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Abstract—Humans try to help computers understand the
properties of the real world, and ontologies can be used for this
task. Manual enhancement of ontologies is highly time-consuming
for domain experts. This paper proposes a solution to match
a scientific text to the most relevant ontology using artificial
neural networks. Our approach selects a paragraph or a sentence,
uses representation learning to embed it into a vector space by
some embedder, and measures its relevance to embedded textual
properties from the selected ontology by a modified version
of a Siamese neural network. We have considered different
embedders, their quality has been evaluated on a use case with
available ontologies from several application domains.

Index Terms—ontology, neural network, embedding, text
matching, LLM

I. INTRODUCTION

Knowledge graphs and ontologies are graph-based struc-
tures for knowledge representation. They are defined as "a
formal specification of a shared conceptualization" [1], provide
a standardized description formalism to express knowledge,
facilitating its exchange. Knowledge is typically related to
some specific domain. Knowledge graphs and ontologies are
commonly used to increase understanding of the related do-
main.

A domain ontology serves as a framework defining funda-
mental concepts, such as classes, attributes, and relationships,
within a specific knowledge domain. Their definitions encap-
sulate information about their meaning and constraints. Classes
can be defined through annotations or by interconnecting
them with properties. Each domain ontology typically employs
domain-specific terms to denote its primitives.

The manual construction of classes and their relations is too
demanding for the time of domain experts, and automation
could bring large amounts of time savings. The automated
construction of an ontology consists of several steps:

1) Parse the source texts and extract only relevant content
2) Extract content from the ontologies defining its domain
3) Represent the extracted contents in the same vector

space
4) Find the ontology most relevant to the source text
5) Locate the new knowledge in the structure of the ontol-

ogy
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6) Insert the new knowledge, and align it with the ontology
internal structure, e.g., via removing duplicities

This paper deals with the issue of automatic ontology design
only by assigning articles to ontologies, which corresponds to
points 3 and 4. It represents both, the content extracted from
ontologies, and the given text in the same vector space and
uses an artificial neural network (ANN) to find the ontology
most relevant to the given research text.

The next section recalls related work. Section III describes
the methodology of text preprocessing and text representation
learning, and our architecture of the neural network for the
task of text-to-ontology matching. In Section IV, the proposed
methodology is validated in a case study by applying it to
scientific data.

II. RELATED WORKS

In connection with learning and extending ontologies,
ANNs have been primarily used for the identification of con-
cepts, relations, and attributes [2], [3], [4]. With respect to rela-
tions, some ANN-based methods have been developed specifi-
cally for subsumption relations needed for the construction of
taxonomies [5], [6], [7], [8]. In connection with the integration
of ontologies, they have been used primarily for ontologies
matching [9], [10], [11], [12], [13]. The variety of employed
ANN types is rather large. It includes traditional multilayer
perceptrons [14], adaptive resonance theory networks [15]
and associative memories [16], as well as the modern deep
convolutional networks [9], [17], deep belief networks [2],
long short-term memory (LSTM) networks together with their
bidirectional variant (BiLSTM) [18] and gated recurrent units
networks [19], [20].

The dependence of ontologies on texts led to using net-
works developed for text and natural language representation
learning, most importantly BERT [21], [22], the bidirectional
encoder representations from transformers, and word2vec [23],
the most traditional network for embedding text into a Eu-
clidean space. The close relationship of ontologies to knowl-
edge graphs led also to the use of RDF2Vec [7], [20], which
was originally proposed for knowledge graphs [24]. Based
on similar principles as word2vec and RDF2Vec, OWL2Vec
for embedding ontologies [25] and recently OWL2Vec4OA
(OWL2Vec for ontology alignment) [26] were proposed. The

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 185–193

DOI: 10.15439/2025F1850
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 185 Topical area: Advanced Artificial
Intelligence in Applications



most related paper to our assigning scientific texts to existing
ontologies solution is [27]. It presents an attempt to solve a
text-to-ontology mapping problem by utilizing NLP tools and
neural networks, and assess the final result through visualizing
the latent space and exploring the mappings between an input
text and ontology classes. Finally, the graph-like structure of
ontologies brought the application of graph neural networks
[11], [12].

