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Abstract—FedCSIS 2025 competition is to predict the dif-
ficulty of chess puzzles, we present a structured multi-stage
regression pipeline developed for the FedCSIS 2025 Challenge.
The approach consists of three stages: (i) four Elo-banded base
models trained on separate rating ranges to capture localized
difficulty semantics and mitigate bias in imbalanced datasets;
(ii) a feature-level stacking ensemble combining base predictions
with structural attributes, such as success probabilities, failure
distributions, and solution length, to enhance cross-band gener-
alization; and (iii) a lightweight post-hoc residual correction to
reduce systematic prediction biases. Additionally, an uncertainty-
aware mask-based evaluation is introduced to identify the 10%
most challenging puzzles for extended scoring.

Our method achieved competitive results, ranking 7th in the fi-
nal leaderboard, while maintaining low computational cost. These
findings demonstrate that lightweight, interpretable models, when
combined with structural reasoning and uncertainty estimation,
can rival more complex deep-learning approaches. This study
highlights the potential of structured machine learning pipelines
for scalable, human-centric chess puzzle analytics.

Index Terms—Chess puzzle difficulty prediction, Elo-banded
modeling, Stacking ensemble, Meta-learning, Structural features,
Residual correction

I. INTRODUCTION

C
HESS puzzle difficulty prediction involves assessing not

only the tactical correctness of moves but also their

perceived complexity for human players. Human performance

depends on multiple factors, such as move sequence length,

tactical motifs, time pressure, and psychological biases, which

are often poorly correlated with engine evaluations. The in-

creasing availability of large-scale puzzle-solving data from

online platforms has fueled interest in data-driven approaches

to this problem.

A. Related Work

With the rise of deep learning, end-to-end approaches be-

came dominant, as mentioned in the previous IEEE BigData

2024 Cup: chess puzzle competition report [1]. Woodruff et

al. [2] proposed neural models and won the IEEE Big-

Data 2024 Cup. Miłosz and Kapusta [3] proposed Glick-

Former, a spatio-temporal transformer jointly modeling board

states and move sequences, significantly outperforming earlier

transformer-based models and ranking among the top entries in

the IEEE BigData 2024 Cup, while Ruta et al. [4] introduced

a convolutional neural network (CNN) that mapped board

configurations to difficulty ratings, achieving strong correlation

with human ratings.

B. Our Contributions

Our work proposes a structured and computationally effi-

cient pipeline for chess puzzle difficulty prediction. The key

contributions are:

• Training four Elo-banded base models on separate rat-

ing ranges to capture localized difficulty semantics and

mitigate bias in imbalanced data.

• Combining base predictions with structural puzzle fea-

tures in a heterogeneous stacking ensemble, improving

generalization across diverse puzzle types.

• Applying a post-hoc residual correction to reduce system-

atic biases and introducing an uncertainty-aware mask to

identify the 10% most challenging puzzles for extended

evaluation.

• Achieving competitive performance, i.e. 6th in the prelim-

inary and 7th in the final leaderboard, while maintaining

low computational cost, demonstrating that structured

lightweight models can rival more complex deep-learning

approaches.

• For computational efficiency, we intentionally avoid ex-

cessively long training schedules. Instead of relying on

prolonged base model training, which is time-consuming

for millions of samples, later stages—stacking and resid-

ual correction—are designed to refine predictions using

cross-band interactions and structural reasoning. This

strategy provides a better balance between accuracy and

runtime in practical competition settings.

The remainder of this paper is organized as follows: Sec-

tion II introduces the competition task, dataset characteristics,

and evaluation protocol. Section III describes the proposed

methodology, including the band-specific base models, the

stacking ensemble, and the post-hoc residual correction with

uncertainty estimation. Section V presents the experimental

setup, ablation studies, and official leaderboard results. Finally,

Section VI concludes the paper and discusses potential future

work.

II. COMPETITION DESCRIPTION

The FedCSIS 2025 Challenge [5] organized on the Knowl-

edgePit platform1 is the continuation of the highly successful

first edition organized as part of the IEEE BigData Cup 2024

[1] . This second edition further extends the benchmark by

1https://knowledgepit.ai/
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providing an updated large-scale dataset and refined evaluation

protocol, aimed at advancing algorithms that estimate human-

perceived puzzle difficulty. Unlike chess engines optimized

for best-move accuracy, the task focuses on modeling human

solving performance, a key requirement for adaptive training

systems, personalized recommendation engines, and educa-

tional applications. The difficulty level is measured as the

rating on the lichess platform2.

