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Abstract—The growing sophistication and frequency of cyber
threats in communication networks demand Intrusion Detection
Systems (IDS) that adapt to evolving attack patterns. Tradi-
tional approaches, based on static rules or purely supervised
models, often fail to recognize novel attacks, leaving critical
infrastructures exposed. Reinforcement Learning (RL) provides a
dynamic alternative by enabling agents to refine detection policies
through continuous feedback. In this work, we propose a Q-
learning-based Intrusion Detection (Q-ID) system and train it
on the CICIDS2017 dataset. The RL formulation defines the
state as the flow’s feature vector, the action as the classification
decision, and the reward as +1 for correct predictions and —1
otherwise. To ensure stable convergence, the reward is integrated
with cross-entropy loss in a hybrid objective, allowing continued
improvement even after the supervised component has plateaued.
Unlike prior IDS methods that rely solely on offline supervised
training, our approach fuses reinforcement feedback with su-
pervised optimization to support adaptive and robust detection.
Experimental results, conducted under class imbalance and
realistic evaluation splits, show that the proposed system achieves
99.3% accuracy, outperforming strong baselines including deep
neural networks and traditional classifiers. Moreover, the RL
agent demonstrates robustness under skewed traffic distributions
and adaptability to previously unseen attack types. These results
highlight reinforcement learning as a promising paradigm for
building resilient IDS in critical communication environments.

Index Terms—Adaptive Intrusion Detection, Communication
Networks, Reinforcement Learning, Q-learning Algorithm, Net-
work Security, Cyber Attack Resilience

I. INTRODUCTION

HE rapid growth in the complexity and frequency of cy-

ber threats poses significant risks to modern communica-
tion networks. These infrastructures form the backbone of crit-
ical services, enterprise systems, and national defense, making
them attractive targets for adversaries. Successful intrusions
can disrupt operations, compromise sensitive information, and
trigger cascading failures across interconnected systems [1].
Traditional Intrusion Detection Systems (IDS), which depend
heavily on static rules or signature-based techniques, are
increasingly inadequate for identifying sophisticated or pre-
viously unseen attacks [2]. Their inability to adapt to dynamic
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traffic patterns and evolving adversarial strategies underscores
the need for intelligent and flexible detection mechanisms.

Recent advances in Machine Learning (ML) and Aurtificial
Intelligence (AI) have been applied to strengthen IDS. Super-
vised learning approaches, for example, can classify traffic as
benign or malicious by learning from labeled datasets. While
such models outperform static rule-based systems, they suffer
from critical limitations, including reliance on large anno-
tated datasets, assumption of stationary data distributions, and
vulnerability to novel or evolving threats. These weaknesses
restrict their utility in dynamic and high-stakes communication
environments.

Reinforcement Learning (RL), a branch of ML, offers a
promising solution. Unlike supervised learning methods that
passively rely on historical labels, RL enables an agent to
interact with its environment, making sequential decisions
that maximize cumulative rewards [3]. This dynamic learning
paradigm equips IDS with the ability to self-correct and adapt
as new threats emerge, making RL particularly well-suited to
adversarial and continuously changing domains.

This work investigates the application of RL for adaptive
intrusion detection using the widely adopted CICIDS2017 [4]
dataset. Specifically, we propose a Q-learning—based Intrusion
Detection (Q-ID) agent that classifies network flows as normal
or malicious. The formulation defines the state, action, and
reward explicitly, and employs a hybrid training objective that
combines reward feedback with cross-entropy loss to ensure
stable convergence. Through continuous interaction with the
environment, the agent adapts its detection strategies over time,
enhancing its ability to recognize both known and previously
unseen attacks. The contributions of this paper are threefold.

1) An explicit RL formulation for intrusion detection, in-

cluding clear definitions of states, actions, and rewards.

2) A hybrid training strategy that integrates supervised and

reinforcement signals for stable and continued learning.

