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Abstract—FedCSIS 2025 competition is to predict the dif-
ficulty of chess puzzles, we present a structured multi-stage
regression pipeline developed for the FedCSIS 2025 Challenge.
The approach consists of three stages: (i) four Elo-banded base
models trained on separate rating ranges to capture localized
difficulty semantics and mitigate bias in imbalanced datasets;
(ii) a feature-level stacking ensemble combining base predictions
with structural attributes, such as success probabilities, failure
distributions, and solution length, to enhance cross-band gener-
alization; and (iii) a lightweight post-hoc residual correction to
reduce systematic prediction biases. Additionally, an uncertainty-
aware mask-based evaluation is introduced to identify the 10%
most challenging puzzles for extended scoring.

Our method achieved competitive results, ranking 7th in the fi-
nal leaderboard, while maintaining low computational cost. These
findings demonstrate that lightweight, interpretable models, when
combined with structural reasoning and uncertainty estimation,
can rival more complex deep-learning approaches. This study
highlights the potential of structured machine learning pipelines
for scalable, human-centric chess puzzle analytics.

Index Terms—Chess puzzle difficulty prediction, Elo-banded
modeling, Stacking ensemble, Meta-learning, Structural features,
Residual correction

I. INTRODUCTION

HESS puzzle difficulty prediction involves assessing not

only the tactical correctness of moves but also their
perceived complexity for human players. Human performance
depends on multiple factors, such as move sequence length,
tactical motifs, time pressure, and psychological biases, which
are often poorly correlated with engine evaluations. The in-
creasing availability of large-scale puzzle-solving data from
online platforms has fueled interest in data-driven approaches
to this problem.

A. Related Work

With the rise of deep learning, end-to-end approaches be-
came dominant, as mentioned in the previous IEEE BigData
2024 Cup: chess puzzle competition report [1]. Woodruff et
al. [2] proposed neural models and won the IEEE Big-
Data 2024 Cup. Milosz and Kapusta [3] proposed Glick-
Former, a spatio-temporal transformer jointly modeling board
states and move sequences, significantly outperforming earlier
transformer-based models and ranking among the top entries in
the IEEE BigData 2024 Cup, while Ruta et al. [4] introduced
a convolutional neural network (CNN) that mapped board
configurations to difficulty ratings, achieving strong correlation
with human ratings.
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B. Our Contributions

Our work proposes a structured and computationally effi-
cient pipeline for chess puzzle difficulty prediction. The key
contributions are:

o Training four Elo-banded base models on separate rat-
ing ranges to capture localized difficulty semantics and
mitigate bias in imbalanced data.

+ Combining base predictions with structural puzzle fea-
tures in a heterogeneous stacking ensemble, improving
generalization across diverse puzzle types.

« Applying a post-hoc residual correction to reduce system-
atic biases and introducing an uncertainty-aware mask to
identify the 10% most challenging puzzles for extended
evaluation.

« Achieving competitive performance, i.e. 6th in the prelim-
inary and 7th in the final leaderboard, while maintaining
low computational cost, demonstrating that structured
lightweight models can rival more complex deep-learning
approaches.

« For computational efficiency, we intentionally avoid ex-
cessively long training schedules. Instead of relying on
prolonged base model training, which is time-consuming
for millions of samples, later stages—stacking and resid-
ual correction—are designed to refine predictions using
cross-band interactions and structural reasoning. This
strategy provides a better balance between accuracy and
runtime in practical competition settings.

The remainder of this paper is organized as follows: Sec-
tion II introduces the competition task, dataset characteristics,
and evaluation protocol. Section III describes the proposed
methodology, including the band-specific base models, the
stacking ensemble, and the post-hoc residual correction with
uncertainty estimation. Section V presents the experimental
setup, ablation studies, and official leaderboard results. Finally,
Section VI concludes the paper and discusses potential future
work.

