLNz+ (M) DLNzw (M)
DLNy, (M) Hokok koK Kok ok ko
DLN, (M) KKk ®kk KKk sk
DLN; (M) ®kk ETT3 E
DLN« (M) Hkok ook *
DLNy (L) DLNz (L) DLNg (L) DLNz« (L) DLNz= (L)
DLNy, (L) Hokok Kok ok Kok ok Hokok
DLN, (L) Kk KKk kg Hkk
DLN; (L) K%k sk ®kk
DLN« (L) sokok EEES skok sk
DLNg+ (L) ek kst sk

possible explanation for the improved runtime efficiency is
that a majority of the operations in these models are iden-
tity functions. At lower compiler optimization levels (e.g.,
-00), identity operations are implemented as simple memory
transfers between registers. However, under aggressive opti-
mization settings (e.g., —03), compilers often eliminate such
operations entirely by reusing registers, resulting in minimal
computational overhead. This behavior significantly reduces
the runtime burden of inference in models where identity gates
dominate. Figure 6 illustrates the gate selection distributions
for DLNs; (Baseline), DLNs;« (A), and DLNsz«+ (A - B) on
the MNIST dataset. A clear concentration of feedforward gates
a for DLNsg+, and feedforward gates a and b for DLNsgx,
which correspond to identity mappings, are evident in the
latter two configurations. This suggests that the initialization
schemes effectively steer the models toward simpler compu-
tational pathways. Interestingly, these identity heavy models
not only benefit from faster inference but also demonstrate
improved gradient stability, particularly during the early stages
of training. The stable signal propagation enabled by identity

operations likely contributes to the observed accuracy gains.
However, the dominance of feedforward gates in DLNsz+ and
DLNs;«« after training also implies underutilization of the
network’s expressive capacity. While this may be beneficial
for efficiency, it raises questions about the models’ ability to
learn more complex representations when required.
Furthermore, we observe that increasing model size gen-
erally leads to an improvement in accuracy. This trend is
consistent with the two findings from [19], [28] show that
larger DLN models possess greater representational capacity.
In current DLNs implementations, input pairs are connected
randomly to computational units. This random connectivity
hinders memory coalescing during data loading, which in turn
leads to data starvation as computational kernels are forced to
wait for data to be fetched. It is due to transferring memory
from global memory (VRAM) to local memory (Registers)
cost hundreds times more compute cycles comparing to the
actually computations itself [17]. Replacing a convex combina-
tion of gates with a single, discrete gate can lead to significant
performance degradation. For instance, if a computational unit
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has probabilities p; = 0.60 and ps = 0.40 for two logic
gates, deterministically selecting a gate at p; fails to capture
the nuanced behavior expressed in the soft combination. This
simplification may overlook critical interactions among the
logic operators.

VI. CONCLUSIONS

We proposed a differentiable logic gate network based on
a relaxation of classical logic gates using the Lukasiewicz
T-norm. Our empirical findings support the hypothesis that
the Lukasiewicz T-norm is not well-suited for gradient based
training due to its gradient vanishing properties. This is
consistent with observations reported in [10]. The experiments
further demonstrate that encouraging better error propagation
by biasing the weights of the computational units toward
feedforward logic gates and avoiding the gates that can cause
zeros in gradient significantly improves model accuracy and
mitigates the gradient vanishing issue.

DLNs offer a distinct advantage over traditional neural net-
works in terms of interpretability. Due to the structural clarity,
this facilitates direct inspection and tracing of information
flow, making DLNSs particularly suitable for applications in ex-
plainable artificial intelligence (XAI). Unlike standard neural
networks, where interpretability often relies on post hoc anal-
ysis or surrogate explanations, DLNs provide intrinsic trans-
parency through their architecture. This transparency reveals a
recurrent pattern in trained DLN models: a disproportionately
high number of units are configured as feedforward (identity)
gates. While this contributes to computational efficiency and
stable training dynamics, it also suggests a significant under-
utilization of the available computational capacity within the
network. Many logic gate units effectively act as passthrough
mechanisms, bypassing transformation or decision making
roles.

Regardless of implementation details, differentiable logic
gate networks generally require less memory and exhibit
lower inference time compared to standard neural networks,
highlighting their computational efficiency despite variable
performance in accuracy. These findings underscore key differ-
ences across implementations of DLNs. While logic networks
trained using Menger’s T-norm may achieve higher accuracy,
the Lukasiewicz based models exhibit faster inference times.
This emphasizes the importance of careful design and evalu-
ation when developing differentiable logic gate networks. In
some applications, reducing inference time with a marginal
decrease in accuracy may be preferable to higher accuracy
but significantly slower performance.

Further performance gains in DLNs may be realized by
optimizing the flow of information through structured and ef-
ficient connectivity patterns. One notable limitation in existing
architectures is the underutilization of computational units,
which can be mitigated by reusing logic elements across input
features in a convolution like fashion [20] By enabling each
compute unit to process multiple bit pairs in parallel rather
than in a one-by-one manner, the network can exploit the
capabilities of modern 64-bit arithmetic logic units (ALUs)

on CPUs. This approach not only enhances the utilization
of computational units in DLNs but also contributes to re-
ducing computational overhead during inference. Introducing
regularization strategies to constrain the weight vectors of
computational units may help reduce discretization loss when
translating from fuzzy to hard logic (Boolean). These offer
promising directions for improving both the accuracy and
efficiency of DLNSs in practical applications.

Finally, while most medical machine learning studies focus
on developing high-accuracy and computationally intensive
models, DLNs offer a practical potential in low-latency,
resource-constrained use cases. Applications such as oxygen
blood saturation measuring or non-invasive glucose monitoring
suggest alternative research directions for logic gate networks.
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