3) An empirical evaluation against strong machine learning

baselines that demonstrates superior accuracy, robust-
ness under class imbalance, and practical feasibility for
deployment in critical communication networks.
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The remainder of this paper is structured as follows: we first
discuss related work in the field of intrusion detection and RL
in Section II. Section III describes the CICIDS2017 dataset
and the preprocessing pipeline used for our experiments. We
then describe our methodology, data preprocessing and the
design of the RL agent in Section I'V. Experimental results are
presented to demonstrate the effectiveness of our approach in
Section V. Section VI provides an ablation study to quantify
the contribution of key design choices. Finally, we conclude
with a discussion on the implications of our findings and
potential future directions for research in Section VII.

II. RELATED WORK

Intrusion detection systems (IDS) have evolved from static
signature-based and rule-driven techniques toward more adap-
tive approaches. Classical IDS methods depend on predefined
patterns of known attacks, which limits their ability to recog-
nize novel or sophisticated intrusions. As cyber threats have
become increasingly dynamic, research has shifted toward ma-
chine learning (ML) and artificial intelligence (AI) techniques
capable of adapting to changing attack landscapes.

Reinforcement learning (RL) has emerged as a promising
direction for IDS. Otoum et al. [5] proposed a big data—driven
RL-based IDS for wireless sensor networks, achieving near-
perfect detection accuracy and outperforming prior hybrid
approaches. Their work highlighted RL’s ability to adapt to
evolving attack scenarios. However, existing RL-based IDS
approaches often do not clearly define the state, action, and
reward components, and few explicitly consider integrating
RL signals with supervised learning objectives to stabilize
optimization.

Several studies have applied supervised ML models to intru-
sion detection. Maliha et al. [6] investigated IoT security using
algorithms such as K-Nearest Neighbor (KNN), Naive Bayes,
Support Vector Machine (SVM), Random Forest, and Decision
Tree on the CICIDS2017 dataset, with feature selection based
on Random Forest Regressor and Extra Trees Classifier. Their
analysis showed that KNN achieved the highest accuracy and
Fl-score among the evaluated models. Similarly, Choudhary
et al. [7] developed a deep neural network (DNN) framework
and evaluated it across KDDCUP’99, NSL-KDD, and UNSW-
NB15, reporting an average accuracy of 91.5%. Norwahidayah
et al. [8] combined particle swarm optimization (PSO) [9]
for feature selection with an artificial neural network (ANN),
achieving 98% accuracy on the KDDCUP’99 dataset. While
these studies demonstrate the value of supervised learning,
their effectiveness remains tied to the availability of labeled
data and known attack types, reducing generalization to unseen
threats.

Neural networks have also been widely applied to anomaly
detection tasks such as user profiling [10], command sequence
prediction [11], and traffic pattern recognition [12]. More
advanced models, including recurrent neural networks and
self-organizing maps [13], offer flexibility but often lack
transparency in their decision-making, limiting trust and in-
terpretability in security-critical environments.
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More recent efforts have explored reinforcement learning-
based intrusion detection systems in dynamic and adver-
sarial settings. Ghubaish et al. [14] presented HDRL-IDS,
an actor—critic hybrid RL model designed for medical IoT
security in 5G environments. Although tailored for low-latency
MEC applications, their approach does not benchmark against
modern tabular learners or operate on standard datasets such
as CICIDS2017. Finally, Mahjoub et al. [15] proposed an
RL-driven IDS that adapts both the policy and environment
for IoT attack detection using the Bot-IoT dataset. How-
ever, the method lacks architectural transparency and does
not address class imbalance. In contrast, our proposed Q-ID
system introduces a well-defined Q-learning architecture with
a hybrid reward—supervised loss, applies to a general-purpose
IDS dataset (CICIDS2017), and demonstrates robustness under
data skew and previously unseen attacks.

Compared to prior research, the present study contributes by
explicitly formulating intrusion detection as a reinforcement
learning problem. States are represented by network flow
features, actions correspond to classification decisions, and
rewards provide direct feedback on detection outcomes. In
addition, a hybrid training objective that combines cross-
entropy loss with reward-based feedback is introduced to
enhance stability and adaptability. This positions our approach
at the intersection of supervised learning and RL, aiming to
provide robust detection performance while maintaining the
adaptability needed for evolving cyber threats.

III. DATASET AND PREPROCESSING

In this study, we utilize the CICIDS 2017 dataset, which is a
comprehensive benchmark for IDS. This dataset encompasses
a wide range of network traffic data, including both normal
and various attack types, making it suitable for training and
evaluating IDSs.