II. COMPETITION DESCRIPTION

The FedCSIS 2025 Challenge [5] organized on the Knowl-
edgePit platform! is the continuation of the highly successful
first edition organized as part of the IEEE BigData Cup 2024
[1] . This second edition further extends the benchmark by

Thttps://knowledgepit.ai/

Thematic Session: Data Mining Competition



820

providing an updated large-scale dataset and refined evaluation
protocol, aimed at advancing algorithms that estimate human-
perceived puzzle difficulty. Unlike chess engines optimized
for best-move accuracy, the task focuses on modeling human
solving performance, a key requirement for adaptive training
systems, personalized recommendation engines, and educa-
tional applications. The difficulty level is measured as the
rating on the lichess platform?.

A. Task Definition

Participants are required to predict a continuous difficulty
rating for each chess puzzle, expressed as a Glicko-2 rating?
equivalent. The official evaluation metric is the Mean Squared
Error (MSE)*:

N
MSE = ;;(yi — )2, )
where y; is the ground-truth human-derived rating and ¢;
is the predicted rating. The competition adopts a two-stage
leaderboard system:
e Preliminary Stage: A public leaderboard based on a
subset of the test set for iterative submissions.
o Final Stage: A private leaderboard evaluated on the full
hidden test set, determining the official ranking.

B. Dataset and Features

The official dataset comprises a large labeled training set

and an unlabeled test set:

o Training Set: 4,557,000 puzzles annotated with human-

derived Glicko-2 ratings and engine-computed statistics.

o Test Set: 2,235 puzzles sharing the same feature structure

but without difficulty ratings. Predictions for this set are
used for final evaluation.

Each puzzle is described by 32 structured features in the

training set and 25 features in the test set:

1) Core Information: Puzzleld, Forsyth—-Edwards Notation
(FEN)’ for board state, and Portable Game Notation
(PGN)® for solution moves.

2) Human-Performance Annotations (training only): Rating
(Glicko-2 difficulty), RatingDeviation, Popularity, and
NbPlays.

3) Contextual Metadata: Themes, GameUrl, and Opening-
Tags.

4) Engine-Derived Success Probabilities: 10 rapid-mode
columns (success_prob_rapid_1050-2050) and 10 blitz-
mode columns (success_prob_blitz_1050-2050), repre-
senting estimated human success rates at different skill
levels.

By decoding the FEN, the chessboard can be illustrated into

image. For example, the below Figure 1 shows the chessboard
initial state decoded by FEN and the rating is 1300.

Zhttps://lichess.org/
3https://en.wikipedia.org/wiki/Glicko_rating_system
4https://en.wikipedia.org/wiki/Mean_squared_error
Shttps://en.wikipedia.org/wiki/ForsythEdwards_Notation
Ohttps://en.wikipedia.org/wiki/Portable_Game_Notation
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Figure 1. FEN: "8/4R3/1p2P3/p4r2/P6p/ P3Pk 1/4K3/8 w - - 1 64".

C. Key Challenges

The challenge introduces several unique difficulties:

o Human-Centric Bias: Ratings are derived from solver
statistics rather than engine evaluations, so engine-trivial
tactics may still be difficult for humans.

o Imbalanced Difficulty Distribution: Sparse high-Elo sam-
ples are prone to underestimation by global models
trained on mid-range-dominated data.

o High-Dimensional Structured Features: Success proba-
bilities across multiple skill bands must be effectively
combined without overfitting.

o Scalability and Interpretability: Models must efficiently
process millions of samples while maintaining trans-
parency for educational use cases.

D. Extended Mask-Based Evaluation

An additional subtask evaluates uncertainty estimation. Par-
ticipants submit a binary mask identifying the 10% most
error-prone test puzzles. Scores are recomputed by replacing
masked predictions with ground-truth ratings, and rankings
are determined by the ratio between the adjusted score and
the theoretical “perfect mask.” This extension highlights the
importance of reliable uncertainty estimation.

III. METHODOLOGY

This section presents the detailed methodology of our solu-
tion for the FedCSIS 2025 Challenge main task. The proposed
approach follows a structured multi-stage pipeline designed
to balance accuracy, interpretability, and computational effi-
ciency. We first provide an overview of the entire pipeline,
then highlight its key methodological contributions, followed
by a detailed description of each stage.

A. Overall Pipeline

The pipeline consists of three major stages:

1) Elo-Banded Base Models: Four band-specific models
are trained on separate Elo ranges using structured
puzzle features (engine-derived statistics and positional
indicators) to capture localized difficulty semantics and
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reduce prediction bias caused by highly imbalanced
rating distributions.

