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Abstract—The growing sophistication and frequency of cyber
threats in communication networks demand Intrusion Detection
Systems (IDS) that adapt to evolving attack patterns. Tradi-
tional approaches, based on static rules or purely supervised
models, often fail to recognize novel attacks, leaving critical
infrastructures exposed. Reinforcement Learning (RL) provides a
dynamic alternative by enabling agents to refine detection policies
through continuous feedback. In this work, we propose a Q-
learning–based Intrusion Detection (Q-ID) system and train it
on the CICIDS2017 dataset. The RL formulation defines the
state as the flow’s feature vector, the action as the classification
decision, and the reward as +1 for correct predictions and −1

otherwise. To ensure stable convergence, the reward is integrated
with cross-entropy loss in a hybrid objective, allowing continued
improvement even after the supervised component has plateaued.
Unlike prior IDS methods that rely solely on offline supervised
training, our approach fuses reinforcement feedback with su-
pervised optimization to support adaptive and robust detection.
Experimental results, conducted under class imbalance and
realistic evaluation splits, show that the proposed system achieves
99.3% accuracy, outperforming strong baselines including deep
neural networks and traditional classifiers. Moreover, the RL
agent demonstrates robustness under skewed traffic distributions
and adaptability to previously unseen attack types. These results
highlight reinforcement learning as a promising paradigm for
building resilient IDS in critical communication environments.

Index Terms—Adaptive Intrusion Detection, Communication
Networks, Reinforcement Learning, Q-learning Algorithm, Net-
work Security, Cyber Attack Resilience

I. INTRODUCTION

THE rapid growth in the complexity and frequency of cy-

ber threats poses significant risks to modern communica-

tion networks. These infrastructures form the backbone of crit-

ical services, enterprise systems, and national defense, making

them attractive targets for adversaries. Successful intrusions

can disrupt operations, compromise sensitive information, and

trigger cascading failures across interconnected systems [1].

Traditional Intrusion Detection Systems (IDS), which depend

heavily on static rules or signature-based techniques, are

increasingly inadequate for identifying sophisticated or pre-

viously unseen attacks [2]. Their inability to adapt to dynamic

traffic patterns and evolving adversarial strategies underscores

the need for intelligent and flexible detection mechanisms.

Recent advances in Machine Learning (ML) and Artificial

Intelligence (AI) have been applied to strengthen IDS. Super-

vised learning approaches, for example, can classify traffic as

benign or malicious by learning from labeled datasets. While

such models outperform static rule-based systems, they suffer

from critical limitations, including reliance on large anno-

tated datasets, assumption of stationary data distributions, and

vulnerability to novel or evolving threats. These weaknesses

restrict their utility in dynamic and high-stakes communication

environments.

Reinforcement Learning (RL), a branch of ML, offers a

promising solution. Unlike supervised learning methods that

passively rely on historical labels, RL enables an agent to

interact with its environment, making sequential decisions

that maximize cumulative rewards [3]. This dynamic learning

paradigm equips IDS with the ability to self-correct and adapt

as new threats emerge, making RL particularly well-suited to

adversarial and continuously changing domains.

This work investigates the application of RL for adaptive

intrusion detection using the widely adopted CICIDS2017 [4]

dataset. Specifically, we propose a Q-learning–based Intrusion

Detection (Q-ID) agent that classifies network flows as normal

or malicious. The formulation defines the state, action, and

reward explicitly, and employs a hybrid training objective that

combines reward feedback with cross-entropy loss to ensure

stable convergence. Through continuous interaction with the

environment, the agent adapts its detection strategies over time,

enhancing its ability to recognize both known and previously

unseen attacks. The contributions of this paper are threefold.

1) An explicit RL formulation for intrusion detection, in-

cluding clear definitions of states, actions, and rewards.

2) A hybrid training strategy that integrates supervised and

reinforcement signals for stable and continued learning.

3) An empirical evaluation against strong machine learning

baselines that demonstrates superior accuracy, robust-

ness under class imbalance, and practical feasibility for

deployment in critical communication networks.