A. Dataset

The CICIDS 2017 dataset contains 2,830,683 records stored
in a single CSV file. Among these, 2,359,289 instances corre-
spond to benign (Normal) traffic, while 231,073 records rep-
resent DoS Hulk attacks. Additional attack categories include
158,930 PortScan, 41,835 DDoS, 10,293 DoS GoldenEye,
7,938 FTP-Patator, 5,897 SSH-Patator, 5,796 DoS Slowloris,
5,499 DoS Slowhttptest, 1,966 Bot, 1,507 Web Attack—Brute
Force, 652 Web Attack—Cross-Site Scripting, 36 Infiltration,
21 Web Attack—SQL Injection, and 11 Heartbleed instances,
as shown in Figure 1.

Overall, 83% of the dataset is classified as benign traffic,
while the remaining 17% corresponds to various attack types,
indicating a significant class imbalance. To ensure reliable
model training, preprocessing is performed to eliminate errors
and redundancies. During this step, inconsistencies are de-
tected among the 2,830,751 data streams and are subsequently
removed. Additional preprocessing involves eliminating re-
dundant features and converting categorical variables into nu-
merical representations using the LabelEncoder function.
Specific corrections include replacing “infinity” values with
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—1, handling “NaN” values by replacing them with 0, and
correcting inconsistent labels (e.g., converting “FTP-Patator”
to “FTP-Patator”).

PortScan

DDoS

DoS GoldenEye
FTP-Patator

SSH-Patator

DoS slowloris

DaS Slowhttptest

Bot

Web Attack- Brute Force
Web Attackcross-site scripting
Infiltration

Web Attack- Sql Injection
Heartbleed

Fig. 1. Distribution of classes in the CICIDS2017 dataset.

B. Feature Information

The dataset comprises 85 attributes that describe network
flows. These include identifiers such as flow ID, source IP, des-
tination IP, destination port, protocol, and timestamp. Several
attributes capture flow-level statistics, such as flow duration (in
microseconds), total forward packets, and total backward pack-
ets. Additional attributes summarize packet size distributions,
including maximum, minimum, mean, and standard deviation
values for both forward and backward packets.

Throughput-related features include flow bytes and flow
packets, which measure the total bytes and packets transmitted
per second. Inter-arrival time (IAT) features further describe
temporal dynamics: Flow IAT Max, Flow IAT Min, Flow
IAT Std, and Flow IAT Mean summarize inter-arrival time
distributions, while Fwd IAT Total, Fwd IAT Mean, Fwd IAT
Std, Fwd IAT Max, and Fwd IAT Min provide corresponding
statistics for forward packets. Similar sets of features capture
backward packet timing.

Protocol-specific flags are also represented. For instance,
the Fwd PSH Flags feature counts packets with the PUSH
flag set in the forward direction, indicating that data should
be processed immediately. Likewise, the Fwd URG Flags and
Bwd URG Flags capture instances where the URG flag is
set, signaling urgent packet handling. Other features include
Packet Length Mean, Packet Length Std, and Packet Length
Variance, which characterize the distribution of packet sizes.
Congestion-related flags are also tracked, including CWR Flag
Count (Congestion Window Reduced) and ECE Flag Count
(Explicit Congestion Notification Echo).

Additional attributes capture traffic behavior such as the
download/upload ratio per packet, the average packet size,
the label, and the external IP address. Several TCP-specific
features are also included, such as the initial window sizes
(forward and backward), the minimum TCP segment size,
and the count of forward packets containing at least one byte
of data. Temporal activity features describe active and idle
periods of flows, with mean, standard deviation, maximum,

and minimum statistics characterizing time before a flow
becomes idle and transitions back to active states.

C. Feature Selection

Given the large number of attributes, feature selection is
performed to identify the most informative features and reduce
redundancy. This step is essential for building accurate and
computationally efficient models. A Random Forest Regressor
is employed to estimate feature importance by constructing
multiple decision trees on subsampled data and evaluating
classification performance across them. Features with higher
importance scores are retained for model training, while low-
importance features are discarded.