A. Task Definition

Participants are required to predict a continuous difficulty

rating for each chess puzzle, expressed as a Glicko-2 rating3

equivalent. The official evaluation metric is the Mean Squared

Error (MSE)4:

MSE =
1

N

N
∑

i=1

(yi − ŷi)
2, (1)

where yi is the ground-truth human-derived rating and ŷi
is the predicted rating. The competition adopts a two-stage

leaderboard system:

• Preliminary Stage: A public leaderboard based on a

subset of the test set for iterative submissions.

• Final Stage: A private leaderboard evaluated on the full

hidden test set, determining the official ranking.

B. Dataset and Features

The official dataset comprises a large labeled training set

and an unlabeled test set:

• Training Set: 4,557,000 puzzles annotated with human-

derived Glicko-2 ratings and engine-computed statistics.

• Test Set: 2,235 puzzles sharing the same feature structure

but without difficulty ratings. Predictions for this set are

used for final evaluation.

Each puzzle is described by 32 structured features in the

training set and 25 features in the test set:

1) Core Information: PuzzleId, Forsyth–Edwards Notation

(FEN)5 for board state, and Portable Game Notation

(PGN)6 for solution moves.

2) Human-Performance Annotations (training only): Rating

(Glicko-2 difficulty), RatingDeviation, Popularity, and

NbPlays.

3) Contextual Metadata: Themes, GameUrl, and Opening-

Tags.

4) Engine-Derived Success Probabilities: 10 rapid-mode

columns (success_prob_rapid_1050–2050) and 10 blitz-

mode columns (success_prob_blitz_1050–2050), repre-

senting estimated human success rates at different skill

levels.

By decoding the FEN, the chessboard can be illustrated into

image. For example, the below Figure 1 shows the chessboard

initial state decoded by FEN and the rating is 1300.

2https://lichess.org/
3https://en.wikipedia.org/wiki/Glicko_rating_system
4https://en.wikipedia.org/wiki/Mean_squared_error
5https://en.wikipedia.org/wiki/ForsythEdwards_Notation
6https://en.wikipedia.org/wiki/Portable_Game_Notation

Figure 1. FEN: "8/4R3/1p2P3/p4r2/P6p/1P3Pk1/4K3/8 w - - 1 64".

C. Key Challenges

The challenge introduces several unique difficulties:

• Human-Centric Bias: Ratings are derived from solver

statistics rather than engine evaluations, so engine-trivial

tactics may still be difficult for humans.

• Imbalanced Difficulty Distribution: Sparse high-Elo sam-

ples are prone to underestimation by global models

trained on mid-range-dominated data.

• High-Dimensional Structured Features: Success proba-

bilities across multiple skill bands must be effectively

combined without overfitting.

• Scalability and Interpretability: Models must efficiently

process millions of samples while maintaining trans-

parency for educational use cases.

D. Extended Mask-Based Evaluation

An additional subtask evaluates uncertainty estimation. Par-

ticipants submit a binary mask identifying the 10% most

error-prone test puzzles. Scores are recomputed by replacing

masked predictions with ground-truth ratings, and rankings

are determined by the ratio between the adjusted score and

the theoretical “perfect mask.” This extension highlights the

importance of reliable uncertainty estimation.

III. METHODOLOGY

This section presents the detailed methodology of our solu-

tion for the FedCSIS 2025 Challenge main task. The proposed

approach follows a structured multi-stage pipeline designed

to balance accuracy, interpretability, and computational effi-

ciency. We first provide an overview of the entire pipeline,

then highlight its key methodological contributions, followed

by a detailed description of each stage.

A. Overall Pipeline

The pipeline consists of three major stages:

1) Elo-Banded Base Models: Four band-specific models

are trained on separate Elo ranges using structured

puzzle features (engine-derived statistics and positional

indicators) to capture localized difficulty semantics and
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reduce prediction bias caused by highly imbalanced

rating distributions.