Closest to the proposed approach is the way ANNs have
been used in connection with translating into OWL [28],
[19], with predicate chaining and restriction [16], and with
taxonomy extraction from knowledge graphs [7]. In [28],
ontology learning is tailored as a transductive reasoning task
that uses two recurrent neural networks to translate text in
natural language into OWL specifications in description logic.
That approach was further developed in [19], resulting in a
system based on a single recurrent network of GRU type.
It uses an encoder-decoder configuration and translates a
subset of natural language into the description logic language
ALLQ through syntactic transformation. Moreover, the system
generalizes over different syntactic structures and has the
ability to tolerate unknown words through copying input words
as extralogical symbols to the output, as well as the ability to
enrich the training set with new annotated examples.

In [16], a mapping is established between ontologies and a
pair of interacting associative memories. One of them stores
assertions, and the other stores entailment rules. The recent
work [7] describes a method for the specific task of extracting
a taxonomy from an embedding of a knowledge graph. Over
that embedding, which can be obtained for example with
RDF2Vec, hierarchical agglomerative clustering is performed,
first without using type information, and then injecting types
into the hierarchical clustering tree.

III. METHODOLOGY

This section describes details of the employed methods.
In the first part, we address processing textual files, splitting
them into paragraphs, and keeping only paragraphs fulfilling
minimal length and content relevant to the document’s topic.
The second part describes the textual embedders considered
in assigning texts to ontologies. The final part describes the
learning of similarity between an ontology and a given text.

A. Text Preprocessing

The texts used in the case study in Section IV have been
extracted from scientific PDFs (Portable Document Files) and
the considered ontologies. To read and transform ontologies,
we have used the Protégé tool [29], which can understand
many commonly used formats for ontology representation. We
have chosen the Ontology Web Language (OWL) as the target
format and extracted it using the Python package owlready2
[30]. As a representation of each ontology, we use textual
content in natural language (e.g., label, comment, description,
definition, and note) extracted from their formal representa-
tions. Contents shorter than five words were removed because
of low context information.

B. Text Representation Learning

For typical downstream data analysis tasks, such as classifi-
cation or clustering, it is suitable to embed words or other parts
of text in a Euclidean space. This representation is mostly the
result of representation learning using ANN-based embedders.
In our research, we consider the following embedders:

1) Global Vectors for Word Representation (GloVe): [31] is
an unsupervised learning algorithm that captures word seman-
tics by leveraging global statistical information. It constructs
a word-context co-occurrence matrix and then factorizes it
to obtain word embeddings. Each embedding represents a
word’s position in the semantic space based on its statistical
relationships with other words. However, to create embeddings
for entire texts, an aggregation process is necessary, which
relies on averaging the individual word embeddings based on
the TF-IDF (Term Frequency-Inverse Document Frequency)
weights.

2) InferSent: [32] is designed for creating universal sen-
tence representations through supervised learning on natural
language inference data. It approaches the task by using a
carefully crafted training set that includes pairs of sentences
with labeled relationships (entailment, contradiction, or neu-
tral). InferSent’s embeddings are learned by predicting rela-
tionships between sentences. This approach generates sentence
embeddings that encapsulate semantic relationships, making it
suitable for various downstream natural language processing
tasks.

3) Doc2vec-DM: , i.e., the distributed memory version of
Doc2Vec [33], is an extension of Word2Vec [34] tailored for
document-level embeddings. It operates by learning distributed
representations of documents, considering both word and
document context. The model can provide either a single
embedding per document or embeddings for individual words
within the document. This flexibility makes it versatile for
various applications, such as document similarity analysis or
content-based document retrieval.

4) Bidirectional Encoder Representation from Transformers

(BERT): [35] captures contextual information bidirectionally,
considering both the left and right context of each word in
a sentence. BERT embeddings are contextualized and can be
used at both word and sentence levels. Its variant SciBERT is
specialized for scientific literature and the variant Sentence-
BERT focuses on generating embeddings tailored for entire
sentences. Each version of BERT addresses specific use cases,
offering state-of-the-art performance across a range of natural
language processing tasks.