2) Feature-Level Stacking Ensemble: Outputs from base
models are combined with structural puzzle features
in a heterogeneous meta-learning framework, improving
cross-band generalization.

3) Post-Processing Rating Prediction: A lightweight resid-
ual correction adjusts systematic biases, producing the
final predicted ratings submitted to the competition.

This design allows predictions to be progressively refined:
base models specialize in local rating regions, stacking inte-
grates global patterns, and post-processing corrects residual
systematic errors.

B. Major Contributions in Method Design
The key methodological contributions include:

« Band-Specific Specialization: Instead of a single global
model, band-wise training explicitly targets the diverse
difficulty distributions across Elo ranges.

o Structured Feature Ultilization: Engine-derived success
probabilities and handcrafted positional indicators are
explicitly exploited both in base and stacking models,
improving interpretability and generalization.

o Hybrid Meta-Learning: By combining a linear model
(Ridge), a tree-based model (XGBoost), and a neural
network (MLP), the stacking ensemble exploits comple-
mentary strengths.

o Lightweight but Scalable: All components are compu-
tationally efficient and scalable to millions of samples,
unlike many deep-learning-based solutions.

« Bias Mitigation via Post-Processing: A simple, inter-
pretable residual correction effectively addresses under-
estimation in high-Elo regions.

C. Step 1: Elo-Banded Base Models

Puzzle ratings span from approximately 400 Elo (basic
tactics) to over 3000 Elo (master-level combinations), leading
to a potential imbalanced difficulty distribution, as summarized
in Fig. 2. Although high-Elo puzzles (> 1700) constitute over
one-third of the data, their solving patterns differ substantially
from lower bands, and a single global model trained on such
mixed distributions often overfits mid-range samples while
underestimating high-Elo puzzle difficulty.

To address this, we adopt a band-wise modeling strategy,
training four independent models, each specialized for a des-
ignated Elo range [2]. This specialization allows each model
to focus on localized difficulty patterns, improving prediction
accuracy across heterogeneous rating bands.

1) Training Data Selection: All training samples are as-
signed to exactly one band-specific model according to their
difficulty ratings. Unlike the default global-training setup of
the baseline regression code, we manually configured the
training pipeline to filter puzzles into four disjoint Elo bands:

« Small model: Rating < 1000 (beginner-level puzzles
with simple tactical motifs),

Elo Rating Distribution of Training Set (4,557,000 Puzzles)
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Figure 2. Elo rating distribution of the training set (4,557,000 puzzles),
showing heterogeneous distributions across rating bands.

o 1300 model: 1000 < Rating < 1400 (intermediate-level
puzzles),

o 1500 model: 1400 < Rating < 1700 (club-level puzzles
with mixed tactical and strategic depth),

o 1700+ model: Rating > 1700 (advanced puzzles requir-
ing deeper tactical reasoning).

This standardized partitioning ensures full data utilization
and enables each model to learn the statistical patterns and
solving dynamics specific to its designated Elo range, which
is particularly beneficial for the sparse high-Elo band.

2) Model Architecture: All four band-specific models are
trained as Multi-Layer Perceptron regressors (MLP), following
a standard supervised learning framework:

« Input Representation: Each puzzle is represented entirely
by structured features extracted from the official dataset:

— Engine-derived statistics such as per-move success
probabilities, mean, standard deviation, max, and
min probabilities,

— failure probability and distribution skewness,

— material balance,

— solution length and other positional descriptors.

All continuous features are normalized to the range [0,1].

o Network Structure: Each model consists of several fully
connected layers with ReLU activations, followed by
a single linear regression head that outputs a scalar
difficulty rating. This MLP architecture is well-suited to
tabular structured data and provides efficient training on
millions of samples.

o Training Objective: All models are optimized with the
standard Mean Squared Error (MSE):

1 N

Ebase - N ;(yz - fé'(xi))Q» (2)
where fp is the band-specific MLP and y; the ground-
truth difficulty rating.

o Epochs and Fine-Tuning: The number of training epochs
is determined empirically based on validation perfor-
mance, typically ranging from 10 to 20 epochs depending
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on band size, model convergence speed, and computa-
tional budget. This relatively small epoch range reflects
a trade-off between convergence and time efficiency, as
prolonged training provides diminishing returns and is
computationally expensive for large-scale data.