2) Feature-Level Stacking Ensemble: Outputs from base

models are combined with structural puzzle features

in a heterogeneous meta-learning framework, improving

cross-band generalization.

3) Post-Processing Rating Prediction: A lightweight resid-

ual correction adjusts systematic biases, producing the

final predicted ratings submitted to the competition.

This design allows predictions to be progressively refined:

base models specialize in local rating regions, stacking inte-

grates global patterns, and post-processing corrects residual

systematic errors.

B. Major Contributions in Method Design

The key methodological contributions include:

• Band-Specific Specialization: Instead of a single global

model, band-wise training explicitly targets the diverse

difficulty distributions across Elo ranges.

• Structured Feature Utilization: Engine-derived success

probabilities and handcrafted positional indicators are

explicitly exploited both in base and stacking models,

improving interpretability and generalization.

• Hybrid Meta-Learning: By combining a linear model

(Ridge), a tree-based model (XGBoost), and a neural

network (MLP), the stacking ensemble exploits comple-

mentary strengths.

• Lightweight but Scalable: All components are compu-

tationally efficient and scalable to millions of samples,

unlike many deep-learning-based solutions.

• Bias Mitigation via Post-Processing: A simple, inter-

pretable residual correction effectively addresses under-

estimation in high-Elo regions.

C. Step 1: Elo-Banded Base Models

Puzzle ratings span from approximately 400 Elo (basic

tactics) to over 3000 Elo (master-level combinations), leading

to a potential imbalanced difficulty distribution, as summarized

in Fig. 2. Although high-Elo puzzles (≥ 1700) constitute over

one-third of the data, their solving patterns differ substantially

from lower bands, and a single global model trained on such

mixed distributions often overfits mid-range samples while

underestimating high-Elo puzzle difficulty.

To address this, we adopt a band-wise modeling strategy,

training four independent models, each specialized for a des-

ignated Elo range [2]. This specialization allows each model

to focus on localized difficulty patterns, improving prediction

accuracy across heterogeneous rating bands.

1) Training Data Selection: All training samples are as-

signed to exactly one band-specific model according to their

difficulty ratings. Unlike the default global-training setup of

the baseline regression code, we manually configured the

training pipeline to filter puzzles into four disjoint Elo bands:

• Small model: Rating < 1000 (beginner-level puzzles

with simple tactical motifs),

Figure 2. Elo rating distribution of the training set (4,557,000 puzzles),
showing heterogeneous distributions across rating bands.

• 1300 model: 1000 ≤ Rating < 1400 (intermediate-level

puzzles),

• 1500 model: 1400 ≤ Rating < 1700 (club-level puzzles

with mixed tactical and strategic depth),

• 1700+ model: Rating ≥ 1700 (advanced puzzles requir-

ing deeper tactical reasoning).

This standardized partitioning ensures full data utilization

and enables each model to learn the statistical patterns and

solving dynamics specific to its designated Elo range, which

is particularly beneficial for the sparse high-Elo band.

2) Model Architecture: All four band-specific models are

trained as Multi-Layer Perceptron regressors (MLP), following

a standard supervised learning framework:

• Input Representation: Each puzzle is represented entirely

by structured features extracted from the official dataset:

– Engine-derived statistics such as per-move success

probabilities, mean, standard deviation, max, and

min probabilities,

– failure probability and distribution skewness,

– material balance,

– solution length and other positional descriptors.

All continuous features are normalized to the range [0,1].

• Network Structure: Each model consists of several fully

connected layers with ReLU activations, followed by

a single linear regression head that outputs a scalar

difficulty rating. This MLP architecture is well-suited to

tabular structured data and provides efficient training on

millions of samples.

• Training Objective: All models are optimized with the

standard Mean Squared Error (MSE):

Lbase =
1

N

N
∑

i=1

(yi − fθ(xi))
2, (2)

where fθ is the band-specific MLP and yi the ground-

truth difficulty rating.

• Epochs and Fine-Tuning: The number of training epochs

is determined empirically based on validation perfor-

mance, typically ranging from 10 to 20 epochs depending
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on band size, model convergence speed, and computa-

tional budget. This relatively small epoch range reflects

a trade-off between convergence and time efficiency, as

prolonged training provides diminishing returns and is

computationally expensive for large-scale data.