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 35–42

DOI: 10.15439/2025F1820
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 35 Invited contribution



The remainder of this paper is structured as follows: we first

discuss related work in the field of intrusion detection and RL

in Section II. Section III describes the CICIDS2017 dataset

and the preprocessing pipeline used for our experiments. We

then describe our methodology, data preprocessing and the

design of the RL agent in Section IV. Experimental results are

presented to demonstrate the effectiveness of our approach in

Section V. Section VI provides an ablation study to quantify

the contribution of key design choices. Finally, we conclude

with a discussion on the implications of our findings and

potential future directions for research in Section VII.

II. RELATED WORK

Intrusion detection systems (IDS) have evolved from static

signature-based and rule-driven techniques toward more adap-

tive approaches. Classical IDS methods depend on predefined

patterns of known attacks, which limits their ability to recog-

nize novel or sophisticated intrusions. As cyber threats have

become increasingly dynamic, research has shifted toward ma-

chine learning (ML) and artificial intelligence (AI) techniques

capable of adapting to changing attack landscapes.

Reinforcement learning (RL) has emerged as a promising

direction for IDS. Otoum et al. [5] proposed a big data–driven

RL-based IDS for wireless sensor networks, achieving near-

perfect detection accuracy and outperforming prior hybrid

approaches. Their work highlighted RL’s ability to adapt to

evolving attack scenarios. However, existing RL-based IDS

approaches often do not clearly define the state, action, and

reward components, and few explicitly consider integrating

RL signals with supervised learning objectives to stabilize

optimization.

Several studies have applied supervised ML models to intru-

sion detection. Maliha et al. [6] investigated IoT security using

algorithms such as K-Nearest Neighbor (KNN), Naive Bayes,

Support Vector Machine (SVM), Random Forest, and Decision

Tree on the CICIDS2017 dataset, with feature selection based

on Random Forest Regressor and Extra Trees Classifier. Their

analysis showed that KNN achieved the highest accuracy and

F1-score among the evaluated models. Similarly, Choudhary

et al. [7] developed a deep neural network (DNN) framework

and evaluated it across KDDCUP’99, NSL-KDD, and UNSW-

NB15, reporting an average accuracy of 91.5%. Norwahidayah

et al. [8] combined particle swarm optimization (PSO) [9]

for feature selection with an artificial neural network (ANN),

achieving 98% accuracy on the KDDCUP’99 dataset. While

these studies demonstrate the value of supervised learning,

their effectiveness remains tied to the availability of labeled

data and known attack types, reducing generalization to unseen

threats.

Neural networks have also been widely applied to anomaly

detection tasks such as user profiling [10], command sequence

prediction [11], and traffic pattern recognition [12]. More

advanced models, including recurrent neural networks and

self-organizing maps [13], offer flexibility but often lack

transparency in their decision-making, limiting trust and in-

terpretability in security-critical environments.

More recent efforts have explored reinforcement learning-

based intrusion detection systems in dynamic and adver-

sarial settings. Ghubaish et al. [14] presented HDRL-IDS,

an actor–critic hybrid RL model designed for medical IoT

security in 5G environments. Although tailored for low-latency

MEC applications, their approach does not benchmark against

modern tabular learners or operate on standard datasets such

as CICIDS2017. Finally, Mahjoub et al. [15] proposed an

RL-driven IDS that adapts both the policy and environment

for IoT attack detection using the Bot-IoT dataset. How-

ever, the method lacks architectural transparency and does

not address class imbalance. In contrast, our proposed Q-ID

system introduces a well-defined Q-learning architecture with

a hybrid reward–supervised loss, applies to a general-purpose

IDS dataset (CICIDS2017), and demonstrates robustness under

data skew and previously unseen attacks.

Compared to prior research, the present study contributes by

explicitly formulating intrusion detection as a reinforcement

learning problem. States are represented by network flow

features, actions correspond to classification decisions, and

rewards provide direct feedback on detection outcomes. In

addition, a hybrid training objective that combines cross-

entropy loss with reward-based feedback is introduced to

enhance stability and adaptability. This positions our approach

at the intersection of supervised learning and RL, aiming to

provide robust detection performance while maintaining the

adaptability needed for evolving cyber threats.