The ranking reveals that the most influential features in-
cluded Bwd Packet Length Std, Flow Bytes/s, and Fwd Packet
Length Std, with importance scores of 0.247, 0.178, and 0.112,
respectively. By focusing on these high-weight attributes, the
preprocessing pipeline enhances both model accuracy and
efficiency, ensuring that the intrusion detection system learns
from the most discriminative aspects of network traffic.

IV. PROPOSED METHOD

In this work, we develop Q-ID (Q-learning—based Intrusion
Detection), an adaptive intrusion detection system (IDS) for
communication networks that leverages RL to strengthen cyber
defense. The objective is real-time identification of malicious
traffic and timely decision support for mitigation, with resilient
performance in harsh, contested, and resource-constrained
environments. We train and evaluate the approach on the
CICIDS2017 dataset, which offers diverse, labeled benign and
attack traffic. Our proposed Q-ID employs an RL-augmented
training objective alongside supervised learning to improve
robustness under class imbalance and enhance generalization
to evolving threats.

A. Concept of Deep Q-Networks

In the Deep Q-Network (DQN) framework [16], at each
discrete time step t, an agent observes the current state
sy € S, selects an action a; € A according to a (possibly
stochastic) policy m(a | s), receives a scalar reward r;, and
transitions to a next state s;y; in a fully observable, single-
agent reinforcement-learning environment. The (discounted)
return [17] from time t is

Ry = ZW%M; ey
k=0

where v € [0, 1] is the discount factor. The objective is to
maximize the expected return. The action-value function (Q-
function) under policy 7 is

Q" (s,a) = E[Ry|s; =s, a; = a], (2)

i.e., the expected return obtained by taking action « in state s
and thereafter following 7.
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The optimal Q-function Q*(s, a) = max, Q7 (s, a) satisfies
the Bellman optimality equation [18]:

Q*(Sva) =

St = 8§, ay = a] .

3)
Tabulating QQ* over all state—action pairs is generally in-
tractable, so DQN approximates () with a neural network
Q(s,a;0). The parameters 6 are learned by minimizing the
mean-squared temporal-difference (TD) error over transitions
(s,a,r,s") drawn from a behavior distribution p (e.g., a replay
buffer):

E a * , /
Tt""Yg}EﬁQ (8t41,a")

2
Lz(az) = E(s,a,r,s’)f\ap |:<yz - Q(57 a; 91)) :|7 (4)
where the TD target is

/1. n—

Yi = 1 +7£{1§§Q(s7a,9i). 5)
Here, 6; denotes the (lagged) target-network parameters,
which are updated periodically to stabilize training. Because
Q-learning is off-policy, the agent can learn the greedy policy
Tareedy (8) = argmaxqe 4 Q(s, a; §) while collecting data with
a separate behavior policy, commonly e-greedy: with proba-
bility 1 — e it selects the greedy action and with probability e
it selects a random action to ensure sufficient exploration of
the state—action space.

B. Implementation Using a Deep Reinforcement Learning
Network

The training data are severely imbalanced across classes,
which can bias purely supervised learners toward majority
classes and degrade detection of rare attacks. To counter-
act this, we augment standard cross-entropy training with
a reinforcement-learning (RL) signal that directly rewards
correct decisions. This hybrid objective encourages both cal-
ibrated probabilities and value estimates that are consistent
with decision quality.

a) Problem formulation: Let the network-flow feature
vector be the state s € R? and the predicted traffic label be the
action a € A (including the benign class). Given ground-truth
y € A, we define a bandit-style reward

r(s,a) = W{a=y} € {0,1}. (6)

A Q-network Q(s,a;6) maps a state to real-valued action
scores. For calibrated class probabilities used by the supervised
term, we apply a softmax to these scores:

ex s,a;0
mofa]s) = QOO
Y weaexp(Q(s,a’;0))
b) Hybrid learning objective: We combine (i) supervised
cross-entropy with (ii) a temporal-difference (TD) loss from
Q-learning. The supervised loss is

Lowp(0) = —logme(y | s). (8)

Because training proceeds from a static labeled corpus, we
adopt an offline contextual bandit view and set v = 0 for the
Bellman target by default; optionally, a small v € (0, 1) can be