5) Llama 3.1 + LLM2vec: uses the large language model
(LLM) Llama 3.1 [36] published in July 2024, with various
model sizes. We have chosen the 8B model, which fits into
commonly available GPUs. Llama 3.1 is an auto-regressive
language model that uses an optimized transformer architec-
ture. We use it for representation learning using LLM2Vec
[37], which enables bidirectional attention, trains the model
with masked next-token prediction, and performs unsupervised
contrastive learning. The model can be further fine-tuned to
achieve state-of-the-art performance in specific cases.
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C. Network Learning

Our proposed architecture is inspired by Siamese neural
networks [38], which are widely used for tasks involving
the estimation of the similarity between two inputs, such as
in face verification or semantic textual similarity. The key
motivation behind this inspiration lies in the core functionality
of Siamese networks: they encode two inputs into a shared
embedding space using twin subnetworks with shared weights,
and then compute a distance or similarity measure between
these embeddings.

Fig. 1. Neural network schema illustrating used layers (represented with
boxes) and flow of the embedded inputs from an ontology and an article to
the final cosine distance between them.

In our case, the task requires assessing the semantic distance
between a source text and an ontology concept. This parallels
the role of Siamese networks, where the goal is to quantify
how similar or different two representations are. By adopting
this paradigm, our architecture learns to embed both the input
text and ontology representation into a common space and
returns a scalar distance that reflects their semantic alignment.
Our neural network takes an embedded text as an anchor
input and a list of embedded, randomly shuffled representative
descriptions from an ontology as a representative input. As
an output, it returns the distance of the embedded text and
representative samples.

Figure 1 shows the internal architecture. The representative
input dataset flows through the aggregator, which is repre-
sented by the Mean pooling layer or the bidirectional LSTM

(long-short-term memory) with a training dropout equal to 0.2
layer in our experiments. The whole batch is then normalized,
which is known to improve LSTM results [39]. The following
linear layer reduces size and its output is L2 normalized. The
following Siamese linear layer is the core of this architecture,
which takes the anchor and the output from the second branch
and returns for each of them a numeric vector, its size is
a quarter compared to the anchor vector. Finally, the cosine
similarity between those vectors is computed. More details are
provided in Algorithm 1.

IV. CASE STUDY

This section describes the data used in the case study, its
experimental setting, and the evaluation of the obtained results.

A. Used Data

The ontologies used in our experiments come from chem-
istry for both training and testing, all of them being some-
how related to catalysis, whereas for testing there are also
ontologies from some more distant application domains. Table
I shows the details of the considered ontologies.

TABLE I
THIS TABLE SHOWS THE CONSIDERED ONTOLOGIES, THEIR COUNTS OF

TEXTUAL DESCRIPTIONS OF CLASSES AND RELATIONS, AND SCIENTIFIC

AREAS TO WHICH THEY ARE RELATED.

Area Ontology name Count of items

with textual

definitions

Chemistry Allotrope Foundation
Ontology (AFO)

2894

Chemistry Chemical Entities
of Biological Interest (CHEBI)

176873

Chemistry Chemical Methods
Ontology (CHMO)

3084

Chemistry Systems Biology Ontology (SBO) 694

Chemistry National Cancer
Institute Thesaurus (NCIT)

166212

Biology Biological Collections
Ontology (BCO)

671

Energy Digital Construction
Energy (DICES)

67

Environment Environment Ontology (ENVO) 6605

Finance Financial Industry
Business Ontology (FIBO)

3362

B. Experimental Setting

Each anchor and representative input pair was extracted
from the ontologies because we do not have other texts with
known ground truth. Each extracted pair was required to fulfill
the condition that the anchor text must not appear in the
representative descriptions. For our experiment, we selected
the considered ontologies and divided them into two parts.
From the chemistry group, 80 % of the textual descriptions
were randomly selected for training and the rest for testing on
similar domains. The remaining ontologies, from more distant
domains, were completely used for testing. From the training
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Algorithm 1 Training the Neural Network (NN) with Texts from Ontologies and Anchor Texts

Require: Dataset D = {(Oi, ai, yi)}, where Oi is a list of texts, ai is the anchor text, and yi ∈ {0, 1} is the similarity label.
Require: Embedder EM , assigning to each input a vector of size Features.
Require: Aggregator Aϕ (Bidirectional LSTM or Mean pooling) and Siamese model fψ , with trainable parameters ϕ and ψ,

an optimizer minimizing a loss function L.
Require: Hyperparameters: number of epochs E and batch size BS.