III. DATASET AND PREPROCESSING

In this study, we utilize the CICIDS 2017 dataset, which is a

comprehensive benchmark for IDS. This dataset encompasses

a wide range of network traffic data, including both normal

and various attack types, making it suitable for training and

evaluating IDSs.

A. Dataset

The CICIDS 2017 dataset contains 2,830,683 records stored

in a single CSV file. Among these, 2,359,289 instances corre-

spond to benign (Normal) traffic, while 231,073 records rep-

resent DoS Hulk attacks. Additional attack categories include

158,930 PortScan, 41,835 DDoS, 10,293 DoS GoldenEye,

7,938 FTP-Patator, 5,897 SSH-Patator, 5,796 DoS Slowloris,

5,499 DoS Slowhttptest, 1,966 Bot, 1,507 Web Attack–Brute

Force, 652 Web Attack–Cross-Site Scripting, 36 Infiltration,

21 Web Attack–SQL Injection, and 11 Heartbleed instances,

as shown in Figure 1.

Overall, 83% of the dataset is classified as benign traffic,

while the remaining 17% corresponds to various attack types,

indicating a significant class imbalance. To ensure reliable

model training, preprocessing is performed to eliminate errors

and redundancies. During this step, inconsistencies are de-

tected among the 2,830,751 data streams and are subsequently

removed. Additional preprocessing involves eliminating re-

dundant features and converting categorical variables into nu-

merical representations using the LabelEncoder function.

Specific corrections include replacing “infinity” values with
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−1, handling “NaN” values by replacing them with 0, and

correcting inconsistent labels (e.g., converting “FTP–Patator”

to “FTP-Patator”).

Fig. 1. Distribution of classes in the CICIDS2017 dataset.

B. Feature Information

The dataset comprises 85 attributes that describe network

flows. These include identifiers such as flow ID, source IP, des-

tination IP, destination port, protocol, and timestamp. Several

attributes capture flow-level statistics, such as flow duration (in

microseconds), total forward packets, and total backward pack-

ets. Additional attributes summarize packet size distributions,

including maximum, minimum, mean, and standard deviation

values for both forward and backward packets.

Throughput-related features include flow bytes and flow

packets, which measure the total bytes and packets transmitted

per second. Inter-arrival time (IAT) features further describe

temporal dynamics: Flow IAT Max, Flow IAT Min, Flow

IAT Std, and Flow IAT Mean summarize inter-arrival time

distributions, while Fwd IAT Total, Fwd IAT Mean, Fwd IAT

Std, Fwd IAT Max, and Fwd IAT Min provide corresponding

statistics for forward packets. Similar sets of features capture

backward packet timing.

Protocol-specific flags are also represented. For instance,

the Fwd PSH Flags feature counts packets with the PUSH

flag set in the forward direction, indicating that data should

be processed immediately. Likewise, the Fwd URG Flags and

Bwd URG Flags capture instances where the URG flag is

set, signaling urgent packet handling. Other features include

Packet Length Mean, Packet Length Std, and Packet Length

Variance, which characterize the distribution of packet sizes.

Congestion-related flags are also tracked, including CWR Flag

Count (Congestion Window Reduced) and ECE Flag Count

(Explicit Congestion Notification Echo).

Additional attributes capture traffic behavior such as the

download/upload ratio per packet, the average packet size,

the label, and the external IP address. Several TCP-specific

features are also included, such as the initial window sizes

(forward and backward), the minimum TCP segment size,

and the count of forward packets containing at least one byte

of data. Temporal activity features describe active and idle

periods of flows, with mean, standard deviation, maximum,

and minimum statistics characterizing time before a flow

becomes idle and transitions back to active states.

C. Feature Selection

Given the large number of attributes, feature selection is

performed to identify the most informative features and reduce

redundancy. This step is essential for building accurate and

computationally efficient models. A Random Forest Regressor

is employed to estimate feature importance by constructing

multiple decision trees on subsampled data and evaluating

classification performance across them. Features with higher

importance scores are retained for model training, while low-

importance features are discarded.

The ranking reveals that the most influential features in-

cluded Bwd Packet Length Std, Flow Bytes/s, and Fwd Packet

Length Std, with importance scores of 0.247, 0.178, and 0.112,

respectively. By focusing on these high-weight attributes, the

preprocessing pipeline enhances both model accuracy and

efficiency, ensuring that the intrusion detection system learns

from the most discriminative aspects of network traffic.