)
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used by bootstrapping onto the next sample s’ in a minibatch.
The TD target and TD loss are

y™P —

Lrp(0) =

r(s,a) + ymaxQ(s',a’;07), 9
(yTD - Q(Sa a; 9))27

where 0~ are lagged target-network parameters updated pe-
riodically to stabilize training. The total loss is the weighted
sum

Etotal (9)

(10)

= Lewp(0) + XLp(0),  A>0.

an
Minimizing Eqn. (11) yields class probabilities (via Eqn. (8))
and value estimates that satisfy the Bellman consistency im-
plied by Eqn. (9). Importantly, we never interpret softmax
probabilities as Q-values; raw network outputs serve as Q-
values, while their softmax only supports the supervised term.
c) Training procedure: We train with mini-batch stochas-
tic gradient descent over the dataset (serving as an experience
buffer). Exploration is emulated during training via an e-
greedy behavior policy with respect to ; this helps decor-
relate targets and mitigates overfitting to majority classes.
The algorithm of our proposed Q-ID is provided in Algo-
rithm 1.

Algorithm 1 Hybrid Supervised—RL Training for Intrusion
Detection
1: Input: Labeled dataset D = {(s,y)}, action set A, dis-
count v € [0, 1) (default 0), TD weight A >0, exploration
rate € € [0, 1], minibatch size B, target-update period K,
learning rate 7
2: Output: Trained parameters 6; inference uses a(s) =
argmaXge A Q(S, a; 9)
3: Initialize Q-network parameters 6; set target parameters
0~ 0

4. while not converged do

5:  Sample minibatch {(s;,v;)}2, ~D

6: for i=1to Bdo b e-greedy behavior and reward

7: With prob. 1 — e: a; < argmaxae4 Q(s;,a;0);
else sample a; ~ Uniform(.A)

8: ri < {a; = yi} > Bandit reward from label

9: (Optional) choose s, as a valid successor state;
otherwise set v < 0

10: yIP < r; + v max,eq Q(sh,a’;07) > TD target

1y exp(Q(si. yi: 0))
1 Lap(0) B i_zllog S Qs a:0)) >

Cross-entropy on true class

1 TD 2
12: Lrp(0) B Zl (yZ — Q(si, ai;G)) >
Mean-squared TD error

13: ['total(g) — £5up(0) + )\L:TD(Q)
14: 0 < 0 — nVoLiota1(6) > Optimizer step (e.g., Adam)
15: if iteration mod K = O then

16: 0=« 0 > Target-network update
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d) Correctness and stability considerations:

o Well-posed loss: The TD loss (Eqn. (10)) is defined for
all real-valued Q. We avoid nonstandard terms such as
—log R that become ill-defined when the return is zero.

o Offline setting: With static data and no true environment
transitions, v = 0 yields a principled contextual-bandit
reduction; small v > 0 can be used cautiously with
bootstrapped s'.

o Off-policy learning: The e-greedy behavior policy ensures
that Q-learning’s off-policy assumption holds during
training (data collection is synthetic but diversified).

e Imbalance robustness: Class weighting or focal variants
of Eqn. (8) can be incorporated without altering the TD
component. Calibration can be monitored on a validation
split.

o Stopping criterion: We stop on validation metrics (e.g.,
macro-F1/ROC-AUC) rather than requiring the empirical
return to reach 1, which may be unattainable on challeng-

ing splits.
Lookup Table  [* ]
Reward(r)
Softmax layer Q(s.2) max Q(s,a)
Negative
Log of return

Deep Reinforcement
Learning Network

I —
QP

Loss

Fig. 2. End-to-end training and evaluation pipeline for the hybrid super-
vised+RL IDS.