An internal validation set, sampled as 10% of the band-
specific training data, is used exclusively for hyperparam-
eter tuning and to save the best-performing checkpoints
based on validation MSE.

3) Inference and Outputs: After training, each model is
applied independently to the official test set using a standard-
ized inference pipeline. The four models generate separate
predictions corresponding to the small, 1300, 1500, and 1700
Elo bands. These predictions form the base inputs for the
stacking ensemble in Step 2.

D. Step 2: Stacking Ensemble

1) Motivation: While band-specific models effectively cap-
ture localized difficulty patterns, they lack global consistency
and fail to fully exploit cross-band correlations. A meta-
learning strategy can integrate predictions from multiple bands
and leverage structural attributes to correct residual incon-
sistencies. In particular, features such as failure probability
and move counts provide complementary information about
puzzle-solving dynamics that is not fully encoded in the band-
wise models.

2) Meta-Feature Construction: A comprehensive meta-
feature vector is constructed by combining base-model pre-
dictions and structural puzzle attributes:

z = [p17 D2, P3, P4, ]57 Op,
avg_success, fail_prob, inflection_rating, 3)

fail_skew, num_move]

where:

P = median(p;), op =

“

Here, p represents the robust central tendency of the base
predictions, while o, serves as an implicit confidence measure,
indicating inter-model disagreement.

3) Meta-Learners and Complementarity: The stacking en-
semble integrates three heterogeneous meta-learners chosen
for their complementary modeling capacities:

o Ridge Regression: A linear regression model with Lo
regularization, which stabilizes coefficient estimation by
penalizing large weights. Ridge captures global linear
trends between structural attributes (e.g., average success
probability, number of moves) and target ratings. Its
interpretability provides valuable insight into the relative
importance of meta-features.

e XGBoost: An ensemble of gradient-boosted regression
trees that sequentially fits residual errors. XGBoost is
well-suited for modeling nonlinear feature interactions
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and conditional relationships, such as detecting puz-
zles that are deceptively difficult despite short move
sequences.

o« MLP Regressor: A lightweight feedforward neural net-
work configured with two hidden layers (128 and 64
neurons, ReLLU activation). This configuration provides
a balance between model capacity and overfitting risk
for the low-dimensional meta-feature vector, while ef-
fectively capturing high-order nonlinear dependencies not
easily approximated by tree-based methods.

4) Prediction Aggregation: The outputs of the three meta-
learners are aggregated via an adaptive weighted average:

Qstack = wridge@ridge + wxgnggb + wmlpgmlpa (5)

where the weights are inversely proportional to the validation
residual variance:

2
w; = 1/o; ’
2k(1/0)

This dynamic weighting emphasizes models with more sta-
ble validation performance. Ridge contributes stability and in-
terpretability, XGBoost captures local conditional interactions,
and the MLP learns complex nonlinear relationships, resulting
in improved generalization across heterogeneous puzzle types.

j € {ridge, xgb, mlp}. 6)

E. Step 3: Post-Processing Rating Prediction

1) Motivation: Although the stacking ensemble improves
overall prediction accuracy, residual analysis reveals system-
atic biases: high-Elo puzzles tend to be underestimated, while
some low-Elo puzzles are slightly overestimated. These biases
arise because the meta-learners only indirectly exploit engine-
derived structural signals, which often contain strong priors
about puzzle difficulty.

2) Structure-Aware Residual Correction: To explicitly in-
corporate these priors, we introduce a lightweight residual
correction that adjusts the stacking predictions toward a refined
structural difficulty estimate.

First, a baseline structural estimate s is computed as a
failure-probability-weighted average of rating buckets:

> g (L—pj)r;
2;(=p5)
where (1 — ;) represents the failure probability in bucket r;.