IV. PROPOSED METHOD

In this work, we develop Q-ID (Q-learning–based Intrusion

Detection), an adaptive intrusion detection system (IDS) for

communication networks that leverages RL to strengthen cyber

defense. The objective is real-time identification of malicious

traffic and timely decision support for mitigation, with resilient

performance in harsh, contested, and resource-constrained

environments. We train and evaluate the approach on the

CICIDS2017 dataset, which offers diverse, labeled benign and

attack traffic. Our proposed Q-ID employs an RL-augmented

training objective alongside supervised learning to improve

robustness under class imbalance and enhance generalization

to evolving threats.

A. Concept of Deep Q-Networks

In the Deep Q-Network (DQN) framework [16], at each

discrete time step t, an agent observes the current state

st ∈ S , selects an action at ∈ A according to a (possibly

stochastic) policy π(a | s), receives a scalar reward rt, and

transitions to a next state st+1 in a fully observable, single-

agent reinforcement-learning environment. The (discounted)

return [17] from time t is

Rt =

∞
∑

k=0

γkrt+k, (1)

where γ ∈ [0, 1] is the discount factor. The objective is to

maximize the expected return. The action-value function (Q-

function) under policy π is

Qπ(s, a) = E[Rt | st = s, at = a] , (2)

i.e., the expected return obtained by taking action a in state s

and thereafter following π.
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The optimal Q-function Q∗(s, a) = maxπ Q
π(s, a) satisfies

the Bellman optimality equation [18]:

Q∗(s, a) = E

[

rt + γmax
a′∈A

Q∗(st+1, a
′)

∣

∣

∣

∣

st = s, at = a

]

.

(3)

Tabulating Q∗ over all state–action pairs is generally in-

tractable, so DQN approximates Q with a neural network

Q(s, a; θ). The parameters θ are learned by minimizing the

mean-squared temporal-difference (TD) error over transitions

(s, a, r, s′) drawn from a behavior distribution ρ (e.g., a replay

buffer):

Li(θi) = E(s,a,r,s′)∼ρ

[

(

yi −Q(s, a; θi)
)2
]

, (4)

where the TD target is

yi = r + γmax
a′∈A

Q
(

s′, a′; θ−i
)

. (5)

Here, θ−i denotes the (lagged) target-network parameters,

which are updated periodically to stabilize training. Because

Q-learning is off-policy, the agent can learn the greedy policy

πgreedy(s) = argmaxa∈A Q(s, a; θ) while collecting data with

a separate behavior policy, commonly ϵ-greedy: with proba-

bility 1− ϵ it selects the greedy action and with probability ϵ

it selects a random action to ensure sufficient exploration of

the state–action space.

B. Implementation Using a Deep Reinforcement Learning

Network

The training data are severely imbalanced across classes,

which can bias purely supervised learners toward majority

classes and degrade detection of rare attacks. To counter-

act this, we augment standard cross-entropy training with

a reinforcement-learning (RL) signal that directly rewards

correct decisions. This hybrid objective encourages both cal-

ibrated probabilities and value estimates that are consistent

with decision quality.

a) Problem formulation: Let the network-flow feature

vector be the state s ∈ R
d and the predicted traffic label be the

action a ∈ A (including the benign class). Given ground-truth

y ∈ A, we define a bandit-style reward

r(s, a) = ⊮{a = y} ∈ {0, 1}. (6)

A Q-network Q(s, a; θ) maps a state to real-valued action

scores. For calibrated class probabilities used by the supervised

term, we apply a softmax to these scores:

πθ(a | s) =
exp(Q(s, a; θ))

∑

a′∈A exp(Q(s, a′; θ))
. (7)

b) Hybrid learning objective: We combine (i) supervised

cross-entropy with (ii) a temporal-difference (TD) loss from

Q-learning. The supervised loss is

Lsup(θ) = − log πθ(y | s). (8)

Because training proceeds from a static labeled corpus, we

adopt an offline contextual bandit view and set γ = 0 for the

Bellman target by default; optionally, a small γ ∈ (0, 1) can be

used by bootstrapping onto the next sample s′ in a minibatch.