C. Deep Neural Network Used in the RL Module

a) Architecture: The Q-network maps s € R? to
Q(s,-;0) € RM! through five fully connected (FC) layers with
a lightweight gating-and-residual pathway:

hi = ReLU(Wys +by), W, € R128xd, (12)

hy = ReLU(Wyhy + by), W, € R128x128 (13)

g = Wshg + bs, Wy € R9*128, (14)
S=s+ (gos), (element-wise gate ©),

(15)

hy = ReLU(W45 + by), W, € R128%4, (16)
Q(s,;0) = Wshy + bs, Wy € RIAIX128, (17)

Here, 0 = {W,,b,};_, are trainable parameters. The gating
term g ® s adaptively re-weights input dimensions before a
residual addition § = s+ (¢ ® s), which empirically improves
gradient flow and allows the model to emphasize discrimina-
tive flow features. The softmax in Eqn. (7) is applied only for

the supervised term Eqn. (8); the raw outputs Eqn. (17) are
used as Q-values in the TD update Eqn. (9).

The model is lightweight (dominant cost O(d - 128 +
1282 + |A| - 128)) and compatible with standard first-order
optimizers (e.g., Adam). Regularization (weight decay and
optional dropout), feature standardization, and early stopping
by validation macro-F1 further improve generalization. At in-
ference, the detector outputs a(s) = argmaxgea Q(s,a;0),
optionally accompanied by calibrated confidence mg(G | s)
from Eqn. (7) for analyst-facing decision support.

Input State }

I

‘ fe ‘

‘ fc2 ‘

fc3

[ fc5 {()'utput] W

Fig. 3. Architecture of the proposed Q-network used by the RL module.

The network begins with an input layer that connects to
the first fully connected layer (‘fcl¢), which has 128 neurons.
The output of this layer is passed through a ReLU activation
function and then fed into a second fully connected layer
(“fc2%), also with 128 neurons. This process is repeated with
a third fully connected layer (‘fc3°) that outputs a vector with
the same dimensionality as the input.

Following this, an element-wise multiplication is performed
between the output of ‘fc3‘ and the original input state. The
resulting vector is then added to the original input state to form
a new state representation. This new state is passed through
another fully connected layer (‘fc4°), again with 128 neurons
and a ReLU activation function.

Finally, the output of ‘fc4‘ is passed to the last fully
connected layer (‘fc5¢), which produces an output vector with
a dimensionality equal to the number of possible actions
(possible number of attacks). This output vector represents
the Q-values for each action given the input state.

V. RESULTS & ANALYSIS

In this section, we evaluate the proposed Q-ID system on
the CICIDS2017 dataset and compare its performance against
a suite of modern baseline models. The analysis highlights
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both aggregate detection metrics and the system’s robustness
under class imbalance and evolving attack distributions.

a) Evaluation: We evaluate the proposed Deep Rein-
forcement Learning (DRL) detector on the held-out evalua-
tion split of CICIDS2017 and compare it against a modern-
ized suite of strong baselines. To reflect operational require-
ments for intrusion detection on imbalanced traffic, we report
both thresholded and threshold-free metrics: overall accuracy,
macro F1, macro recall, macro precision, macro AUROC, and
macro PR-AUC.! Unless otherwise stated, numbers are aver-
aged over three random seeds; model selection uses validation
macro F1.

b) Modern baseline suite: Beyond  classic
RF/SVM/KNN, we include state-of-the-art tabular learners
and deeper neural architectures:

« Gradient-boosted trees: XGBoost (XGB), LightGBM
(LGBM), and CatBoost (CB).

e Deep tabular models: FT-Transformer (feature-
tokenizing Transformer) and TabNet (sparse attentive
decision steps).

o Deep MLP: a five-block Residual MLP (ResMLP; 128
units per block, LayerNorm, GELU, dropout) as a strong
supervised neural baseline.

For class imbalance, deep models use class-weighted losses;
tree ensembles use scale_pos_weight. Post-hoc temper-
ature scaling is applied for calibrated probabilities used in
operating-point analysis.

c) Aggregate performance and headline gains: Table 1
shows that the proposed DRL approach delivers the strongest
results across all quality metrics. Relative to the best non-RL
baseline (FT-Transformer), DRL improves:

« Accuracy by +0.3 percentage points (99.3% vs. 99.0%),
« Macro F1 by +0.006 (0.982 vs. 0.976),

« Macro Recall by +0.008 (0.994 vs. 0.986),

« Macro Precision by +0.016 (0.991 vs. 0.975),

« Macro AUROC by +0.001 (0.999 vs. 0.998),

« Macro PR-AUC by +0.004 (0.997 vs. 0.993).