An internal validation set, sampled as 10% of the band-

specific training data, is used exclusively for hyperparam-

eter tuning and to save the best-performing checkpoints

based on validation MSE.

3) Inference and Outputs: After training, each model is

applied independently to the official test set using a standard-

ized inference pipeline. The four models generate separate

predictions corresponding to the small, 1300, 1500, and 1700

Elo bands. These predictions form the base inputs for the

stacking ensemble in Step 2.

D. Step 2: Stacking Ensemble

1) Motivation: While band-specific models effectively cap-

ture localized difficulty patterns, they lack global consistency

and fail to fully exploit cross-band correlations. A meta-

learning strategy can integrate predictions from multiple bands

and leverage structural attributes to correct residual incon-

sistencies. In particular, features such as failure probability

and move counts provide complementary information about

puzzle-solving dynamics that is not fully encoded in the band-

wise models.

2) Meta-Feature Construction: A comprehensive meta-

feature vector is constructed by combining base-model pre-

dictions and structural puzzle attributes:

z = [p1, p2, p3, p4, p̃, σp,

avg_success, fail_prob, inflection_rating,

fail_skew, num_move]

(3)

where:

p̃ = median(pi), σp =

√

√

√

√

1

4

4
∑

i=1

(pi − p̃)2. (4)

Here, p̃ represents the robust central tendency of the base

predictions, while σp serves as an implicit confidence measure,

indicating inter-model disagreement.

3) Meta-Learners and Complementarity: The stacking en-

semble integrates three heterogeneous meta-learners chosen

for their complementary modeling capacities:

• Ridge Regression: A linear regression model with L2

regularization, which stabilizes coefficient estimation by

penalizing large weights. Ridge captures global linear

trends between structural attributes (e.g., average success

probability, number of moves) and target ratings. Its

interpretability provides valuable insight into the relative

importance of meta-features.

• XGBoost: An ensemble of gradient-boosted regression

trees that sequentially fits residual errors. XGBoost is

well-suited for modeling nonlinear feature interactions

and conditional relationships, such as detecting puz-

zles that are deceptively difficult despite short move

sequences.

• MLP Regressor: A lightweight feedforward neural net-

work configured with two hidden layers (128 and 64

neurons, ReLU activation). This configuration provides

a balance between model capacity and overfitting risk

for the low-dimensional meta-feature vector, while ef-

fectively capturing high-order nonlinear dependencies not

easily approximated by tree-based methods.

4) Prediction Aggregation: The outputs of the three meta-

learners are aggregated via an adaptive weighted average:

ŷstack = wridgeŷridge + wxgbŷxgb + wmlpŷmlp, (5)

where the weights are inversely proportional to the validation

residual variance:

wj =
1/σ2

j
∑

k(1/σ
2

k)
, j ∈ {ridge, xgb,mlp}. (6)

This dynamic weighting emphasizes models with more sta-

ble validation performance. Ridge contributes stability and in-

terpretability, XGBoost captures local conditional interactions,

and the MLP learns complex nonlinear relationships, resulting

in improved generalization across heterogeneous puzzle types.

E. Step 3: Post-Processing Rating Prediction

1) Motivation: Although the stacking ensemble improves

overall prediction accuracy, residual analysis reveals system-

atic biases: high-Elo puzzles tend to be underestimated, while

some low-Elo puzzles are slightly overestimated. These biases

arise because the meta-learners only indirectly exploit engine-

derived structural signals, which often contain strong priors

about puzzle difficulty.

2) Structure-Aware Residual Correction: To explicitly in-

corporate these priors, we introduce a lightweight residual

correction that adjusts the stacking predictions toward a refined

structural difficulty estimate.

First, a baseline structural estimate s is computed as a

failure-probability-weighted average of rating buckets:

s =

∑

j(1− p̄j) rj
∑

j(1− p̄j)
, (7)

where (1− p̄j) represents the failure probability in bucket rj .

This estimate is then refined by incorporating two additional

structural signals:

• The inflection point rinf, indicating the rating at which

the success probability changes most sharply.