This estimate is then refined by incorporating two additional
structural signals:

)

S =

o The inflection point 7y, indicating the rating at which
the success probability changes most sharply.

o The failure-probability skewness =y, which captures asym-
metric difficulty distributions where certain skill groups
systematically misjudge a puzzle. highlighting difficulty
transitions perceived by human solvers;

The final refined structural estimate is defined as:

§* =065 + 027 + 0.2(17004+3007) (8
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Finally, the corrected rating prediction is obtained through
a residual fusion with the stacking output:

yﬁnal = ystack + A (5* - gslack) 3 A=0.3. (9)

This correction introduces no additional learnable param-
eters and is computationally efficient. By explicitly lever-
aging interpretable structural priors, it consistently improves
accuracy, particularly in high-Elo regions where data sparsity
makes residual biases more severe.

IV. MASK-BASED UNCERTAINTY EVALUATION

In addition to the main rating prediction task, the FedCSIS
2025 Challenge introduced an extended evaluation explicitly
designed to assess uncertainty estimation. Participants were
required to submit a binary mask marking the 10% of test
puzzles most likely to be mispredicted by their models.
The final score was recalculated by replacing predictions for
these masked samples with ground-truth ratings, and the ratio
between the adjusted score and the theoretically optimal score
determined the subtask ranking.

We designed a structure-aware uncertainty estimation
method that integrates model disagreement, prediction insta-
bility, and structural difficulty indicators into a unified scoring
framework. This approach balances model-based and feature-
based uncertainty cues, improving the alignment of selected
samples with actual model errors.

A. Scoring Function Design

The composite uncertainty score for each puzzle is defined
as:

U= -0p; + B0 + -1 (10)

where:

e P;: average success probability across rating buckets for
puzzle ¢,

e z;: Z-score of the material balance in the training data;
for the test set, this term defaults to zero as no material
information is provided,

e I(|z;| > 7): indicator of extreme material imbalance, with
7 = 3.0 as the outlier threshold.

The weighting coefficients were empirically set to o = 1.0,
B = 1.0, and v = 0.4 to optimize the uncertainty ranking
quality.

B. Mask Generation

Puzzles are ranked according to wu;, and the top 10% are
assigned a mask value of 1:

1
mask; = {0’

This binary mask was submitted separately from the rating
predictions, providing an explicit measure of the model’s
uncertainty estimation capability.

1 in top 10% highest scores, (an

otherwise.

C. Discussion

The proposed uncertainty estimation method combines
model-driven and feature-driven indicators in a single inter-
pretable framework. Its main advantages include:

« improved consistency between selected samples and ac-
tual prediction errors compared to variance-only methods;

« and explicit consideration of structural puzzle difficulty,
beyond pure statistical disagreement.

However, the method still relies on the alignment of raw
and post-processed predictions and may overlook systematic
biases shared across all models. Despite these limitations,
the approach provides a strong baseline for uncertainty-aware
chess puzzle difficulty estimation.

Our uncertainty mask ratio is 1.696, placing us 8th out of
the 9 teams that chose to participate in this additional task.
Using our submitted mask, our final score is approximately
57,931, while using a “perfect mask” would yield a score of
about 34,162. The full results for all teams will be published
in the competition report [5].

V. EXPERIMENTAL SETUP
A. Dataset and Preprocessing

The dataset provided by the organizers consists of two

disjoint parts:

¢ Training set: Approximately 4,557,000 puzzles, each la-
beled with a human-perceived difficulty rating derived
from aggregated player performance in Lichess (Glicko-
2 system). This set is fully annotated and serves as the
only source of labeled data for model development.

o Test set: An unlabeled set of 2,235 puzzles used exclu-
sively for the final evaluation. Participants are required
to submit predicted ratings for this set, while the ground-
truth ratings remain hidden.

To ensure balanced representation across different rating
bands, the official training set is split using stratified sampling
within each Elo band:

o Base-model training subset: 90% of puzzles per Elo band,
used for training the four band-specific base models.

« Validation subset: 10% of puzzles per Elo band, reserved
exclusively for generating unbiased out-of-sample predic-
tions for stacking and for residual bias calibration.