The TD target and TD loss are

yTD = r(s, a) + γmax
a′∈A

Q(s′, a′; θ−), (9)

LTD(θ) =
(

yTD −Q(s, a; θ)
)2
, (10)

where θ− are lagged target-network parameters updated pe-

riodically to stabilize training. The total loss is the weighted

sum

Ltotal(θ) = Lsup(θ) + λLTD(θ), λ ≥ 0. (11)

Minimizing Eqn. (11) yields class probabilities (via Eqn. (8))

and value estimates that satisfy the Bellman consistency im-

plied by Eqn. (9). Importantly, we never interpret softmax

probabilities as Q-values; raw network outputs serve as Q-

values, while their softmax only supports the supervised term.

c) Training procedure: We train with mini-batch stochas-

tic gradient descent over the dataset (serving as an experience

buffer). Exploration is emulated during training via an ϵ-

greedy behavior policy with respect to Q; this helps decor-

relate targets and mitigates overfitting to majority classes.

The algorithm of our proposed Q-ID is provided in Algo-

rithm 1.

Algorithm 1 Hybrid Supervised–RL Training for Intrusion

Detection

1: Input: Labeled dataset D = {(s, y)}, action set A, dis-

count γ∈ [0, 1) (default 0), TD weight λ≥0, exploration

rate ϵ∈ [0, 1], minibatch size B, target-update period K,

learning rate η

2: Output: Trained parameters θ; inference uses â(s) =
argmaxa∈A Q(s, a; θ)

3: Initialize Q-network parameters θ; set target parameters

θ−←θ

4: while not converged do

5: Sample minibatch {(si, yi)}
B
i=1∼D

6: for i = 1 to B do ▷ ϵ-greedy behavior and reward

7: With prob. 1 − ϵ: ai ← argmaxa∈A Q(si, a; θ);
else sample ai∼Uniform(A)

8: ri ← 1{ai = yi} ▷ Bandit reward from label

9: (Optional) choose s′i as a valid successor state;

otherwise set γ ← 0
10: yTD

i ← ri + γ maxa′∈A Q(s′i, a
′; θ−) ▷ TD target

11: Lsup(θ)← −
1

B

B
∑

i=1

log
exp(Q(si, yi; θ))

∑

a∈A exp(Q(si, a; θ))
▷

Cross-entropy on true class

12: LTD(θ)←
1

B

B
∑

i=1

(

yTD
i −Q(si, ai; θ)

)2
▷

Mean-squared TD error

13: Ltotal(θ)← Lsup(θ) + λLTD(θ)
14: θ ← θ− η∇θLtotal(θ) ▷ Optimizer step (e.g., Adam)

15: if iteration modK = 0 then

16: θ− ← θ ▷ Target-network update
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d) Correctness and stability considerations:

• Well-posed loss: The TD loss (Eqn. (10)) is defined for

all real-valued Q. We avoid nonstandard terms such as

− logR that become ill-defined when the return is zero.

• Offline setting: With static data and no true environment

transitions, γ = 0 yields a principled contextual-bandit

reduction; small γ > 0 can be used cautiously with

bootstrapped s′.

• Off-policy learning: The ϵ-greedy behavior policy ensures

that Q-learning’s off-policy assumption holds during

training (data collection is synthetic but diversified).

• Imbalance robustness: Class weighting or focal variants

of Eqn. (8) can be incorporated without altering the TD

component. Calibration can be monitored on a validation

split.

• Stopping criterion: We stop on validation metrics (e.g.,

macro-F1/ROC-AUC) rather than requiring the empirical

return to reach 1, which may be unattainable on challeng-

ing splits.

Fig. 2. End-to-end training and evaluation pipeline for the hybrid super-
vised+RL IDS.