• The failure-probability skewness γ, which captures asym-

metric difficulty distributions where certain skill groups

systematically misjudge a puzzle. highlighting difficulty

transitions perceived by human solvers;

The final refined structural estimate is defined as:

s∗ = 0.6 s + 0.2 rinf + 0.2 (1700 + 300 γ) (8)

822 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



Finally, the corrected rating prediction is obtained through

a residual fusion with the stacking output:

ŷfinal = ŷstack + λ (s∗ − ŷstack) , λ = 0.3. (9)

This correction introduces no additional learnable param-

eters and is computationally efficient. By explicitly lever-

aging interpretable structural priors, it consistently improves

accuracy, particularly in high-Elo regions where data sparsity

makes residual biases more severe.

IV. MASK-BASED UNCERTAINTY EVALUATION

In addition to the main rating prediction task, the FedCSIS

2025 Challenge introduced an extended evaluation explicitly

designed to assess uncertainty estimation. Participants were

required to submit a binary mask marking the 10% of test

puzzles most likely to be mispredicted by their models.

The final score was recalculated by replacing predictions for

these masked samples with ground-truth ratings, and the ratio

between the adjusted score and the theoretically optimal score

determined the subtask ranking.

We designed a structure-aware uncertainty estimation

method that integrates model disagreement, prediction insta-

bility, and structural difficulty indicators into a unified scoring

framework. This approach balances model-based and feature-

based uncertainty cues, improving the alignment of selected

samples with actual model errors.

A. Scoring Function Design

The composite uncertainty score for each puzzle is defined

as:

ui = α · σp,i + β · δi + γ · ψi (10)

where:

• p̄i: average success probability across rating buckets for

puzzle i,
• zi: Z-score of the material balance in the training data;

for the test set, this term defaults to zero as no material

information is provided,

• I(|zi| > τ): indicator of extreme material imbalance, with

τ = 3.0 as the outlier threshold.

The weighting coefficients were empirically set to α = 1.0,

β = 1.0, and γ = 0.4 to optimize the uncertainty ranking

quality.

B. Mask Generation

Puzzles are ranked according to ui, and the top 10% are

assigned a mask value of 1:

maski =

{

1, i in top 10% highest scores,

0, otherwise.
(11)

This binary mask was submitted separately from the rating

predictions, providing an explicit measure of the model’s

uncertainty estimation capability.

C. Discussion

The proposed uncertainty estimation method combines

model-driven and feature-driven indicators in a single inter-

pretable framework. Its main advantages include:

• improved consistency between selected samples and ac-

tual prediction errors compared to variance-only methods;

• and explicit consideration of structural puzzle difficulty,

beyond pure statistical disagreement.

However, the method still relies on the alignment of raw

and post-processed predictions and may overlook systematic

biases shared across all models. Despite these limitations,

the approach provides a strong baseline for uncertainty-aware

chess puzzle difficulty estimation.

Our uncertainty mask ratio is 1.696, placing us 8th out of

the 9 teams that chose to participate in this additional task.

Using our submitted mask, our final score is approximately

57,931, while using a “perfect mask” would yield a score of

about 34,162. The full results for all teams will be published

in the competition report [5].

V. EXPERIMENTAL SETUP

A. Dataset and Preprocessing

The dataset provided by the organizers consists of two

disjoint parts:

• Training set: Approximately 4,557,000 puzzles, each la-

beled with a human-perceived difficulty rating derived

from aggregated player performance in Lichess (Glicko-

2 system). This set is fully annotated and serves as the

only source of labeled data for model development.

• Test set: An unlabeled set of 2,235 puzzles used exclu-

sively for the final evaluation. Participants are required

to submit predicted ratings for this set, while the ground-

truth ratings remain hidden.

To ensure balanced representation across different rating

bands, the official training set is split using stratified sampling

within each Elo band:

• Base-model training subset: 90% of puzzles per Elo band,

used for training the four band-specific base models.

• Validation subset: 10% of puzzles per Elo band, reserved

exclusively for generating unbiased out-of-sample predic-

tions for stacking and for residual bias calibration.

The stacking meta-learners are trained solely on this held-

out validation subset to prevent data leakage. To improve

generalization within the stacking stage, a 10-fold cross-

validation is performed on the validation subset: in each fold,

the meta-learners are trained on 90% of the fold and validated

on the remaining 10%, and the out-of-fold predictions are

averaged for final submission.