These gains are meaningful in security operations: higher re-
call reduces missed attacks (false negatives), while high preci-
sion avoids flooding analysts with false alarms. Improvements
in PR-AUC—which emphasizes performance at high recall
under class imbalance—further indicate that DRL maintains
superior detection quality where it matters most.

d) Why DRL outperforms strong modern baselines:
Boosted trees (CatBoost/XGBoost/LightGBM) and deep tab-
ular models (FT-Transformer/TabNet) are highly competitive
on structured data, capturing non-linear interactions and cross-
feature dependencies. Yet, they optimize primarily a super-
vised objective. Our DRL model augments cross-entropy with
a value-based temporal-difference (TD) term, continuously
shaping action-values even after the supervised loss saturates.

'Macro averages are computed by first evaluating the metric per class and
then averaging across classes. Consequently, macro FI need not equal the
harmonic mean of macro precision and macro recall.
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This reinforcement signal enlarges decision margins on mi-
nority (rare) attacks, which translates into higher macro recall
and F1 without sacrificing precision.

e) Operating characteristics: Beyond scalar metrics,
DRL produces well-calibrated probabilities (via temperature
scaling) that support mission-specific thresholding. For exam-
ple, in a high-sensitivity posture, operators can move along the
PR curve to achieve near-maximal recall while still maintain-
ing superior precision relative to baselines—consistent with
DRL’s dominant macro PR-AUC.

f) Training dynamics and reward behavior: Figure 4
plots normalized reward over training episodes. Early volatility
reflects e-greedy exploration; as training progresses, the curve
rises and stabilizes, indicating convergence toward a consistent
decision policy. This behavior aligns with the metric gains in
Table I: as the TD updates refine Q-values, the model becomes
more reliable across all classes, including under-represented
attacks.

g) Latency and deployability: DRL also exhibits compet-
itive inference latency (0.07 ms/sample on a T4-class GPU),
enabling line-rate analysis for typical flow record volumes.
Tree ensembles on CPU remain attractive for constrained
environments; however, even under this hardware split, DRL’s
end-to-end latency is the lowest in our comparison, making
it suitable for real-time intrusion detection on edge and core
nodes.

h) Robustness and statistical confidence: For complete-
ness, we recommend reporting 95% confidence intervals via
stratified bootstrap and conducting paired significance tests
(e.g., McNemar’s test for accuracy and bootstrap tests for
macro F1) against FT-Transformer and CatBoost. Ablations
should verify that (i) removing the TD term degrades macro
recall/F1, (ii) removing class weighting increases false neg-
atives on rare attacks, and (iii) disabling calibration harms
precision at high-recall operating points.

Test Rewards

Normalized Reward

0 100 200 300 400 500
Steps

Fig. 4. Normalized reward versus training episodes/steps. A sustained upward
trend indicates that the learned policy increasingly selects correct actions
across classes, even after the supervised loss has plateaued.

VI. ABLATION STUDY

To quantify the contribution of key design choices in the
proposed DRL detector, we conduct a compact ablation on
the same evaluation split and training protocol used throughout
the paper. Each variant removes or alters a single component
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TABLE 1
COMPARISON WITH MODERN BASELINES ON THE CICIDS2017 EVALUATION SPLIT. BEST RESULTS PER COLUMN ARE IN BOLD. “LATENCY” IS
SINGLE-SAMPLE INFERENCE TIME (MEDIAN)—DEEP MODELS ON A T4-CLASS GPU; TREE ENSEMBLES ON CPU (LOWER IS BETTER).