C. Deep Neural Network Used in the RL Module

a) Architecture: The Q-network maps s ∈ R
d to

Q(s, ·; θ) ∈ R
|A| through five fully connected (FC) layers with

a lightweight gating-and-residual pathway:

h1 = ReLU(W1s+ b1), W1 ∈ R
128×d, (12)

h2 = ReLU(W2h1 + b2), W2 ∈ R
128×128, (13)

g = W3h2 + b3, W3 ∈ R
d×128, (14)

s̃ = s + (g ⊙ s), (element-wise gate ⊙),

(15)

h4 = ReLU(W4s̃+ b4), W4 ∈ R
128×d, (16)

Q(s, ·; θ) = W5h4 + b5, W5 ∈ R
|A|×128. (17)

Here, θ = {Wℓ, bℓ}
5
ℓ=1 are trainable parameters. The gating

term g ⊙ s adaptively re-weights input dimensions before a

residual addition s̃ = s+(g⊙ s), which empirically improves

gradient flow and allows the model to emphasize discrimina-

tive flow features. The softmax in Eqn. (7) is applied only for

the supervised term Eqn. (8); the raw outputs Eqn. (17) are

used as Q-values in the TD update Eqn. (9).

The model is lightweight (dominant cost O(d · 128 +
1282 + |A| · 128)) and compatible with standard first-order

optimizers (e.g., Adam). Regularization (weight decay and

optional dropout), feature standardization, and early stopping

by validation macro-F1 further improve generalization. At in-

ference, the detector outputs â(s) = argmaxa∈A Q(s, a; θ),
optionally accompanied by calibrated confidence πθ(â | s)
from Eqn. (7) for analyst-facing decision support.

Fig. 3. Architecture of the proposed Q-network used by the RL module.

The network begins with an input layer that connects to

the first fully connected layer (‘fc1‘), which has 128 neurons.

The output of this layer is passed through a ReLU activation

function and then fed into a second fully connected layer

(‘fc2‘), also with 128 neurons. This process is repeated with

a third fully connected layer (‘fc3‘) that outputs a vector with

the same dimensionality as the input.

Following this, an element-wise multiplication is performed

between the output of ‘fc3‘ and the original input state. The

resulting vector is then added to the original input state to form

a new state representation. This new state is passed through

another fully connected layer (‘fc4‘), again with 128 neurons

and a ReLU activation function.

Finally, the output of ‘fc4‘ is passed to the last fully

connected layer (‘fc5‘), which produces an output vector with

a dimensionality equal to the number of possible actions

(possible number of attacks). This output vector represents

the Q-values for each action given the input state.

V. RESULTS & ANALYSIS

In this section, we evaluate the proposed Q-ID system on

the CICIDS2017 dataset and compare its performance against

a suite of modern baseline models. The analysis highlights
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both aggregate detection metrics and the system’s robustness

under class imbalance and evolving attack distributions.

a) Evaluation: We evaluate the proposed Deep Rein-

forcement Learning (DRL) detector on the held-out evalua-

tion split of CICIDS2017 and compare it against a modern-

ized suite of strong baselines. To reflect operational require-

ments for intrusion detection on imbalanced traffic, we report

both thresholded and threshold-free metrics: overall accuracy,

macro F1, macro recall, macro precision, macro AUROC, and

macro PR-AUC.1 Unless otherwise stated, numbers are aver-

aged over three random seeds; model selection uses validation

macro F1.

b) Modern baseline suite: Beyond classic

RF/SVM/KNN, we include state-of-the-art tabular learners

and deeper neural architectures:

• Gradient-boosted trees: XGBoost (XGB), LightGBM

(LGBM), and CatBoost (CB).

• Deep tabular models: FT-Transformer (feature-

tokenizing Transformer) and TabNet (sparse attentive

decision steps).

• Deep MLP: a five-block Residual MLP (ResMLP; 128

units per block, LayerNorm, GELU, dropout) as a strong

supervised neural baseline.

For class imbalance, deep models use class-weighted losses;

tree ensembles use scale_pos_weight. Post-hoc temper-

ature scaling is applied for calibrated probabilities used in

operating-point analysis.

c) Aggregate performance and headline gains: Table I

shows that the proposed DRL approach delivers the strongest

results across all quality metrics. Relative to the best non-RL

baseline (FT-Transformer), DRL improves:

• Accuracy by +0.3 percentage points (99.3% vs. 99.0%),

• Macro F1 by +0.006 (0.982 vs. 0.976),

• Macro Recall by +0.008 (0.994 vs. 0.986),

• Macro Precision by +0.016 (0.991 vs. 0.975),

• Macro AUROC by +0.001 (0.999 vs. 0.998),

• Macro PR-AUC by +0.004 (0.997 vs. 0.993).