All continuous features, including success probabilities,

failure distributions, and structural statistics, are normalized to

the [0,1] range. PGN sequences are parsed to compute derived

attributes such as the number of solution moves (num_move),

and FEN strings are used to extract positional features such

as castling rights and piece material balance.
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B. Training Details

Each Elo-banded base model is implemented as a

lightweight multi-layer perceptron (MLP) following the of-

ficial baseline recommendations. The models are trained for

20–30 epochs with early stopping based on validation loss.

The best-performing checkpoints are selected, and no cross-

validation is applied at the base-model stage to keep training

computationally efficient.

The meta-learner integrates Ridge regression (L2 regular-

ization), XGBoost (max depth = 8, learning rate = 0.01-

0.05, 1000-2000 boosting rounds) and a lightweight MLP (two

hidden layers: 128 and 64 neurons, ReLU activation, dropout =

0.1). The meta-features are constructed exclusively from base

model predictions on the validation subset (out-of-sample),

and a 10-fold cross-validation within this subset is used to

improve the robustness of the meta-learners.

A structure-aware residual correction is fitted to the vali-

dation residuals, explicitly adjusting the stacking predictions

toward structural difficulty estimates, especially mitigating

underestimation in sparse high-Elo regions.

C. Overall Performance

Table I shows the progressive improvements across pipeline

stages.

Table I
PROGRESSIVE IMPROVEMENTS ACROSS PIPELINE STAGES (INTERNAL

HOLD-OUT TEST SET).

Pipeline Stage MSE Relative Gain

Base Models (avg/median) 78,000–80,000 –

Stacking Ensemble (10-Fold) 71,000–73,000 +9–11%

Post-Processing + Best Avg 66,600–68,000 +6–8%

The pipeline shows clear incremental gains: stacking sub-

stantially improves cross-band consistency, while residual cor-

rection yields additional improvements in high-Elo regions.

D. Ablation Study

Table II highlights the contribution of each major compo-

nent.

Table II
ABLATION STUDY: CONTRIBUTION OF EACH COMPONENT (VALIDATION

SET).

Configuration MSE Change vs. Full

Full Pipeline 66,600–68,000 Baseline

w/o Structural Features ∼72,000 +6–8%

w/o Stacking Ensemble ∼78,000 +15–18%

Single Global Model >85,000 +25%

Removing structural features increases variance, confirming

their role as complementary difficulty indicators. Stacking

yields the largest single improvement by integrating base-

model predictions with structural cues, while replacing band-

wise models with a single global model leads to severe bias,

particularly for high-Elo puzzles.

E. Discussion

These results confirm the effectiveness of a structured and

interpretable pipeline:

• Elo-banded modeling alleviates data imbalance and re-

duces extreme rating bias;

• Stacking with structural reasoning provides the largest

performance gain by capturing cross-band interactions;

• Residual calibration yields additional improvements in

sparse high-Elo regions with negligible computational

cost.

The final MSE of 62,685 ranks among the top solutions,

demonstrating that a lightweight and transparent ensemble can

rival more computationally expensive deep-learning models,

making it suitable for educational or large-scale online puzzle

recommendation systems.

VI. CONCLUSION

This study presented a structured and interpretable pipeline

for chess puzzle difficulty prediction in the FedCSIS 2025

Challenge. The approach combines three complementary

stages: (1) Elo-banded base models specialized for different

rating ranges to reduce distributional bias, (2) a feature-

level stacking ensemble that integrates base predictions with

structural puzzle attributes to improve cross-band generaliza-

tion, and (3) a lightweight structure-aware residual correction

to mitigate systematic errors, particularly in sparse high-Elo

regions.

Extensive experiments demonstrated clear incremental im-

provements at each stage, achieving a final MSE of 62,685

and ranking 7th in the final leaderboard among resource-

intensive deep-learning solutions. The results confirm that

carefully designed ensembles, when combined with domain-

specific structural reasoning, can achieve competitive accuracy

with far lower computational cost and higher interpretability.
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[1] J. Zyśko, M. Świechowski, S. Stawicki, K. Jagieła, A. Janusz and D.
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