Model Accuracy (%) | Macro F1 | Macro Recall | Macro Precision | Macro AUROC | Macro PR-AUC | Latency (ms)
DRL (ours) 99.3 0.982 0.994 0.991 0.999 0.997 0.07
FT-Transformer 99.0 0.976 0.986 0.975 0.998 0.993 0.35
TabNet 98.8 0.972 0.983 0.971 0.997 0.991 0.60
CatBoost 98.7 0.971 0.978 0.972 0.998 0.990 0.12
XGBoost 98.5 0.968 0.975 0.970 0.997 0.988 0.18
LightGBM 98.6 0.969 0.974 0.971 0.997 0.989 0.08
ResMLP (5x128) 98.3 0.965 0.972 0.966 0.996 0.986 0.28
Random Forest 96.1 0.967 0.969 0.961 0.990 0.972 0.15
SVM (RBF) 85.0 0.830 0.852 0.851 0.910 0.740 1.20
KNN (k=5) 98.4 0.960 0.964 0.958 0.992 0.979 0.90

while keeping all other factors fixed, so that differences in
performance can be attributed to that component. Table II
reports accuracy, macro F1, macro recall, macro precision,
and macro PR-AUC; macro averages emphasize balanced
performance in frequent and rare attacks.

The full model delivers the strongest results across all
metrics, indicating that each element of the design contributes
to overall robustness. Removing the temporal-difference (TD)
term (A=0) produces the largest degradation in macro F1 and
macro recall, confirming that the value-based signal continues
to shape decisions after the supervised loss has saturated
and is particularly beneficial for minority classes. Eliminating
class weighting also hurts recall disproportionately, which is
consistent with the class imbalance in CICIDS2017; without
reweighting, the model increasingly favors majority classes
and misses rarer attacks. Suppressing exploration by setting
€=0 leads to a similar decline in recall and F1, reflecting
reduced coverage of the state—action space during training
and a tendency to overfit early preferences. Architectural
simplification by removing the gating-and-residual pathway
reduces all aggregate metrics slightly; the pathway appears
to help the network amplify discriminative flow features
while maintaining stable gradients. Finally, linking the target
network to the online parameters (/~ = 6) mildly degrades
performance and lowers PR-AUC, indicating that periodic
target updates contribute to training stability even in our
predominantly contextual (bandit-like) setting.

Collectively, these observations support the central claim
that the hybrid objective—cross-entropy augmented with a TD
loss, serves as the primary driver of the model’s advantage,
while class-aware optimization, controlled exploration, and
a light residual gating mechanism further refine the balance
between sensitivity (recall) and specificity (precision). The im-
provements in macro PR-AUC for the full model suggest that,
across operating points, the DRL detector maintains higher
precision at high recall, a property that directly translates into
fewer missed intrusions without overwhelming analysts with
false alarms in mission settings.

VII. CONCLUSION & FUTURE WORK

This research demonstrates the efficacy of a DRL approach
in detecting network intrusions in communication environ-

ments. Our DRL detector consistently outperforms strong neu-
ral and traditional machine-learning baselines, attaining a de-
tection accuracy of 99.3% alongside superior macro-level pre-
cision, recall, and F1. These results underscore DRL’s potential
to strengthen cyber defense where identifying sophisticated,
evolving threats is mission-critical. Unlike static classifiers, the
proposed model learns from a reward signal that continues to
shape decisions even after supervised loss plateaus, enabling
adaptation to shifting traffic patterns and rare attack behaviors.
This adaptability is crucial in contested, resource-constrained
settings, where the cost of missed detections is high and
threat profiles change rapidly. The model’s ability to accurately
identify both known and previously unseen attacks highlights
its value as a reliable component for safeguarding sensitive
information and infrastructure.

Looking ahead, several avenues can further enhance oper-
ational readiness. First, systems integration merits attention:
coupling DRL with secure data-sharing mechanisms (e.g.,
blockchain-based provenance and audit trails) and exploring
quantum-accelerated inference or training pipelines as they
mature could expand throughput and trust guarantees. Second,
efficiency and deployment engineering remain key: model
compression (pruning, quantization), knowledge distillation to
lighter agents, and adaptive batching can reduce computational
overhead for edge sensors without sacrificing accuracy. Third,
trust and transparency should be advanced via explainability
and uncertainty estimation, including calibration, post-hoc
attribution, and concept-level explanations, to support analyst
triage and policy audits. Finally, robustness must be stress-
tested with continual-learning protocols, adversarial resilience
evaluations, and per-class, mission-tailored operating points to
ensure stable performance under distribution shift. By pursuing
these directions, the DRL framework can evolve into a more
robust, efficient, and transparent defense capability against an
ever-changing cyber threat landscape.
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