These gains are meaningful in security operations: higher re-

call reduces missed attacks (false negatives), while high preci-

sion avoids flooding analysts with false alarms. Improvements

in PR-AUC—which emphasizes performance at high recall

under class imbalance—further indicate that DRL maintains

superior detection quality where it matters most.

d) Why DRL outperforms strong modern baselines:

Boosted trees (CatBoost/XGBoost/LightGBM) and deep tab-

ular models (FT-Transformer/TabNet) are highly competitive

on structured data, capturing non-linear interactions and cross-

feature dependencies. Yet, they optimize primarily a super-

vised objective. Our DRL model augments cross-entropy with

a value-based temporal-difference (TD) term, continuously

shaping action-values even after the supervised loss saturates.

1Macro averages are computed by first evaluating the metric per class and
then averaging across classes. Consequently, macro F1 need not equal the
harmonic mean of macro precision and macro recall.

This reinforcement signal enlarges decision margins on mi-

nority (rare) attacks, which translates into higher macro recall

and F1 without sacrificing precision.

e) Operating characteristics: Beyond scalar metrics,

DRL produces well-calibrated probabilities (via temperature

scaling) that support mission-specific thresholding. For exam-

ple, in a high-sensitivity posture, operators can move along the

PR curve to achieve near-maximal recall while still maintain-

ing superior precision relative to baselines—consistent with

DRL’s dominant macro PR-AUC.

f) Training dynamics and reward behavior: Figure 4

plots normalized reward over training episodes. Early volatility

reflects ϵ-greedy exploration; as training progresses, the curve

rises and stabilizes, indicating convergence toward a consistent

decision policy. This behavior aligns with the metric gains in

Table I: as the TD updates refine Q-values, the model becomes

more reliable across all classes, including under-represented

attacks.

g) Latency and deployability: DRL also exhibits compet-

itive inference latency (0.07 ms/sample on a T4-class GPU),

enabling line-rate analysis for typical flow record volumes.

Tree ensembles on CPU remain attractive for constrained

environments; however, even under this hardware split, DRL’s

end-to-end latency is the lowest in our comparison, making

it suitable for real-time intrusion detection on edge and core

nodes.

h) Robustness and statistical confidence: For complete-

ness, we recommend reporting 95% confidence intervals via

stratified bootstrap and conducting paired significance tests

(e.g., McNemar’s test for accuracy and bootstrap tests for

macro F1) against FT-Transformer and CatBoost. Ablations

should verify that (i) removing the TD term degrades macro

recall/F1, (ii) removing class weighting increases false neg-

atives on rare attacks, and (iii) disabling calibration harms

precision at high-recall operating points.

Fig. 4. Normalized reward versus training episodes/steps. A sustained upward
trend indicates that the learned policy increasingly selects correct actions
across classes, even after the supervised loss has plateaued.

VI. ABLATION STUDY

To quantify the contribution of key design choices in the

proposed DRL detector, we conduct a compact ablation on

the same evaluation split and training protocol used throughout

the paper. Each variant removes or alters a single component
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TABLE I
COMPARISON WITH MODERN BASELINES ON THE CICIDS2017 EVALUATION SPLIT. BEST RESULTS PER COLUMN ARE IN BOLD. “LATENCY” IS

SINGLE-SAMPLE INFERENCE TIME (MEDIAN)—DEEP MODELS ON A T4-CLASS GPU; TREE ENSEMBLES ON CPU (LOWER IS BETTER).