1: Initialize parameters ϕ and ψ of the Aϕ and fψ .
2: Split the dataset D: D = Dtr ∪ Dval and Dtr ∩ Dval = ∅
3: Set Siamese network output size: OutputSize = Features/4.
4: Initialize bestLoss←∞ and bestModel← (ϕ, ψ).
5: for epoch = 1 to E do

6: Shuffle the dataset Dtr and divide it into batches of size BS.
7: for each batch B ⊂ Dtr do

8: for each (Oi, ai, yi) ∈ B do

9: Aggregate branch:

10: for each text o ∈ Oi do

11: Compute embedding: ho = EM(o).
12: end for

13: Aggregate embeddings using selected aggregator: hOi
= Aϕ({ho}).

14: Apply 1D batch normalization to hOi
, yielding hnorm

Oi
.

15: Pass hnorm
Oi

through a fully connected layer, yielding hfc
Oi

.

16: Apply L2 normalization: hL2
Oi

=
hfc
Oi

∥hfc
Oi

∥2

.

17: Anchor branch:

18: Compute an embedding for the anchor text: hai = EM(ai).
19: Siamese network:

20: Compute the outputs: zagg
i = fψ(h

L2
Oi
), zanchor

i = fψ(hai).
21: Compute the cosine similarity oi of zagg

i , zanchor
i .

22: Compute the loss: ℓ = L(oi, yi).
23: end for

24: Update the parameters ϕ and ψ using the optimizer to minimize ℓ for the batch.
25: end for

26: Compute the validation loss ℓval for the current model on Dval.
27: if ℓval < bestLoss then

28: Update bestLoss← ℓval and bestModel← (ϕ, ψ).
29: end if

30: end for

31: return bestModel with parts Aϕ and fψ corresponding to the least validation loss.

data, 20 % of textual descriptions were randomly selected as
a validation dataset, and the rest as a training dataset. Both
datasets were resampled to keep the same proportion of data
from each ontology, to mitigate overfitting with texts from one
ontology.

For the validation of our model, we have considered the
hyperparameters listed in Table II. Marked bold is the com-
bination selected on the validation dataset by the contrastive
loss.

Lcontrastive(x1, x2, y) =
1

2
y · dcos(x1, x2)

2+

1

2
(1− y) ·max(0, 1− dcos(x1, x2))

2 (1)

In the above definition:

• x1 and x2 are the outputs of the network for which
the contrastive loss is computed, namely the x1 for the
embedded anchor text and the x2 for the embedded
representative list of texts from the selected ontology

• y denotes whether the anchor on the input belongs to the
selected ontology (y = 1) or does not belong to it (y = 0)

• dcos(x1, x2) is the cosine distance between x1 and x2

C. Results

All results in this case study were obtained using an
independent testing dataset. Writing T for True, F for False,
P for positive, N for negative, TPR = TP

TP+FN and FPR =
FP

FP+TN , the definitions of the employed quality measures are
as follows:
Accuracy = TP+TN

TP+FN+TN+FP ,
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TABLE II
CONSIDERED COMBINATIONS OF HYPERPARAMETERS BATCH SIZE (BS),

OPTIMIZER (OPT), AND LEARNING RATE (LR), IN BOLD IS THE

COMBINATION SELECTED ON THE VALIDATION DATASET BASED ON THE

VALUE OF THE CONTRASTIVE LOSS (CL)