The stacking meta-learners are trained solely on this held-
out validation subset to prevent data leakage. To improve
generalization within the stacking stage, a 10-fold cross-
validation is performed on the validation subset: in each fold,
the meta-learners are trained on 90% of the fold and validated
on the remaining 10%, and the out-of-fold predictions are
averaged for final submission.

All continuous features, including success probabilities,
failure distributions, and structural statistics, are normalized to
the [0,1] range. PGN sequences are parsed to compute derived
attributes such as the number of solution moves (num_move),
and FEN strings are used to extract positional features such
as castling rights and piece material balance.
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B. Training Details

Each Elo-banded base model is implemented as a
lightweight multi-layer perceptron (MLP) following the of-
ficial baseline recommendations. The models are trained for
20-30 epochs with early stopping based on validation loss.
The best-performing checkpoints are selected, and no cross-
validation is applied at the base-model stage to keep training
computationally efficient.

The meta-learner integrates Ridge regression (L2 regular-
ization), XGBoost (max depth = 8, learning rate = 0.01-
0.05, 1000-2000 boosting rounds) and a lightweight MLP (two
hidden layers: 128 and 64 neurons, ReLU activation, dropout =
0.1). The meta-features are constructed exclusively from base
model predictions on the validation subset (out-of-sample),
and a 10-fold cross-validation within this subset is used to
improve the robustness of the meta-learners.

A structure-aware residual correction is fitted to the vali-
dation residuals, explicitly adjusting the stacking predictions
toward structural difficulty estimates, especially mitigating
underestimation in sparse high-Elo regions.

C. Overall Performance

Table I shows the progressive improvements across pipeline
stages.

Table 1
PROGRESSIVE IMPROVEMENTS ACROSS PIPELINE STAGES (INTERNAL
HOLD-OUT TEST SET).

MSE Relative Gain
78,000-80,000 -
71,000-73,000 +9-11%
66,600-68,000 +6-8%

Pipeline Stage

Base Models (avg/median)
Stacking Ensemble (10-Fold)
Post-Processing + Best Avg

The pipeline shows clear incremental gains: stacking sub-
stantially improves cross-band consistency, while residual cor-
rection yields additional improvements in high-Elo regions.

D. Ablation Study

Table II highlights the contribution of each major compo-
nent.

Table 11
ABLATION STUDY: CONTRIBUTION OF EACH COMPONENT (VALIDATION
SET).

Configuration MSE Change vs. Full

Full Pipeline 66,600-68,000 Baseline

w/o Structural Features ~72,000 +6-8%

w/o Stacking Ensemble ~78,000 +15-18%

Single Global Model >85,000 +25%

Removing structural features increases variance, confirming
their role as complementary difficulty indicators. Stacking
yields the largest single improvement by integrating base-
model predictions with structural cues, while replacing band-
wise models with a single global model leads to severe bias,
particularly for high-Elo puzzles.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

E. Discussion

These results confirm the effectiveness of a structured and
interpretable pipeline:

« Elo-banded modeling alleviates data imbalance and re-
duces extreme rating bias;

o Stacking with structural reasoning provides the largest
performance gain by capturing cross-band interactions;

o Residual calibration yields additional improvements in
sparse high-Elo regions with negligible computational
cost.

The final MSE of 62,685 ranks among the top solutions,
demonstrating that a lightweight and transparent ensemble can
rival more computationally expensive deep-learning models,
making it suitable for educational or large-scale online puzzle
recommendation systems.

VI. CONCLUSION

This study presented a structured and interpretable pipeline
for chess puzzle difficulty prediction in the FedCSIS 2025
Challenge. The approach combines three complementary
stages: (1) Elo-banded base models specialized for different
rating ranges to reduce distributional bias, (2) a feature-
level stacking ensemble that integrates base predictions with
structural puzzle attributes to improve cross-band generaliza-
tion, and (3) a lightweight structure-aware residual correction
to mitigate systematic errors, particularly in sparse high-Elo
regions.

Extensive experiments demonstrated clear incremental im-
provements at each stage, achieving a final MSE of 62,685
and ranking 7" in the final leaderboard among resource-
intensive deep-learning solutions. The results confirm that
carefully designed ensembles, when combined with domain-
specific structural reasoning, can achieve competitive accuracy
with far lower computational cost and higher interpretability.
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