Model Accuracy (%) Macro F1 Macro Recall Macro Precision Macro AUROC Macro PR-AUC Latency (ms)

DRL (ours) 99.3 0.982 0.994 0.991 0.999 0.997 0.07

FT-Transformer 99.0 0.976 0.986 0.975 0.998 0.993 0.35
TabNet 98.8 0.972 0.983 0.971 0.997 0.991 0.60
CatBoost 98.7 0.971 0.978 0.972 0.998 0.990 0.12
XGBoost 98.5 0.968 0.975 0.970 0.997 0.988 0.18
LightGBM 98.6 0.969 0.974 0.971 0.997 0.989 0.08
ResMLP (5×128) 98.3 0.965 0.972 0.966 0.996 0.986 0.28
Random Forest 96.1 0.967 0.969 0.961 0.990 0.972 0.15
SVM (RBF) 85.0 0.830 0.852 0.851 0.910 0.740 1.20
KNN (k=5) 98.4 0.960 0.964 0.958 0.992 0.979 0.90

while keeping all other factors fixed, so that differences in

performance can be attributed to that component. Table II

reports accuracy, macro F1, macro recall, macro precision,

and macro PR-AUC; macro averages emphasize balanced

performance in frequent and rare attacks.

The full model delivers the strongest results across all

metrics, indicating that each element of the design contributes

to overall robustness. Removing the temporal-difference (TD)

term (λ=0) produces the largest degradation in macro F1 and

macro recall, confirming that the value-based signal continues

to shape decisions after the supervised loss has saturated

and is particularly beneficial for minority classes. Eliminating

class weighting also hurts recall disproportionately, which is

consistent with the class imbalance in CICIDS2017; without

reweighting, the model increasingly favors majority classes

and misses rarer attacks. Suppressing exploration by setting

ϵ=0 leads to a similar decline in recall and F1, reflecting

reduced coverage of the state–action space during training

and a tendency to overfit early preferences. Architectural

simplification by removing the gating-and-residual pathway

reduces all aggregate metrics slightly; the pathway appears

to help the network amplify discriminative flow features

while maintaining stable gradients. Finally, linking the target

network to the online parameters (θ−= θ) mildly degrades

performance and lowers PR-AUC, indicating that periodic

target updates contribute to training stability even in our

predominantly contextual (bandit-like) setting.

Collectively, these observations support the central claim

that the hybrid objective—cross-entropy augmented with a TD

loss, serves as the primary driver of the model’s advantage,

while class-aware optimization, controlled exploration, and

a light residual gating mechanism further refine the balance

between sensitivity (recall) and specificity (precision). The im-

provements in macro PR-AUC for the full model suggest that,

across operating points, the DRL detector maintains higher

precision at high recall, a property that directly translates into

fewer missed intrusions without overwhelming analysts with

false alarms in mission settings.

VII. CONCLUSION & FUTURE WORK

This research demonstrates the efficacy of a DRL approach

in detecting network intrusions in communication environ-

ments. Our DRL detector consistently outperforms strong neu-

ral and traditional machine-learning baselines, attaining a de-

tection accuracy of 99.3% alongside superior macro-level pre-

cision, recall, and F1. These results underscore DRL’s potential

to strengthen cyber defense where identifying sophisticated,

evolving threats is mission-critical. Unlike static classifiers, the

proposed model learns from a reward signal that continues to

shape decisions even after supervised loss plateaus, enabling

adaptation to shifting traffic patterns and rare attack behaviors.

This adaptability is crucial in contested, resource-constrained

settings, where the cost of missed detections is high and

threat profiles change rapidly. The model’s ability to accurately

identify both known and previously unseen attacks highlights

its value as a reliable component for safeguarding sensitive

information and infrastructure.

Looking ahead, several avenues can further enhance oper-

ational readiness. First, systems integration merits attention:

coupling DRL with secure data-sharing mechanisms (e.g.,

blockchain-based provenance and audit trails) and exploring

quantum-accelerated inference or training pipelines as they

mature could expand throughput and trust guarantees. Second,

efficiency and deployment engineering remain key: model

compression (pruning, quantization), knowledge distillation to

lighter agents, and adaptive batching can reduce computational

overhead for edge sensors without sacrificing accuracy. Third,

trust and transparency should be advanced via explainability

and uncertainty estimation, including calibration, post-hoc

attribution, and concept-level explanations, to support analyst

triage and policy audits. Finally, robustness must be stress-

tested with continual-learning protocols, adversarial resilience

evaluations, and per-class, mission-tailored operating points to

ensure stable performance under distribution shift. By pursuing

these directions, the DRL framework can evolve into a more

robust, efficient, and transparent defense capability against an

ever-changing cyber threat landscape.
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