BS OPT LR CL

8 Adam 0.1 0.126

8 Adam 0.01 0.126

8 Adam 0.001 0.126

8 SGD 0.1 0.125

8 SGD 0.01 0.126

8 SGD 0.001 0.125

16 Adam 0.1 0.129

16 Adam 0.01 0.081

16 Adam 0.001 0.089

16 SGD 0.1 0.066

16 SGD 0.01 0.063

16 SGD 0.001 0.065

32 Adam 0.1 0.129

32 Adam 0.01 0.124

32 Adam 0.001 0.125

32 SGD 0.1 0.047

32 SGD 0.01 0.044

32 SGD 0.001 0.046

F1 = 2· Precision·Recall
Precision+Recall , where Precision = TP

TP+FP and
Recall = TPR

AUC =
∑n

i=1 (FPR[i]− FPR[i− 1])
(

TPR[i]+TPR[i−1]
2

)

,

where i indexes all the values of the prediction score, which is
a numerical output of the model that represents the confidence
that a sample belongs to the positive class. The prediction
score is sorted and thresholds are applied to generate pairs of
TPR and FPR values, spanning the range from the minimum
to the maximum prediction score.

1) Statistics from ontologies for near and far domains:

The results in Table III for descriptions from ontologies
with domains near the training data are best for embeddings
obtained with the SciBERT in the model with LSTM aggrega-
tion. This may be due to SciBERT having been fine-tuned by
scientific data. The worst embedder was Doc2Vec-DM. The
results with Doc2Vec and GloVe have been expected because
these solutions are based on simple textual embedders. The
variant of the model with the mean pooling aggregation layer
has even better results. The best results have been achieved
with the Llama3.1+LLM2vec embedder without fine-tuning
to a specific domain or task. Thanks to the fact that texts are
the primary kind of data on which LLMs have been trained,
our model had better performance in the considered quality
measures.

These results were compared with our previous research
[40], where we solved the text-to-ontology matching task.
We used the chemical-bert-uncased [41] for embedding in-
put texts. These embeddings were used as inputs to the

TABLE III
RESULTS FOR ONTOLOGIES WITH DOMAINS NEAR TO THE TRAINING DATA

COMPARED TO RESULTS FROM [40] BASED ON CLASSIFIERS

ANN LSTM solution Accuracy AUC F1
Doc2Vec-DM 83.3 % 73.9 % 83.2 %
TF-IDF GloVe 84.8 % 76.3 % 84.7 %
InferSent 95.1 % 92.3 % 95.0 %
Llama3.1+LLM2vec 94.3 % 92.0 % 94.3 %
SciBERT 98.2 % 97.1 % 98.1 %

SentenceBERT 95.0 % 92.2 % 95.0 %

ANN Mean pooling solution Accuracy AUC F1
Doc2Vec-DM 92.7 % 88.5 % 92.6 %
TF-IDF GloVe 95.9 % 93.6 % 95.8 %
InferSent 98.9 % 98.3 % 98.8 %
Llama3.1+LLM2vec 99.3 % 98.9 % 99.3 %

SciBERT 99.2 % 98.7 % 99.1 %
SentenceBERT 98.7 % 98.0 % 98.7 %

Classifiers-based solution Accuracy AUC F1
Gaussian process 97.5 % 92.2 % 89.5 %

K-nearest neighbor 96.7 % 90.4 % 87.6 %
Multi-layer perception 97.0 % 91.0 % 87.8 %
Random forest 94.6 % 82.0 % 85.9 %
Support vector machine 97.2 % 91.6 % 88.7 %

following classifiers: Gaussian process, k-nearest neighbor,
multilayer perception, random forest, and support vector ma-
chine. Among them, the multilayer perceptron classifier is
the most similar to our ANN approach. The approach in
[40] has not achieved as high values for the three considered
quality measures as have been achieved in the experiments
reported in this paper with the proposed ANN architecture,
especially in combination with the SciBERT embedder. The
best result in [40] were achieved by the Gaussian process
classifier, compared to which the SciBERT-based solution
reported here has accuracy better by 0.9, AUC by 5.2, and F1
by 8.9 percentile points in the LSTM variant, and in the mean
pooling variant, accuracy is better by 1.8, AUC by 6.7, and
F1 by 9.8 percentile points. The classification we performed
in [40] was restricted to an a priori chosen set of chemical
catalytic ontologies, whereas the approach we propose here is
independent of the number of potential target ontologies.

TABLE IV
RESULTS FROM ONTOLOGIES WITH DOMAINS FAR FROM THE TRAINING

DATA

ANN LSTM solution Accuracy AUC F1
Doc2Vec-DM 67.0 % 55.9 % 66.8 %
TF-IDF GloVe 63.4 % 51.2 % 63.1 %
InferSent 70.0 % 60.0 % 69.6 %
Llama3.1+LLM2vec 60.2 % 50.9 % 59.3 %
SciBERT 63.5 % 51.3 % 63.2 %
SentenceBERT 69.9 % 59.9 % 69.9 %

ANN Mean pooling solution Accuracy AUC F1
Doc2Vec-DM 67.5 % 56.6 % 67.3 %
TF-IDF GloVe 68.9 % 58.5 % 68.0 %
InferSent 69.7 % 59.6 % 69.4 %

Llama3.1+LLM2vec 62.7 % 50.3 % 62.2 %
SciBERT 70.7 % 61.0 % 67.8 %
SentenceBERT 63.7 % 51.6 % 62.9 %

The results in Table IV for texts from ontologies with
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domains far from the training data are best for embeddings
obtained with InferSent and SentenceBERT for the case of
LSTM aggregation. In the case of aggregation by mean
pooling, the best results were achieved by the model with
the SciBERT and InferSent embedders. We did not expect this
behavior because LLMs can handle long inputs and understand
their semantics pretty well. These results show that embedders
that are not based on LLMs are still very useful. This behavior
may be caused by the fact that the LLMs are not primarily
optimized to create textual embeddings.

2) Statistical significance tests:

The differences between the considered embedders were
tested for significance by the Friedman test. The basic null
hypotheses that each of the AUC, accuracy, and F1 are for all 6
embedders the same, were rejected for the LSTM aggregation,
with the achieved p-values 1× 10−2, 3× 10−2, and 2× 10−2,
respectively. In case of mean pooling based aggregation, the
achieved p-values were 1× 10−1, 3× 10−2, and 1× 10−2, so
we are not able to reject the hypotheses for the AUC metric.
As to the post-hoc analysis, because we agree with the opinion
of the authors of [42], we followed their proposal to use the
Wilcoxon signed rank test with the two-sided alternative for
all pairs of compared embedders. For the correction due to
multiple hypotheses testing, we used the Holm method. The
results are given in Table V and Table VI, the best results
by the total score have embeddings from InferSent and both
BERTs in the case of LSTM aggregation, and from InferSent
and Llama3.1 in the case of mean pooling.

V. CONCLUSION

In this paper, we proposed an approach to assigning sci-
entific texts to ontologies. This solution contributes to the
complex process of automated knowledge processing and
highlights the possibilities for research on enhancing existing
ontologies. We used neural networks for text embedding
and for comparison of obtained embeddings to automatically
determine the ontologies most relevant to texts. To this end,
we adapted a Siamese neural network in combination with
representation learning by various embedders, namely GloVe
with TF-IDF weighted aggregation, SentenceBERT, SciBERT,
InferSent, Doc2Vec-DM and Llama 3.1 with LLM2vec frame-
work. The embedding of given text serves as the input to
one branch of the Siamese neural network, and the list of
embeddings of textual descriptions from the considered ontol-
ogy serves as the input to the second branch. The solutions
based on Doc2Vec-DM and GloVE were unsuccessful. In this
approach, the most successful combination in ontologies from
highly diverse domains was the InferSent embedder, which
takes into account contextual relations and produces embed-
dings with the highest dimension. It achieved good results in
both test cases. Our results show that the proposed method
surpasses an earlier solution based on a multilayer perceptron
classifier. However, challenges remain in the extraction of
knowledge from ontologies and in merging new knowledge
with existing ontology. In our future research, we want to
address these challenges using graph neural networks. Our

motivation for such an approach is the graph structure of
ontologies.
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